
Barbara G. Kanki, Ph.D.
NASA Ames Research Center
Human Factors and Ergonomics Society 55th Annual Meeting
Las Vegas, NV – September 23, 2011
Agenda

• Introduction
• Changes in Roles and Responsibilities
 – Focus on Collaborative Work
 – Focus on New Technologies
 – Focus on Roles and Responsibilities
• Collaborative Systems Assessment (CSA)
 – Developing a Baseline Interaction Matrix
 – Developing a Framework for CSA
 – Future Directions
Introduction

Program: NextGen Flight Deck Human Factors
 – Division: Human Interaction with NextGen Technologies
 – Topic Area: Automation/Roles & Responsibilities
 – Project Focus: Pilot/ATC/Flight Operations Center Communication & Coordination

Research Team – NASA Ames Research Center
 – Barbara G. Kanki, Ph.D., NASA
 – Thomas L. Seamster, Ph.D., Cognitive & Human Factors
 – Eric Chevalley, Ph.D., San Jose State Univ. Fndn
 – Subject Matter Experts: pilots/air traffic controllers/dispatchers
Changing Roles and Responsibilities

Changes in the roles and responsibilities of pilot, ATC, FOC and automation are anticipated in future NextGen collaborative systems

– In order to implement the most effective distribution of roles and responsibilities there needs to be a way to assess various collaborative arrangements that:
 • takes into account Human Factors considerations,
 • identifies benefits and risks at a general level,
 • addresses performance tradeoffs at a procedural level.
Focus on Collaborative Work

AIR TRAFFIC CONTROL

Tower Team
Flight data
Tower supervisor
Ground control
Cab coordinator
Local control

TRACON Team
Arrival/Departure data
Arrival Control
Departure Control
Satellite Control
Traffic Management Unit

EN ROUTE
SECTOR TEAM
Radar flight data
Radar coordination
Radar associate
Traffic Management Unit

FLIGHTDECK
Captain - First Officer
Pilot Flying – Pilot Monitoring

TRAFFIC MANAGEMENT

FLIGHT OPERATIONS CENTER (FOC)
Dispatchers who plan and release flights
Dispatches who coordinate with ATC
Focus on New Technologies

AGD ADS-B Guidance Display

Class 3 EFB (Electronic Flight Bag)

CDTI Cockpit Display of Traffic information

Class 2 Electronic Flight Bag with Airport Moving Map

BGKanki

HFES 55th Annual Meeting
Las Vegas, NV – Sept 23, 2011
Focus on Roles and Responsibilities

• In the current system:
 • Are responsibilities shared within/across teams?
 • Who does what and with what level of authority?
 • How are responsibilities governed?
 • How do roles communicate and coordinate; by what means?

• When roles change:
 • Will responsibilities shift or be shared across teams?
 • Will there be changes in workload, where will they occur?
 • What are the information requirements; will there be changes in situational awareness?
 • What are the overall benefits and risks?
Collaborative Systems Assessment (CSA)

Assumptions for developing a CSA framework:

1. Framework for assessment is generic (e.g., technology and procedure neutral).
2. Framework incorporates basic operational concepts (e.g., phase of flight, nominal vs. off-nominal conditions, time-sensitive vs. time-critical).
3. Currently, there is substantial interaction between groups but little “collaboration”.
4. Current interactions involve limited automation but as advanced automation is implemented, “automation” is considered the 4th “collaborator.”
Developing a Baseline Interaction Matrix

1. Detail current roles and responsibilities of pilots, controllers and dispatchers by phase of flight
 - on the basis of task analyses for each role,
 - using operator manuals, FAA guidance documents,
 - interviews and surveys with subject matter experts.

2. Identify generic points of interaction for normal and key off-normal operations (pilot-ATC, pilot-FOC, ATC-FOC)
 - describing the current function of the interaction,
 - providing the current means of interaction or communication.
Keeping a systems perspective…

… focusing on collaborative functions
Developing a Framework for CSA: 5 Key Elements

1. Collaborators: Flightdeck, ATC, FOC, Automation
2. Collaborator Responsibilities for each
3. Functions and Procedures
 – Function Allocation
 – Collaborative Procedures
 – Tasks
4. Human Factors Considerations
 – Scenarios including Nominal and Off-nominal Operations
 – Measures and Metrics
5. Required Technologies
 – System requirements and technologies
Developing a Framework for CSA Inputs

CSA Input Elements for pilot/ATC/FOC/Automation

• When only General inputs are available
 – Phase of Flight of interest
 – Time Criticality: (e.g., critical, sensitive, planning)
 – Collaborator Responsibilities (e.g., collaborative trajectory mgmt)
 – Collaborator Functions (e.g., merging, spacing, separation mgmt)
 – Level of Automation (e.g., none, partial, full)

• When Detailed Procedural inputs are available
 – Assumed Systems/Technologies (e.g., ADS-B, Data Comm, RNAV, RNP, ERAM available, System Wide Information Management (SWIM), NextGen Network Enabled Weather (NNEW) is available, CDTI, Collaborative Trajectory Planning)
Developing a Framework for CSA Output

CSA Output

• When only General inputs are available,
 – General Benefits, e.g. efficiency, flexibility, enhanced situational awareness, decreased workload,
 – General Risks, e.g., work overload, not maintaining shared situational awareness, level of automation required not available.

• When Detailed Procedural inputs can be assumed, trade studies may be performed for particular collaborations
 – Metrics for each collaborator (e.g., Flightdeck, ATC, Automation) may include: Communication frequency, efficiency, flexibility, shared situational awareness, workload.
Future Directions

- The CSA framework (currently in the form of checklists) allows the user to assess collaborative systems at a General and/or Detailed, procedural level.
- The framework can be further developed into a stand-alone tool, supported by links to research literature as well as operational and guidance documents.
- Intended users are ConOps developers and other NextGen researchers.