Experimental Determination of the Dynamic Hydraulic Transfer Function for the J-2X Oxidizer Turbopump-Part Two-

Results and Interpretation

Submitted for consideration to: □ MSS □ LPS □ SPS

For inclusion in Technical Area: □ 1 □ 2 □ 3 □ 4 □ 5 □ 6

Security Classification of Presentation: □ Unclassified

Security Classification of Paper: □ Unclassified

Contract Number(s) Under Which Work was Performed: □ IR&D

Is this paper an update? □ Yes □ No Has it been presented elsewhere? □ Yes □ No Is this a student paper? □ Yes □ No

Author/Presenter Name

Tom Zoladz

Affiliation NASA Marshall Space Flight Center-ER42

Address NASA Marshall Space Flight Center-ER42

City MSFC State AL Zip 35812

Telephone 256.544.1552 Telefax 256.544.1630 e-mail: thomas.f.zoladz@nasa.gov

2nd Author

Sandeep Patel

Affiliation Optical Sciences Corporation

Address NASA Marshall Space Flight Center-ER42

City MSFC State AL Zip 35812

Telephone 256.544.7386 Telefax 256.544.1630 e-mail: Sandy.patel@nasa.gov

3rd Author

Erik Lee

Affiliation Jacobs Engineering

Address NASA Marshall Space Flight Center-ER42

City MSFC State AL Zip 35812

Telephone 256.961.2662 Telefax 256.544.1630 e-mail: erik.n.lee@nasa.gov

Additional Author(s)

Dave Karon

Affiliation Concepts NREC

Address 217 Billings Farm Road

City White River Jct. State VT Zip 5001

Telephone 802.280.6127 Telefax 802.296.2325 e-mail: dkaron@conceptsnrec.com
MANAGEMENT APPROVAL

The individual below certifies that the required resources are available to present this paper at the above subject JANNAF meeting.

Responsible Manager authorizing presentation: Lisa Griffin
Title/Agency: Branch Chief Propulsion Fluid Dynamics-ER42
Telephone Number: 256.544.8972 e-mail: lisa.w.griffin@nasa.gov Date: 6-9-2011
Experimental Waterflow Determination of the Dynamic Hydraulic Transfer Function for the J-2X Oxidizer Turbopump-Part Two-Results and Interpretation

Experimental results describing the hydraulic dynamic pump transfer matrix (Yp) for a cavitating J-2X oxidizer turbopump inducer+impeller tested in subscale workflow are presented. The transfer function is required for integrated vehicle pogo stability analysis as well as optimization of local inducer pumping stability. Dynamic transfer functions across widely varying pump hydrodynamic inlet conditions are extracted from measured data in conjunction with 1D-model based corrections. Derived Dynamic transfer functions are initially interpreted relative to traditional Pogo pump equations. Water-to-liquid oxygen scaling of measured cavitation characteristics are discussed. Comparison of key dynamic transfer matrix terms derived from workflow testing are made with those implemented in preliminary Ares Upper Stage Pogo stability modeling. Alternate cavitating pump hydraulic dynamic equations are suggested which better reflect frequency dependencies of measured transfer matrices.