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Schedule 

 3 pre-flight blood/urine collections (L-180, L-45, L-10) 
 5 in-flight blood/urine collections 

• FD15, FD30, FD60, FD120, FD180 
 2 post-flight blood/urine collections (R+0, R+30) 

 
 
 
 
 
 

 
Samples are analyzed for a battery of tests 

 Vitamins    Minerals  Proteins 
 Bone Markers   Hormones  Renal Stone Risk 
 Antioxidants/Ox Damage  General Chemistry Cytokines 

 



          Vitamin K 

Vitamin K status does not appear affected by spaceflight (or bed rest). 
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Testosterone 

STS-55/D-2 (1993) 
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Heer et al., Pflugers Arch,  2002 

2488 kcal 

2800 kcal 

1400 kcal 

Strollo et al., Adv Sp Biol Med, 1999 
Strollo, Pflugers Arch (Eur J Physiol), 2000 
Strollo et al., J Endo Invest, 2005 



Testosterone does not appear to be affected by spaceflight (or bed rest). 





One-Carbon Metabolism 



Enzyme Polymorphisms 

Enzymes 
 Proteins, amino acid strings 
 catalyze reactions 
 assembled from amino acids 

based on “blueprints” 

 poly = multiple, “morph” = forms 
 For many (all?) enzymes, there are 

small differences in blueprints across 
the population (e.g., blood types) 



MTHFR C677T Polymorphism 



Everybody has 2 sets of blueprints (mom and dad), 
resulting in four possibilities of this polymorphism. 

MTHFR C677T Polymorphism 

                 % Pop    Enz Act. 
C/C          ~35%        100% 
C/T(T/C)  ~50%        ~66% 
T/T           ~15%        ~50% 
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These data strongly suggest a role for polymorphism(s) 
of one or more of the enzymes in this pathway in 
spaceflight-related vision changes. 

 

 

 

 



 MTHFR polymorphisms associated with: 
 Increased risk of stroke 
 Increased risk of migraine 
 Increased homocysteine, which is: 
 associated with increased risk of vascular events  
 a risk factor for retinal venous occlusive disease 
 a risk factor for narrower retinal vasculature in men 

 



 Proposal to follow up submitted to HHC in March 2011… 
 Results will: 

 Inform risks 
 Inform therapeutic options 
 Inform VIIP research 
 Inform countermeasure options/application 

Forward Work 
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 Radiation exposure will only increase as space flights 
move beyond low earth orbit 

 Astronauts experience an increase in total body Fe 
from two sources 
 Decrease in red blood cell mass 
 High dietary Fe from eating processed foods 

 Low level radiation and increase total body Fe, 
independently, are known to cause can independently 
increase oxidative damage, resulting in protein, lipid 
and DNA oxidation 

 Oxidative stress increases the risk of many health 
problems including cancer, cataracts, and heart 
disease.   



Iron 

26 
Fe 

0.375 Gy every other day for 16 days 
(3 Gy Total, Cs-137) 

650 mg Fe in High Fe diet,  
45 mg Fe in Control diet for 30 days 

Animals Arrived 

20 days 14 days 16 days 

High Fe diet Radiation  exposure Termination 

-20 0 14 30 



Iron 

26 

Fe 

VIIP/Eyes 
S Zanello 

Bone 
J Sibonga 
S Bloomfield (TAMU) 

Immunology 
B Crucian/C Sams 

Pharmacology 
V Wotring 

Cardiovascular 
S Platts/C Westby 

Nutrition 
Ox. Damage/Minerals/Vitamins 
SR Zwart/JLL Morgan/SM Smith 

Gastrointestinal 
N Turner (TAMU) 
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Blood 
 Alanine Transaminase (ALT) 
 Aspartate Aminotransferase (AST) 
 RBC Folate 
 Catalase 
 Ferritin 
 RBC Folate 
 Glutathione, Oxidised & Reduced. 
 RBC Glutathione Peroxidase (GPX) 
 Hematochrite (HCT) 
 Heme 
 Hepcidin 

 Hemoglobin 
 NTX 
 Oxidized Low density Lipids 
 Superoxide Dismutase 
 Total Fe, Cu, Zn, & Se 
 Total antioxidant Capacity 
 Transferrin 
 8OhDG 
 CRP 
 

Liver 
 Catalase 
 Total Fe, Cu, Zn, & Se 
 Glutathione Peroxidase (GPX) 
 Superoxide Dismutase (SOD) 
 Total Antioxidant Capacity (TAC) 
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 Red blood cell cycle is disrupted by radiation 
further increasing the TBI load 

 Markers of oxidative stress are increased in 
serum and liver as a result of both radiation 
and high iron 

 Other talks today will discuss the further 
biological implications of this oxidative 
stress.  



Flight Controls 
 
Obtained samples from 7 flight mice 
 
Give Calcein to label bone 
 

Ground Controls 
 
Obtained samples from 15 ground controls 
 
Aged matched to Flight Mice 
 
Give Calcein to label bone 

Baseline Controls 
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Liver 
 Catalase 
 Total Fe, Cu, Zn, & Se 
 Glutathione Peroxidase 

(GPX) 
 Superoxide Dismutase 

(SOD) 
 Total Antioxidant Capacity 

(TAC) 
 Folate metabolites 

 
 



 Folate metabolism is significantly altered as a 
result of spaceflight 

 No markers of oxidative stress are present in 
the liver 
 



Preliminary data from the Pro K experiment: 
  

Urinary Acid Excretion can Predict 
Changes in Bone Metabolism During 

Space Flight 
 

SR Zwart, M Heer, L Shackelford, SM Smith 



Background 

• Excess protein: beneficial or harmful to bone? 
– Oxidation of excess protein yields H+ 

corresponding to H2SO4 
 

• Other factors 
– Calcium  
– Base-components 
– Type of protein 
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Pro K Objective 

• To determine if altering the ratio of acid 
(animal protein) to base (potassium) 
precursors in the diet is associated with 
changes in bone metabolism during 
spaceflight.   
 



• Prescribe 4-d controlled diets twice before and 4 
times during flight  
• High Apro/K: 1.0-1.3 g/mEq 
• Low Apro/K: 0.3-0.6 g/mEq 

 
 
 

 
• Blood and urine samples were collected at the 

end of each session 
 

4-d High 
APro:K 

4-d High 
APro:K 

4-d Low 
APro:K 

4-d Low 
APro:K 

4-d Low 
APro:K 

4-d High 
APro:K 

4-d Low 
APro:K 

4-d Monitored 
Diet 

L-180 L-45 FD15 FD30 FD120 FD180 FD60 

Methods 



The following data are 
preliminary, based on n = 5 



NAE= (S + P + Cl + OA) – (Na + K + Ca + Mg) 

(Remer & Manz 1995)  

Net Acid Excretion 



Inflight NAE (estimated from diet, mEq/d)
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R = 0.80 
P < 0.001 
Y = -0.01x + 6.9 
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Potential confounding factors 
Kcal 
Protein (% of kcal) 
Exercise 

– Energy (i.e., kcal) 
– Protein (% of kcal) 
– Exercise 

– Medications 
– Other? 
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Forward Work 

• 2 Pro K subjects currently on ISS 
• Additional Pro K subjects scheduled to fly 

in next 2 years 
• Frozen sample return pending commercial 

launch vehicles (late 2012/TBD) 
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