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Abstract

The problem of simultaneously accommodating unknown sensor biases and unknown
actuator failures in uncertain systems is considered in a direct model reference adap-
tive control (MRAC) setting for state tracking using state feedback. Sensor biases
and actuator faults may be present at the outset or may occur at unknown instants
of time during operation. A modified MRAC law is proposed, which combines sen-
sor bias estimation with control gain adaptation for accommodation of sensor biases
and actuator failures. This control law is shown to provide signal boundedness in
the resulting system. For the case when an external asymptotically stable sensor
bias estimator is available, an MRAC law is developed to accomplish asymptotic
state tracking and signal boundedness. For a special case wherein biases are only
present in the rate measurements and bias-free position measurements are available,
an MRAC law is developed using a model-independent bias estimator, and is shown
to provide asymptotic state tracking with signal boundedness.

1 Introduction

Loss of control due to anomaly and upsets has been known to be a major cause of
aircraft accidents and incidents. Actuator and sensor faults have been implicated in
several aircraft accidents. Some examples of accidents caused by actuator failures
include: hydraulics/multiple actuator failures [1], rudder failure [2], and horizontal
stabilizer failure [3]. Sensor failures have also been implicated in a number of ac-
cidents and incidents, for example, radio altimeter fault [4], angle-of-attack sensor
fault [5], and airspeed sensor fault [6].

Direct model reference adaptive control (MRAC) methods offer an approach for
maintaining stability and controllability in the presence of uncertainties and failures,
without requiring explicit fault detection, isolation, and controller reconfiguration.
Direct MRAC methods use controller gains that are adaptively adjusted to achieve
a performance close to that of a reference model while maintaining system stability
and close tracking of the reference model response. Direct MRAC methods for state-
or output- tracking using state feedback have been well established. In particular,
direct MRAC schemes that use state feedback for state-tracking (SFST) have the
advantage of simplicity of implementation and can achieve effective state tracking
in the presence of parameter uncertainties [7]. Such schemes have been extended to
the case with actuator failures [8], [9], [10]; to plant-model mismatch due to damage
or icing [11]; and to simultaneous plant-model mismatch and actuator failures [12].

In addition to actuator faults, sensor faults may also compromise safety. A
common type of sensor fault is sensor bias, which can develop during operation in
sensors such as rate gyros, accelerometers, altimeter, etc. One approach to deal with
sensor faults is to use redundant sensor packages. However, common-mode failures
can occur across all the sensors, and each sensor can typically develop a different
unknown bias. If used directly in an MRAC law, such offsets in sensor measure-
ments can have detrimental effects on closed-loop stability, which can no longer be
theoretically guaranteed. Literature addressing accommodation of sensor faults (or
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simultaneous actuator and sensor faults) in an MRAC setting is relatively limited.
In [13], a modified MRAC law was developed, which combines a bias estimator with
control gain adaptation, to obtain signal boundedness and bounded tracking error.
Further, for the case wherein an asymptotically stable sensor bias estimator is avail-
able, an MRAC control law was developed to accomplish asymptotic tracking and
signal boundedness.

In this paper, the results of [13] are extended to the case with simultaneous actu-
ator failures and sensor bias faults. Such faults (of unknown magnitude) may occur
in unknown sensors and/or actuators at unknown instants of time. The problem
formulation is presented in Section 2, and an MRAC law that incorporates adap-
tive sensor bias estimation to ensure signal boundedness is developed in Section 3.
Section 4 considers the case when an external asymptotically stable sensor bias es-
timator is available, and Section 5 addresses a special case when sensor bias exists
only in the rate measurements. Section 6 contains the concluding remarks.

2 Problem Formulation

Consider a linear time-invariant plant, subject to actuator failures and sensor biases,
described by:

ẋ (t) = Ax (t) + Bu (t) (1)
y (t) = x(t) + β

where A ∈ Rn×n is the system matrix assumed to be unknown, B ∈ Rn×m is the
input matrix, x (t) ∈ Rn is the system state, and u (t) ∈ Rm is the control input.
y (t) ∈ Rn is the available state measurement with an unknown constant bias β ∈ Rn.
In practice, additive sensor noise and process noise are also present in the system.
However, as is customary in the MRAC literature, sensor noise and process noise
are not included in the analysis in order to facilitate analytical proofs of tracking
stability and signal boundedness.

In addition, the actuators u(t) ∈ Rm (e.g., control surfaces or engines in aircraft
flight control) may fail during the operation. Actuator failures are modeled as

uj(t) = ūj , t ≥ tj , j ∈ Jp (2)

Jp = {j1, j2, . . . , jp} ⊆ {1, 2, . . . , m}

where the failure pattern Jp, the failure value ūj (assumed to be constant), and
the failure time of occurrence tj are all unknown. For example, an aircraft control
surface may be locked at some unknown fixed value due to hydraulics failure. Let
v(t) = [v1, v2, . . . , vm]ᵀ ∈ Rm be the applied(commanded) control input signal. In
the presence of actuator failures, the actual input vector u(t) to the system can be
described as

u(t) = v(t) + σ(ū − v(t)) = (I − σ)v(t) + σū (3)
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where

ū = [ū1, ū2, . . . , ūm]ᵀ

σ = diag{σ1, σ2, . . . , σm}
σi = 1 if the ith actuator fails, i.e., ui = ūi

σi = 0 otherwise. (4)

That is, σ is a diagonal matrix (“failure pattern matrix”) whose entries are piecewise
constant signals that take on the values of zero or one. The components of the applied
input signal v(t) = [v1(t), v2(t), . . . , vm(t)]ᵀ which correspond to the failed actuators,
cannot affect the system dynamics. The actuator failures are uncertain in value,
pattern and time of occurrence.

The objective is to design an adaptive feedback control law using the available
measurement y (t) with unknown bias β, such that closed-loop signal boundedness
is ensured and the system state x (t) tracks the state of a reference model described
by

ẋm (t) = Amxm (t) + Bmr (t) (5)

where xm ∈ Rn is the reference model state, Am ∈ Rn×n, Bm ∈ Rn×mr , and
r(t) ∈ Rmr (1 ≤ mr ≤ m) is a bounded reference input used in system operation
(e.g., pilot input in the case of aircraft).

This paper considers the single-reference-input case, i.e., r is a scalar (mr = 1)
and Bm ∈ Rn. The actuators are assumed to be similar (e.g., segments of the same
control surface), i.e., the columns (bi) of the B matrix can differ only by an unknown
scalar multiplier. It is also assumed that bi are parallel to the reference model input
matrix Bm ∈ Rn, i.e.,

bi = Bm/αi, i = 1, . . . , m (6)

for some unknown (finite and non-zero) αi’s whose signs are assumed known. The
objective is to design an adaptive control law that will ensure closed-loop signal
boundedness and asymptotic state tracking (i.e., limt→∞(x(t) − xm(t)) = 0) despite
system uncertainties, actuator failures, and sensor bias faults. The adaptive con-
troller should synthesize the control signal v(t) so as to ensure system stability and
asymptotic tracking regardless of whether (or which) actuators have failed, or the
failure values, in the presence of unknown biases in the sensor outputs. That is, v(t)
should be capable of compensating for the actuator failures and sensor bias faults
automatically.

As in the case of actuator failures with no sensor bias [9], it is assumed that
the system (A, B) and the reference model (Am, bm) satisfy the following SFST
matching conditions (similar to those in [9], modified for actuator failure and sensor
bias accommodation): For every failure pattern, there exist gains K1 ∈ Rn×m, and
k2, k3 ∈ Rm, such that

Am = A + B(I − σ)Kᵀ
1 ; Bm = B(I − σ)k2; Bσū = −B(I − σ)(Kᵀ

1 β + k3). (7)

The reference model (Am, Bm) is usually designed to capture the desired closed-loop
response of the plant. For example, the reference model may be designed using
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optimal and robust control methods such as LQR, H2, or H∞ methods. For the
adaptive control scheme, only Am and Bm need to be known. Because Am is a
Hurwitz matrix, there exist positive definite matrices P = Pᵀ, Q = Qᵀ ∈ Rn×n,
such that the following Lyapunov inequality holds:

Aᵀ
mP + PAm ≤ −Q. (8)

Remark- Another type of actuator failure, reduced effectiveness, can occur due
to reasons such as partial loss of a control surface, or control surface icing in aircraft.
When such failures are present in addition to the failures defined in (2), the actual
control input generated by the non-failed actuators is reduced by a factor between 0
and 1. Reduced actuator effectiveness can be readily incorporated in the unknown
coefficients αi’s in Eq. (6).

3 MRAC Using Adaptive Sensor Bias Estimation

The sensor measurements available for feedback have unknown biases as in Eq. (1).
This section considers a modified adaptive control law that includes sensor bias
estimation similar to the approach considered in [13]. Let β̂ (t) denote an estimate
of the unknown sensor bias β. Using β̂, define the ‘corrected’ state x̄(t) ∈ Rn as

x̄ = y − β̂. (9)

Therefore,
x̄ = x + β − β̂ = x + β̃. (10)

where β̃ = β − β̂. Design an adaptive control law as

v = K̂ᵀ
1 y + k̂2r + k̂3 (11)

where K̂1 (t) ∈ Rn×m, and k̂2, k̂3 (t) ∈ Rm are the adaptive gains. Therefore, the
closed-loop corrected-state equation is

˙̄x = Ax + B(I − σ)
(
K̂ᵀ

1 y + k̂2r + k̂3

)
+ ˙̃

β + Bσū

= Ax + B(I − σ) (Kᵀ
1 y + k2r + k3) + B(I − σ)

(
K̃ᵀ

1 y + k̃2r + k̃3

)
+ ˙̃

β + Bσū

= (A + B(I − σ)Kᵀ
1 ) x + B(I − σ)

(
K̃ᵀ

1 y + k̃2r + k̃3

)
+ B(I − σ)k2r

+B(I − σ)Kᵀ
1 β + B(I − σ)k3 + ˙̃

β + Bσū (12)

where K̃1 = K̂1 − K1, k̃2 = k̂2 − k2, and k̃3 = k̂3 − k3. The matching conditions of
(7) are assumed to be satisfied. Using (7) and (10) in (12), we get

˙̄x = Amx̄ + Bmr + B(I − σ)
(
K̃ᵀ

1 y + k̃2r + k̃3

)
− Amβ̃ + ˙̃

β. (13)

Define a measurable auxiliary error signal ê(t) ∈ Rn as

ê = x̄ − xm. (14)
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Therefore, from (10), we have

ê = x − xm + β̃ = e + β̃ (15)

where e = x− xm denotes the state tracking error. Differentiating (14) with respect
to time, the closed-loop auxiliary error system can be expressed as

˙̂e = ˙̄x − ẋm. (16)

Substituting (13) and (5) into (16) yields

˙̂e = Amê + B(I − σ)
(
K̃ᵀ

1 y + k̃2r + k̃3

)
− Amβ̃ + ˙̃

β

= Amê +
m∑

j /∈Jp

bj(K̃
ᵀ
1jy + k̃2jr + k̃3j) − Amβ̃ + ˙̃

β

= Amê + Bm

m∑
j /∈Jp

(1/αj)(K̃
ᵀ
1jy + k̃2jr + k̃3j) − Amβ̃ + ˙̃

β (17)

where the subscript j denotes the jth column of K̃1 and the jth element of k̃2, k̃3

(similar notation for K1, K̂1, k2, k̂2, k3, k̂3). The following theorem gives adaptive
gain update and bias estimation laws that guarantee closed-loop signal boundedness
as well as bounded tracking error.
Theorem 1: For the system given by (1), (3), (5); the adaptive controller (11), the
gain adaptation laws

˙̂
K1j = −sgn(αj)Γ1jB

ᵀ
mP êy

˙̂
k2j = −sgn(αj)γ2jB

ᵀ
mP êr (18)

˙̂
k3j = −sgn(αj)γ3jB

ᵀ
mP ê

for j = 1, 2, . . . , m, where Γ1j ∈ Rn×n is a constant symmetric positive definite
matrix, γ2j , γ3j , are constant positive scalars, and P was defined in (8); and the bias
estimation law

˙̂
β = ηP−1Aᵀ

mP ê (19)

where η ∈ R is a tunable positive constant gain, guarantee that all the closed-loop
signals including the adaptive gains and bias estimate are bounded and the tracking
error e (t) is bounded.
Proof: Define

V = êᵀP ê +
m∑

j /∈Jp

1
|αj |(K̃

ᵀ
1jΓ

−1
1j K̃1j + k̃2

2jγ
−1
2j + k̃2

3jγ
−1
3j ) +

1
η
β̃ᵀP β̃. (20)

Differentiating (20) with respect to time, and using (8), (17), and the gain update
laws in (18), the following expression is obtained upon simplification:

V̇ ≤ −êᵀQê − 2êᵀPAmβ̃ + 2êᵀP ˙̂
β +

2
η
β̃ᵀP ˙̂

β. (21)
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Using the bias estimation law of (19) in (21), we get

V̇ ≤ −êᵀQê − 2êᵀPAmβ̃ + 2ηêᵀAᵀ
mP ê + 2β̃ᵀAᵀ

mP ê

≤ −êᵀQê − ηêᵀQê = − (1 + η) êᵀQê.

Therefore, V̇ ≤ 0, i.e., V (t) is bounded for all t, and ê(t), β̂ (t) , y(t), K̂1, k̂2, k̂3 are
all bounded and ê(t) ∈ L2. From (17), (19) and closed-loop signal boundedness, we
have ˙̃

β, ˙̂e (t) ∈ L∞, therefore, using Barbalat’s lemma [7], limt→∞ ê(t) = 0. That
is, all signals and estimates are bounded, and limt→∞(x̄ − xm) = 0. �

The adaptive control law in Theorem 1 guarantees stability (signal boundedness)
and bounded tracking error. However, although ê → 0 as t → ∞, it cannot be
concluded that e(t) → 0 unless β̃(t) → 0. If persistent excitation is present, β̃(t)
would approach 0 as t → ∞, in which case, e (t) → 0 as t → ∞.

In an effort to accomplish asymptotic tracking without the need for persistent
excitation, the next section addresses the case when a separate asymptotically stable
bias estimator is available.

4 MRAC Using Asymptotic Bias Estimator

In the presence of actuator failures and sensor bias as defined in Section 2, suppose
an external bias estimator is available, such that the estimation error dynamics is of
the form

˙̃
β = Aββ̃ (22)

where β̂ (t) is an estimate of β, and

β̃ (t) = β − β̂ (t)

is the estimation error; Aβ ∈ Rn×n is a known Hurwitz (asymptotically stable)
matrix, which implies that limt→∞β̃ (t) = 0. Defining the adaptive control law as
in (11) and proceeding as in Section 3, we obtain (17). The adaptive control law
(11) along with the gain adaptation laws (18) guarantee signal boundedness and
asymptotic tracking.
Theorem 2: For the system given by (1), (3), (5), (11) with a bias estimator that
satisfies (22), and the gain adaptation laws (18) guarantee that all the closed-loop
signals including adaptive gains are bounded and the tracking error e (t) → 0 as
t → ∞.
Proof: Define

V = êᵀP ê +
m∑

j /∈Jp

1
|αj |(K̃

ᵀ
1jΓ

−1
1j K̃1j + k̃2

2jγ
−1
2j + k̃2

3jγ
−1
3j ) + β̃ᵀPββ̃ (23)

where Pβ = Pᵀ
β ∈ Rn×n is a positive definite solution of the Lyapunov inequality

Aᵀ
βPβ + PβAβ ≤ −Qβ (24)
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for some Qβ = Qᵀ
β > 0 ∈ Rn×n. Differentiating (23) with respect to time and using

(8), (17), (18), (22), (24), the following expression is obtained upon simplification:

V̇ ≤ −êᵀQê − 2êᵀP (Am − Aβ) β̃ − β̃ᵀQββ̃

≤ −zᵀQ̄z

where z ∈ R2n is defined as
z =

[
êᵀ β̃ᵀ]ᵀ

and Q̄ ∈ R2n×2n is defined as

Q̄ =
[

Q P (Am − Aβ)
(Am − Aβ)ᵀ P Qβ

]
.

Since Q is positive definite, the matrix Q̄ is positive definite iff

Qβ − (Am − Aβ)ᵀ PQ−1P (Am − Aβ) > 0. (25)

Qβ can be chosen such that (25) is satisfied; therefore, V̇ ≤ 0, i.e., V (t) is bounded
for all t, and ê(t), β̂ (t) , y(t), K̂1, k̂2, k̂3 are all bounded and ê(t), β̃ (t) ∈ L2.
Using arguments similar to those in the proof of Theorem 1, and noting from (22)
that β̃(t) → 0 as t → ∞, it can be concluded that all signals including the adaptive
gains are bounded, and limt→∞ e(t) = 0, i.e., x(t) → xm(t) �

5 A Special Case- Bias in Rate Measurements Only

This section considers a special case wherein sensor bias is present only in the rate
measurements, but bias-free measurements of the corresponding position variables
are available. For example, rate gyros, which measure angular velocities, can be
prone to constant or slowly-varying biases, while bias-free angle (attitude) measure-
ments can be available by using GPS data. Suppose the state vector x(t) in (1) is
composed of rate variables ξ(t) ∈ Rn1 , and the remaining states x2(t) ∈ R(n−n1),
and that bias exists only in the measurements of ξ(t). Then (1) can be written in
the form:

ẋ =
d

dt

[
ξ
x2

]
= [A]

[
ξ
x2

]
+

[
B1

B2

]
u (26)

y =
[

yξ

y2

]
=

[
ξ
x2

]
+

[
β
0

]
(27)

where β ∈ Rn1 is a constant unknown bias in the rate measurements. (For example,
for a longitudinal aircraft model in a wings-level cruise condition, having a bias error
in the pitch rate gyro, the state variables can be represented by: ξ = q, x2 = [v, α, θ]ᵀ,
where q, v, α, θ denote the pitch rate, airspeed, angle of attack, and pitch angle
respectively). In general, some components of ρ may be included in x2.

The position variable vector ρ corresponding to ξ is given by

ρ̇ = ξ = yξ − β. (28)

It will be assumed that a bias-free measurement of ρ(t) is available, i.e.,

yρ = ρ. (29)
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5.1 Model-Independent Observer

Using the bias-free position measurements, a non-model-based observer can be de-
signed to estimate the velocity sensor bias as shown below.

From (28) and (29), and augmenting the equation

β̇ = 0

the following system is obtained.[
ρ̇

β̇

]
=

[
0 −I
0 0

] [
p
β

]
+

[
I
0

]
yξ (30)

yρ = [I 0]
[

ρ
β

]
. (31)

The observability of the above system can be readily verified, and an observer gain
L = [Lᵀ

1 Lᵀ
2 ]

ᵀ can be designed to yield an asymptotically stable state estimator:[
˙̂ρ
˙̂
β

]
=

[
0 −I
0 0

] [
ρ̂

β̂

]
+

[
I
0

]
yξ +

[
L1

L2

]
(ρ − ρ̂). (32)

The estimation error equation is:[
˙̃ρ
˙̃
β

]
=

[ −L1 −I
−L2 0

] [
ρ̃

β̃

]
:= [Af ]

[
ρ̃

β̃

]
(33)

where ρ̃ = ρ − ρ̂ and Af is a Hurwitz matrix. Therefore, given any symmetric
positive definite matrix Qf ∈ R2n1×2n1 , there exists a symmetric positive definite
matrix Pf ∈ R2n1×2n1 such that

Aᵀ
fPf + PfAf ≤ −Qf . (34)

5.2 Asymptotic State Tracking

Note that the system state variables are re-ordered as in (26); therefore the state
variables of the reference model in (5) are also similarly re-ordered for consistency.
The bias estimate β̂ can be used to define the “corrected” state vector

x̄ = y −
[

β̂
0

]
= x +

[
β
0

]
−

[
β̂
0

]
= x +

[
β̃
0

]
. (35)

As in Section 3, the auxiliary tracking error (which can be measured) is defined as

ê = x̄ − xm = x − xm +
[

β̃
0

]
= e +

[
β̃
0

]
. (36)

Proceeding as in Section 3, a slightly modified version of (17) is obtained:

˙̂e = Ame + Bm

m∑
j /∈Jp

(1/αj)(K̃
ᵀ
1jy + k̃2jr + k̃3j) − AmIβ̃ + I ˙̃

β (37)
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where I = [In1 0n1×(n−n1)]ᵀ (Il and 0l×k denote the identity matrix and the zero ma-
trix of the subscript dimensions). The following result gives an adaptive control law
that guarantees closed-loop signal boundedness and asymptotic tracking for systems
with rate sensor bias and actuator failures.
Theorem 3: For the system given by (26), (5), (11), (32) and the gain adaptation
laws (18), all closed-loop signals including the adaptive gains are bounded and the
tracking error e (t) → 0 as t → ∞.
Proof: Define

V = êᵀP ê +
m∑

j /∈Jp

1
|αj |(K̃

ᵀ
1jΓ

−1
1j K̃1j + k̃2

2jγ
−1
2j + k̃2

3jγ
−1
3j ) + z̃ᵀPf z̃ (38)

where z̃ = [ρ̃ᵀ β̃ᵀ]ᵀ. Differentiating (38) with respect to time and using (8), (37),
(33), (34), the following expression is obtained upon simplification after using the
gain update laws (18):

V̇ ≤ −êᵀQê − 2êᵀP [IL2 AmI]z̃ − z̃ᵀQf z̃

that is,
V̇ ≤ −χᵀQ̄χ (39)

where χ ∈ Rn+2n1 is defined as

χ =
[
êᵀ z̃ᵀ]ᵀ

and Q̄ ∈ R(n+2n1)×(n+2n1) is defined as

Q̄ =
[

Q P (IL2 AmI)
(IL2 AmI)ᵀP Qf

]
. (40)

Since Q is positive definite, the matrix Q̄ is positive definite iff

Qf − [IL2 AmI]ᵀPQ−1P [IL2 AmI] > 0. (41)

Qf can be chosen such that (41) is satisfied; therefore, V̇ ≤ 0, i.e., V (t) is bounded
for all t. Using arguments similar to those in the proof of Theorem 1, and noting
from (33) that β̃(t) → 0 as t → ∞, it can be concluded that all signals including the
adaptive gains are bounded, and limt→∞ e(t) = 0, i.e., x(t) → xm(t). �

6 Concluding Remarks

This paper addressed accommodation of simultaneous actuator failures and sensor
bias faults in a model reference adaptive control (MRAC) setting. A modified MRAC
law, which combines bias estimation with control gain adaptation, was developed and
shown to provide bounded tracking error and signal boundedness. For the case when
an external asymptotically stable sensor bias estimator is available, an MRAC law
was developed to accomplish asymptotic state tracking and signal boundedness. For
a special case wherein biases are present only in the rate measurements and bias-free
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position measurements are available, an MRAC law was developed using a model-
independent bias estimator, and was shown to provide asymptotic state tracking
with signal boundedness. This paper focused on analytical results. Application
examples and simulation results will be included in future papers on this topic.
Future work will also address extension to cases with multiple actuator groups and
multiple reference inputs.
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