Computational Validation of a 2-D Semi-empirical Model for Inductive Coupling in a Conical Pulsed Inductive Thruster

Ashley K. Hallock
Kurt A. Polzin
NASA MSFC

JANNAF 2011
Huntsville, AL
5-9 December 2011

Approved for public release. Distribution is unlimited.
Outline of Talk

- Pulsed Inductive Plasma Thrusters
 - MAD-IPA

Approved for public release. Distribution is unlimited.
Outline of Talk

- Pulsed Inductive Plasma Thrusters
 - MAD-IPA
 - Analytical Model

Approved for public release. Distribution is unlimited.
Outline of Talk

- Pulsed Inductive Plasma Thrusters
 - MAD-IPA
- Analytical Model
 - Circuit model coupled to 2-D momentum equation

Approved for public release. Distribution is unlimited.
Outline of Talk

- Pulsed Inductive Plasma Thrusters
 - MAD-IPA
- Analytical Model
 - Circuit model coupled to 2-D momentum equation
- Computational Validation

Approved for public release. Distribution is unlimited.
Outline of Talk

- Pulsed Inductive Plasma Thrusters
 - MAD-IPA
- Analytical Model
 - Circuit model coupled to 2-D momentum equation
- Computational Validation
 - Finite element results indicate limit to applicability

Approved for public release. Distribution is unlimited.
Outline of Talk

- Pulsed Inductive Plasma Thrusters
 - MAD-IPA
- Analytical Model
 - Circuit model coupled to 2-D momentum equation
- Computational Validation
 - Finite element results indicate limit to applicability
- Non-dimensional Analysis

Approved for public release. Distribution is unlimited.
Outline of Talk

- Pulsed Inductive Plasma Thrusters
 - MAD-IPA
- Analytical Model
 - Circuit model coupled to 2-D momentum equation
- Computational Validation
 - Finite element results indicate limit to applicability
- Non-dimensional Analysis
- Conclusions

Approved for public release. Distribution is unlimited.
Pulsed Inductive Plasma Thrusters
Lack of Cavity Decreases Propellant Utilization

Idealized thruster operation:

- Capacitors
- Inductive Coil
- Propellant Nozzle
- Propellant Injection
- Magnetic Field
- Coils Current
- Ionization & Acceleration
- Plasma
Lack of Cavity Decreases Propellant Utilization

Approved for public release. Distribution is unlimited.
Analytical Model
Model Thruster-Plasma System as Circuits

Approved for public release. Distribution is unlimited.
Model Thruster-Plasma System as Circuits

Approved for public release. Distribution is unlimited.
Model Thruster-Plasma System as Circuits

Approved for public release. Distribution is unlimited.
Model Thruster-Plasma System as Circuits

Approved for public release. Distribution is unlimited.
Governing Equations via Kirchhoff’s Law

\[
\frac{dI_1}{dt} = \frac{L_C V - L_C R_e I_1 - M R_p I_2 + (L_C I_2 + M I_1) \frac{dM}{dt}}{L_C (L_0 + L_C) - M^2}
\]

\[
\frac{dI_2}{dt} = \frac{M \frac{dI_1}{dt} + I_1 \frac{dM}{dt}}{L_C} - R_p I_2
\]

\[
\frac{dV}{dt} = -\frac{I_1}{C}
\]

Approved for public release. Distribution is unlimited.
Equations Governing Current Sheet Motion

\[L_{tot} = L_0 + L_C - \frac{M^2}{L_C} \]

\[L_{tot}(\bar{r}, z) = L_0 + L_C \left(1 - \exp \left(-\frac{z}{z_0} \right) \left(\frac{\bar{r}}{r_{coil}} \right)^N \right) \]

\[M = L_C \exp \left(-\frac{z}{2z_0} \right) \left(\frac{\bar{r}}{r_{coil}} \right)^{N/2} \]

\[F_i = \frac{I^2}{2} \frac{\partial L}{\partial x_i} \]

Approved for public release. Distribution is unlimited.
Equations Governing Current Sheet Motion

\[L_{\text{tot}} = L_0 + L_C - \frac{M^2}{L_C} \]

\[L_{\text{tot}}(\bar{r}, z) = L_0 + L_C \left(1 - \exp \left(-\frac{z}{z_0}\right) \left(\frac{\bar{r}}{r_{\text{coil}}}\right)^N\right) \]

\[M = L_C \exp \left(-\frac{z}{2z_0}\right) \left(\frac{\bar{r}}{r_{\text{coil}}}\right)^{N/2} \]

\[F_i = \frac{l^2}{2} \frac{\partial L}{\partial x_i} \]

Approved for public release. Distribution is unlimited.
Equations Governing Current Sheet Motion

\[L_{tot} = L_0 + L_C - \frac{M^2}{L_C} \]

\[L_{tot}(\bar{r}, z) = L_0 + L_C \left(1 - \exp \left(-\frac{z}{z_0} \right) \left(\frac{\bar{r}}{r_{coil}} \right)^N \right) \]

\[M = L_C \exp \left(-\frac{z}{2z_0} \right) \left(\frac{\bar{r}}{r_{coil}} \right)^{N/2} \]

\[F_i = \frac{l^2}{2} \frac{\partial L}{\partial x_i} \]

Approved for public release. Distribution is unlimited.
Equations Governing Current Sheet Motion

\[L_{tot} = L_0 + L_C - \frac{M^2}{L_C} \]

\[L_{tot}(\bar{r}, z) = L_0 + L_C \left(1 - \exp \left(-\frac{z}{z_0} \right) \left(\frac{\bar{r}}{r_{coil}} \right)^N \right) \]

\[M = L_C \exp \left(-\frac{z}{2z_0} \right) \left(\frac{\bar{r}}{r_{coil}} \right)^{N/2} \]

\[F_i = \frac{l^2}{2} \frac{\partial L}{\partial x_i} \]

Approved for public release. Distribution is unlimited.
Equations Governing Current Sheet Motion

\[L_{tot} = L_0 + L_C - \frac{M^2}{L_C} \]

\[L_{tot}(\bar{r}, z) = L_0 + L_C \left(1 - \exp\left(-\frac{z}{z_0}\right) \left(\frac{\bar{r}}{r_{coil}}\right)^N\right) \]

\[M = L_C \exp\left(-\frac{z}{2z_0}\right) \left(\frac{\bar{r}}{r_{coil}}\right)^{N/2} \]

\[F_i = \frac{I^2}{2} \frac{\partial L}{\partial x_i} \]

Approved for public release. Distribution is unlimited.
Equations Governing Current Sheet Motion

\[L_{tot} = L_0 + L_C - \frac{M^2}{L_C} \]

\[L_{tot}(\bar{r}, z) = L_0 + L_C \left(1 - \exp \left(-\frac{z}{z_0} \right) \left(\frac{\bar{r}}{r_{coil}} \right)^N \right) \]

\[M = L_C \exp \left(-\frac{z}{2z_0} \right) \left(\frac{\bar{r}}{r_{coil}} \right)^{N/2} \]

\[F_i = \frac{l^2}{2} \frac{\partial L}{\partial x_i} \]

Approved for public release. Distribution is unlimited.
Equations Governing Current Sheet Motion

\[L_{\text{tot}} = L_0 + L_C - \frac{M^2}{L_C} \]

\[L_{\text{tot}}(\bar{r}, z) = L_0 + L_C \left(1 - \exp\left(-\frac{z}{z_0} \right) \left(\frac{\bar{r}}{r_{\text{coil}}} \right)^N \right) \]

\[M = L_C \exp\left(-\frac{z}{2z_0} \right) \left(\frac{\bar{r}}{r_{\text{coil}}} \right)^{N/2} \]

\[F_i = \frac{I^2}{2} \frac{\partial L}{\partial x_i} \]

Approved for public release. Distribution is unlimited.
Equations Governing Current Sheet Motion

\[L_{\text{tot}} = L_0 + L_C - \frac{M^2}{L_C} \]

\[L_{\text{tot}}(\bar{r}, z) = L_0 + L_C \left(1 - \exp \left(-\frac{z}{z_0} \right) \left(\frac{\bar{r}}{r_{\text{coil}}} \right)^N \right) \]

\[M = L_C \exp \left(-\frac{z}{2z_0} \right) \left(\frac{\bar{r}}{r_{\text{coil}}} \right)^{N/2} \]

\[F_i = \frac{l^2}{2} \frac{\partial L}{\partial x_i} \]

Approved for public release. Distribution is unlimited.
Equations Governing Current Sheet Motion

\[L_{tot} = L_0 + L_C - \frac{M^2}{L_C} \]

\[L_{tot}(\bar{r}, z) = L_0 + L_C \left(1 - \exp \left(-\frac{z}{z_0} \right) \left(\frac{\bar{r}}{r_{coil}} \right)^N \right) \]

\[M = L_C \exp \left(-\frac{z}{2z_0} \right) \left(\frac{\bar{r}}{r_{coil}} \right)^{N/2} \]

\[F_i = \frac{l^2}{2} \frac{\partial L}{\partial x_i} \]
Equations Governing Current Sheet Motion

\[L_{tot} = L_0 + L_C - \frac{M^2}{L_C} \]

\[L_{tot}(\bar{r}, z) = L_0 + L_C \left(1 - \exp \left(-\frac{z}{z_0} \right) \left(\frac{\bar{r}}{r_{coil}} \right)^N \right) \]

\[M = L_C \exp \left(-\frac{z}{2z_0} \right) \left(\frac{\bar{r}}{r_{coil}} \right)^{N/2} \]

\[F_i = \frac{l^2}{2} \frac{\partial L}{\partial x_i} \]

Approved for public release. Distribution is unlimited.
Equations Governing Current Sheet Motion

\[L_{tot} = L_0 + L_C - \frac{M^2}{L_C} \]

\[L_{tot}(\bar{r}, z) = L_0 + L_C \left(1 - \exp\left(-\frac{z}{z_0}\right) \left(\frac{\bar{r}}{r_{coil}}\right)^N \right) \]

\[M = L_C \exp\left(-\frac{z}{2z_0}\right) \left(\frac{\bar{r}}{r_{coil}}\right)^{N/2} \]

\[F_i = \frac{l^2}{2} \frac{\partial L}{\partial x_i} \]

Approved for public release. Distribution is unlimited.
Equations Governing Current Sheet Motion

\[L_{tot} = L_0 + L_C - \frac{M^2}{L_C} \]

\[L_{tot}(\bar{r}, z) = L_0 + L_C \left(1 - \exp \left(-\frac{z}{z_0} \right) \left(\frac{\bar{r}}{r_{coil}} \right)^N \right) \]

\[M = L_C \exp \left(-\frac{z}{2z_0} \right) \left(\frac{\bar{r}}{r_{coil}} \right)^{N/2} \]

\[F_i = \frac{l^2}{2} \frac{\partial L}{\partial x_i} \]
Equations Governing Current Sheet Motion

\[
\frac{dv_z}{dt} = \frac{L_C I_1^2}{2z_0} \exp\left(-\frac{z}{z_0}\right) \left(\frac{\bar{r}}{r_{coil}}\right)^N \quad m_{\text{bit}}
\]

\[
\frac{dv_r}{dt} = \frac{P_2 2\pi \bar{r} l_{coi}}{2r_{coil}^N} - \frac{L_C I_1^2 N}{2r_{coil}^N} \exp\left(-\frac{z}{z_0}\right) (\bar{r})^{N-1} \quad m_{\text{bit}}
\]

\[
\frac{P_2}{P_1} = 1 + \frac{2\gamma}{\gamma+1} \left[M^2 - 1 \right]
\]

Approved for public release. Distribution is unlimited.
Equations Governing Current Sheet Motion

\[\frac{d v_z}{d t} = \frac{L_c I_1^2}{2z_0} \exp \left(-\frac{z}{z_0} \right) \left(\frac{\bar{r}}{r_{coil}} \right)^N \]

\[\frac{d v_r}{d t} = \frac{P_2 2\pi \bar{r} l_{coil} - \frac{L_c I_1^2 N}{2 r_{coil}^N} \exp \left(-\frac{z}{z_0} \right) \left(\bar{r} \right)^{N-1}}{m_{bit}} \]

\[\frac{P_2}{P_1} = 1 + \frac{2\gamma}{\gamma+1} \left[\mathcal{M}^2 - 1 \right] \]

Approved for public release. Distribution is unlimited.
Equations Governing Current Sheet Motion

\[
\frac{dv_z}{dt} = \frac{\left[\frac{L_c I_1^2}{2z_0} \exp \left(-\frac{z}{z_0} \right) \left(\frac{\bar{r}}{r_{coil}} \right)^N \right]}{m_{bit}}
\]

\[
\frac{dv_r}{dt} = \frac{\left[P_2 2\pi \bar{r} l_{coil} - \frac{L_c I_1^2 N}{2r_{coil}^N} \exp \left(-\frac{z}{z_0} \right) \left(\bar{r} \right)^{N-1} \right]}{m_{bit}}
\]

\[
\frac{P_2}{P_1} = 1 + \frac{2\gamma}{\gamma+1} \left[M^2 - 1 \right]
\]

Approved for public release. Distribution is unlimited.
Equations Governing Current Sheet Motion

\[
\frac{dv_z}{dt} = \left[\frac{L CI_1^2}{2z_0} \exp\left(-\frac{z}{z_0}\right) \left(\frac{\bar{r}}{r_{coil}}\right)^N\right] m_{bit}
\]

\[
\frac{dv_r}{dt} = \left[\frac{P_2 2\pi \bar{r} l_{coil}}{2r_{coil}^N} - \frac{L CI_1^2 N}{2r_{coil}^N} \exp\left(-\frac{z}{z_0}\right) (\bar{r})^{N-1}\right] m_{bit}
\]

\[
\frac{P_2}{P_1} = 1 + \frac{2\gamma}{\gamma + 1} [M^2 - 1]
\]

Approved for public release. Distribution is unlimited.
Equations Governing Current Sheet Motion

\[
\frac{dv_z}{dt} = \frac{[\frac{L_C I_1^2}{2z_0} \exp\left(-\frac{z}{z_0}\right) \left(\frac{\bar{r}}{r_{coil}}\right)^N]}{m_{bit}}
\]

\[
\frac{dv_r}{dt} = \frac{[P_2 2\pi \bar{r} l_{coil} - \frac{L_C I_1^2 N}{2 r_{coil}^N} \exp\left(-\frac{z}{z_0}\right) (\bar{r})^{N-1}]}{m_{bit}}
\]

\[
\frac{P_2}{P_1} = 1 + \frac{2\gamma}{\gamma+1} \left[\mathcal{M}^2 - 1\right]
\]

Approved for public release. Distribution is unlimited.
Equations Governing Current Sheet Motion

\[
\frac{dv_z}{dt} = \frac{[L_C I_1^2 \exp \left(-\frac{z}{z_0}\right) \left(\frac{\bar{r}}{r_{coil}}\right)^N]}{m_{bit}}
\]

\[
\frac{dv_r}{dt} = \frac{[P_2 2\pi \bar{r} l_{coil} - \frac{L_C I_1^2 N}{2r_{coil}^N} \exp \left(-\frac{z}{z_0}\right) (\bar{r})^{N-1}]}{m_{bit}}
\]

\[
\frac{P_2}{P_1} = 1 + \frac{2\gamma}{\gamma+1} \left[\mathcal{M}^2 - 1\right]
\]

Approved for public release. Distribution is unlimited.
Equations Governing Current Sheet Motion

\[\frac{dv_z}{dt} = \frac{1}{m_{bit}} \left[\frac{L_C l_1^2}{2z_0} \exp \left(-\frac{z}{z_0}\right) \left(\frac{\bar{r}}{r_{coil}}\right)^N \right] \]

\[\frac{dv_r}{dt} = \frac{1}{m_{bit}} \left[P_2 2\pi \bar{r} l_{coil} - \frac{L_C l_1^2 N}{2r_{coil}^N} \exp \left(-\frac{z}{z_0}\right) \left(\bar{r}\right)^{N-1} \right] \]

\[\frac{P_2}{P_1} = 1 + \frac{2\gamma}{\gamma+1} \left[M^2 - 1 \right] \]
Model Relies on Semi-Empirical Expression

\[L_{tot}(\bar{r}, z) = L_0 + L_C \left(1 - \exp\left(-\frac{z}{z_0}\right) \left(\frac{r}{r_{coil}}\right)^N\right) \]
Model Relies on Semi-Empirical Expression

\[L_{\text{tot}}(\bar{r}, z) = L_0 + L_C \left(1 - \exp\left(-\frac{z}{z_0}\right) \left(\frac{\bar{r}}{r_{\text{coil}}} \right)^N \right) \]

Applicable to all inductive coil geometries?

Approved for public release. Distribution is unlimited.
Computational Validation

Approved for public release. Distribution is unlimited.
Simulation Configuration for Radial Compression
Simulation Configuration for Radial Compression

Approved for public release. Distribution is unlimited.
Good Agreement from 20°-55$^\circ$
Error Function Better Fit at Angles less than 20°

Approved for public release. Distribution is unlimited.
Error Function Better Fit at Angles less than 20°
Non-dimensional Analysis

Approved for public release. Distribution is unlimited.
Substitutions

\[l_1^* = \frac{1}{V_0} \sqrt{\frac{L_C}{C}} l_1 \]

\[V^* = \frac{V}{V_0} \]

\[v_z^* = \frac{\sqrt{L_0 C}}{z_0} v_z \]

\[v_r^* = \frac{\sqrt{L_0 C}}{r_{\text{coil}}} v_r \]

\[t^* = \frac{t}{\sqrt{L_0 C}} \]

\[l_2^* = \frac{1}{V_0} \sqrt{\frac{L_C}{C}} l_2 \]

\[M^* = \frac{M}{L_C} \]

\[z^* = \frac{z}{z_0} \]

\[r^* = \frac{r}{r_{\text{coil}}} \]

\[P^* = \frac{P}{P_1} \]
Substitutions

\[I_1^* = \frac{1}{V_0} \sqrt{\frac{L_C}{C}} I_1 \]

\[V^* = \frac{V}{V_0} \]

\[v_z^* = \frac{\sqrt{L_0 C}}{z_0} v_z \]

\[v_r^* = \frac{\sqrt{L_0 C}}{r_{coil}} v_r \]

\[t^* = \frac{t}{\sqrt{L_0 C}} \]

\[I_2^* = \frac{1}{V_0} \sqrt{\frac{L_C}{C}} I_2 \]

\[M^* = \frac{M}{L_C} \]

\[z^* = \frac{z}{z_0} \]

\[r^* = \frac{r}{r_{coil}} \]

\[P^* = \frac{P}{P_1} \]

Approved for public release. Distribution is unlimited.
Substitutions

\[l_1^* = \frac{1}{V_0} \sqrt{\frac{L}{C}} l_1 \]

\[V^* = \frac{V}{V_0} \]

\[v_{z^*} = \frac{\sqrt{L_0 C}}{z_0} v_z \]

\[v_{r^*} = \frac{\sqrt{L_0 C}}{r_{coil}} v_r \]

\[t^* = \frac{t}{\sqrt{L_0 C}} \]

\[l_2^* = \frac{1}{V_0} \sqrt{\frac{L}{C}} l_2 \]

\[M^* = \frac{M}{L_C} \]

\[z^* = \frac{z}{z_0} \]

\[r^* = \frac{r}{r_{coil}} \]

\[P^* = \frac{P}{P_1} \]

Approved for public release. Distribution is unlimited.
Substitutions

\[I_1^* = \frac{1}{V_0} \sqrt{\frac{L_C}{C}} I_1 \]

\[V^* = \frac{V}{V_0} \]

\[v_{z^*} = \frac{\sqrt{L_0 C}}{z_0} v_z \]

\[v_{r^*} = \frac{\sqrt{L_0 C}}{r_{coil}} v_r \]

\[t^* = \frac{t}{\sqrt{L_0 C}} \]

\[I_2^* = \frac{1}{V_0} \sqrt{\frac{L_C}{C}} I_2 \]

\[M^* = \frac{M}{L_C} \]

\[z^* = \frac{z}{z_0} \]

\[r^* = \frac{r}{r_{coil}} \]

\[P^* = \frac{P}{P_1} \]

Approved for public release. Distribution is unlimited.
Substitutions

\[l_1^* = \frac{1}{V_0} \sqrt{\frac{L C}{C}} l_1 \]

\[v^* = \frac{V}{V_0} \]

\[v_z^* = \frac{\sqrt{L_0 C}}{z_0} v_z \]

\[v_r^* = \frac{\sqrt{L_0 C}}{r_{\text{coil}}} v_r \]

\[t^* = \frac{t}{\sqrt{L_0 C}} \]

\[l_2^* = \frac{1}{V_0} \sqrt{\frac{L C}{C}} l_2 \]

\[M^* = \frac{M}{L_C} \]

\[z^* = \frac{z}{z_0} \]

\[r^* = \frac{r}{r_{\text{coil}}} \]

\[P^* = \frac{P}{P_1} \]
Substitutions

\[I_1^* = \frac{1}{V_0} \sqrt{\frac{L_C}{C}} I_1 \]

\[V^* = \frac{V}{V_0} \]

\[V_{z}^* = \frac{\sqrt{L_0 C}}{z_0} V_z \]

\[V_{r}^* = \frac{\sqrt{L_0 C}}{r_{coil}} V_r \]

\[t^* = \frac{t}{\sqrt{L_0 C}} \]

\[I_2^* = \frac{1}{V_0} \sqrt{\frac{L_C}{C}} I_2 \]

\[M^* = \frac{M}{L_C} \]

\[z^* = \frac{z}{z_0} \]

\[r^* = \frac{r}{r_{coil}} \]

\[P^* = \frac{P}{P_1} \]
Substitutions

\[I_1^* = \frac{1}{V_0} \sqrt{\frac{L_C}{C}} I_1 \]

\[V^* = \frac{V}{V_0} \]

\[v_z^* = \frac{\sqrt{L_0 C}}{z_0} v_z \]

\[v_r^* = \frac{\sqrt{L_0 C}}{r_{coil}} v_r \]

\[t^* = \frac{t}{\sqrt{L_0 C}} \]

\[I_2^* = \frac{1}{V_0} \sqrt{\frac{L_C}{C}} I_2 \]

\[M^* = \frac{M}{L_C} \]

\[z^* = \frac{z}{z_0} \]

\[r^* = \frac{r}{r_{coil}} \]

\[P^* = \frac{P}{P_1} \]

Approved for public release. Distribution is unlimited.
Substitutions

\[I_1^* = \frac{1}{V_0} \sqrt{\frac{L_C}{C}} l_1 \]

\[V^* = \frac{V}{V_0} \]

\[v_{z}^* = \frac{\sqrt{L_0 C}}{z_0} v_z \]

\[v_{r}^* = \frac{\sqrt{L_0 C}}{r_{coil}} v_r \]

\[t^* = \frac{t}{\sqrt{L_0 C}} \]

\[I_2^* = \frac{1}{V_0} \sqrt{\frac{L_C}{C}} l_2 \]

\[M^* = \frac{M}{L_C} \]

\[z^* = \frac{z}{z_0} \]

\[r^* = \frac{r}{r_{coil}} \]

\[P^* = \frac{P}{P_1} \]

Approved for public release. Distribution is unlimited.
Resulting Non-dimensional Equation Set

\[
\frac{d l_1^*}{d t^*} = \left[L^* V^* + (M^* l_1^* + l_2^*) \frac{d M^*}{d t^*} \right] / \left(L^* + 1 - M^* \right) \\
- \left[\psi_1 L^* l_1^* - \psi_2 L^* l_2^* M^* \right] / \left(L^* + 1 - M^* \right) \\
\frac{d l_2^*}{d t^*} = M^* \frac{d l_1^*}{d t^*} + l_1^* \frac{d M^*}{d t^*} - l_2^* L^* \psi_2 \\
\frac{d V^*}{d t^*} = -l_1^* \\
\frac{dr^*}{d t^*} = v_r^* \\
\frac{dz^*}{d t^*} = v_z^*
\]

Approved for public release. Distribution is unlimited.
Resulting Non-dimensional Equation Set

\[
\frac{dl_1^*}{dt^*} = \left[L^* V^* + (M^* l_1^* + l_2^*) \frac{dM^*}{dt^*} \right]/\left(L^* + 1 - M^*^2 \right) - \left[\psi_1 L^* I_1^* - \psi_2 L^* I_2^* M^* \right]/\left(L^* + 1 - M^*^2 \right)
\]

\[
\frac{dl_2^*}{dt^*} = M^* \frac{dl_1^*}{dt^*} + I_1^* \frac{dM^*}{dt^*} - I_2^* L^* \psi_2
\]

\[
\frac{dV^*}{dt^*} = -l_1^*
\]

\[
\frac{dr^*}{dt^*} = v_r^*
\]

\[
\frac{dz^*}{dt^*} = v_z^*
\]
Resulting Non-dimensional Equation Set

\[
\frac{dl_1^*}{dt^*} = \left[L^* V^* + (M^* l_1^* + l_2^*) \frac{dM^*}{dt^*} \right] \div \left(L^* + 1 - M^{*2} \right) \\
- \left[\psi_1 L^* l_1^* - \psi_2 L^* l_2^* M^* \right] \div \left(L^* + 1 - M^{*2} \right)
\]

\[
\frac{dl_2^*}{dt^*} = M^* \frac{dl_1^*}{dt^*} + l_1^* \frac{dM^*}{dt^*} - l_2^* L^* \psi_2
\]

\[
\frac{dV^*}{dt^*} = -l_1^*
\]

\[
\frac{dr^*}{dt^*} = v_r^*
\]

\[
\frac{dz^*}{dt^*} = v_z^*
\]

Approved for public release. Distribution is unlimited.
Resulting Non-dimensional Equation Set

\[
\frac{dl_1^*}{dt^*} = \left[L^* V^* + (M^* l_1^* + l_2^*) \frac{dM^*}{dt^*} \right] / \left(L^* + 1 - M^* \right)^2 \\
- \left[\psi_1 L^* l_1^* - \psi_2 L^* l_2^* M^* \right] / \left(L^* + 1 - M^* \right)^2
\]

\[
\frac{dl_2^*}{dt^*} = M^* \frac{dl_1^*}{dt^*} + l_1^* \frac{dM^*}{dt^*} - l_2^* L^* \psi_2
\]

\[
\frac{dV^*}{dt^*} = -l_1^*
\]

\[
\frac{dr^*}{dt^*} = v_r^*
\]

\[
\frac{dz^*}{dt^*} = v_z^*
\]
Resulting Non-dimensional Equation Set

\[
\frac{dl_1^*}{dt^*} = \left[L^* V^* + (M^* l_1^* + l_2^*) \frac{dM^*}{dt^*} \right] / \left(L^* + 1 - M^*^2 \right) \\
- \left[\psi_1 L^* l_1^* - \psi_2 L^* l_2^* M^* \right] / \left(L^* + 1 - M^*^2 \right)
\]

\[
\frac{dl_2^*}{dt^*} = M^* \frac{dl_1^*}{dt^*} + l_1^* \frac{dM^*}{dt^*} - l_2^* L^* \psi_2
\]

\[
\frac{dV^*}{dt^*} = -l_1^*
\]

\[
\frac{dr^*}{dt^*} = v_r^*
\]

\[
\frac{dz^*}{dt^*} = v_z^*
\]
Resulting Non-dimensional Equation Set

\[
\frac{dl_1^*}{dt^*} = \left[L^* V^* + (M^* l_1^* + l_2^*) \frac{dM^*}{dt^*} \right] \div \left(L^* + 1 - M^*^2 \right) \\
- \left[\psi_1 L^* l_1^* - \psi_2 L^* l_2^* M^* \right] \div \left(L^* + 1 - M^*^2 \right)
\]

\[
\frac{dl_2^*}{dt^*} = M^* \frac{dl_1^*}{dt^*} + l_1^* \frac{dM^*}{dt^*} - l_2^* L^* \psi_2
\]

\[
\frac{dV^*}{dt^*} = - l_1^*
\]

\[
\frac{dr^*}{dt^*} = v_r^*
\]

\[
\frac{dz^*}{dt^*} = v_z^*
\]

Approved for public release. Distribution is unlimited.
Resulting Non-dimensional Equation Set

\[
\frac{dM^*}{dt^*} = \frac{N}{2} r^* \frac{N}{2} - 1 v_r^* \exp\left(-\frac{z^*}{2}\right) - \frac{1}{2} r^* \frac{N}{2} v_z^* \exp\left(-\frac{z^*}{2}\right)
\]

\[
\frac{dv_r^*}{dt^*} = \lambda P^* r^* - \phi l_1^* r^* N - 1 \exp\left(-z^*\right)
\]

\[
\frac{dv_z^*}{dt^*} = \alpha l_1^* r^* N \exp\left(-z^*\right)
\]

\[
\frac{dP^*}{dt^*} = \Xi v_r^* \frac{dv_r^*}{dt^*}
\]
Resulting Non-dimensional Equation Set

\[
\frac{dM^*}{dt^*} = \frac{N}{2} r_*^{N/2 - 1} v_r^* \exp\left(-\frac{z^*}{2}\right) - \frac{1}{2} r_*^{N/2} v_z^* \exp\left(-\frac{z^*}{2}\right)
\]

\[
\frac{dv_r^*}{dt^*} = \lambda P^* r_* - \phi l_1^* v_r^* r_*^{N-1} \exp(-z^*)
\]

\[
\frac{dv_z^*}{dt^*} = \alpha l_1^* v_z^* r_*^N \exp(-z^*)
\]

\[
\frac{dP^*}{dt^*} = \Xi v_r^* \frac{dv_r^*}{dt^*}
\]
Resulting Non-dimensional Equation Set

\[
\frac{dM^*}{dt^*} = \frac{N}{2} r_*^{N - 1} \nu_r^* \exp\left(-\frac{z_*^*}{2}\right) - \frac{1}{2} r_*^{N - 1} \nu_z^* \exp\left(-\frac{z_*^*}{2}\right)
\]

\[
\frac{dv_r^*}{dt^*} = \lambda P^* r_*^2 - \phi l_1^* r_*^{N - 1} \exp(-z_*^*)
\]

\[
\frac{dv_z^*}{dt^*} = \alpha l_1^* r_*^N \exp(-z_*^*)
\]

\[
\frac{dP^*}{dt^*} = \Xi v_r^* \frac{dv_r^*}{dt^*}
\]
Resulting Non-dimensional Equation Set

\[
\frac{dM^*}{dt^*} = \frac{N}{2} r_2^{N-1} v_r^* \exp\left(-\frac{z^*}{2}\right) - \frac{1}{2} r_2^{N} v_z^* \exp\left(-\frac{z^*}{2}\right)
\]

\[
\frac{dv_r^*}{dt^*} = \lambda P^* r^* - \phi l_1^2 r_1^{N-1} \exp\left(-z^*\right)
\]

\[
\frac{dv_z^*}{dt^*} = \alpha l_1^2 r_1^{N} \exp\left(-z^*\right)
\]

\[
\frac{dP^*}{dt^*} = \Xi v_r^* \frac{dv_r^*}{dt^*}
\]

Approved for public release. Distribution is unlimited.
Resulting Non-dimensional Equation Set

\[
\frac{dM^*}{dt^*} = \frac{N}{2} r^*_2 N - 1 v_r^* \exp\left(-\frac{z^*}{2}\right) - \frac{1}{2} r^*_2 v_z^* \exp\left(-\frac{z^*}{2}\right)
\]

\[
\frac{dv_r^*}{dt^*} = \lambda P^* r^* - \phi l_1^* r^* \exp(-z^*)
\]

\[
\frac{dv_z^*}{dt^*} = \alpha l_1^* r^N \exp(-z^*)
\]

\[
\frac{dP^*}{dt^*} = \Xi v_r^* \frac{dv_r^*}{dt^*}
\]
Non-dimensional Parameters

\[\alpha = \frac{V_0^2 C^2 L_C}{2 m_{bit} z_0^2} \]

\[\phi = \frac{V_0^2 C^2 L_C}{2 m_{bit} r_{coil}^2} \]

\[\lambda = \frac{L_0 CP_1 2\pi l_{coil}}{2 m_{bit}} \]

\[\psi_1 = R_e \sqrt{\frac{C}{L_0}} \]

\[\psi_2 = R_p \sqrt{\frac{C}{L_0}} \]

\[\Xi = \frac{4 \gamma}{\gamma + 1} \frac{m_i}{\gamma k T_1 r_{coil}^2 L_0 C} \]

\[L^* = \frac{L_0}{L_C} \]

Approved for public release. Distribution is unlimited.
New Non-dimensional Parameters

\[\alpha = \frac{V_0^2 C^2 L_C}{2 m_{bit} z_0^2} \]
\[\phi = \frac{V_0^2 C^2 L_C}{2 m_{bit} r_{coil}^2} \]
\[\lambda = \frac{L_0 C P_1 2 \pi l_{coil}}{2 m_{bit}} \]
\[L^* = \frac{L_0}{L_C} \]
\[\psi_1 = R_e \sqrt{\frac{C}{L_0}} \]
\[\psi_2 = R_p \sqrt{\frac{C}{L_0}} \]
\[\Xi = \frac{4 \gamma m_i}{\gamma + 1} \frac{1}{\gamma k T_1 r_{coil}^2 L_0 C} \]
New Non-dimensional Parameters

\[\alpha = \frac{V_0^2 C^2 L_C}{2m_{bit} z_0^2} \]

\[\phi = \frac{V_0^2 C^2 L_C}{2m_{bit} r_{coil}^2} \]

\[\lambda = \frac{L_0 CP_1 2\pi l_{coil}}{2m_{bit}} \]

\[\frac{L^*}{L_C} = \frac{L_0}{L_C} \]

\[\psi_1 = R_e \sqrt{\frac{C}{L_0}} \]

\[\psi_2 = R_p \sqrt{\frac{C}{L_0}} \]

\[\Xi = \frac{4\gamma}{\gamma + 1} \frac{m_i}{\gamma k T_1} \frac{1}{r_{coil}^2 L_0 C} \]

Approved for public release. Distribution is unlimited.
New Non-dimensional Parameters

\[\alpha = \frac{V_0^2 C^2 L_C}{2 m_{bit} z_0^2} \]
\[\phi = \frac{V_0^2 C^2 L_C}{2 m_{bit} r_{coil}^2} \]
\[\lambda = \frac{L_0 C P_1 2 \pi l_{coil}}{2 m_{bit}} \]
\[\Xi = \frac{4 \gamma}{\gamma + 1} \frac{m_i}{\gamma k T_1} \frac{1}{r_{coil}^2 L_0 C} \]

\[\psi_1 = R_e \sqrt{\frac{C}{L_0}} \]
\[\psi_2 = R_p \sqrt{\frac{C}{L_0}} \]

Approved for public release. Distribution is unlimited.
Physical Meaning of Scaling Parameters

\[\alpha = \frac{C^2 V_0^2 L_C}{2 m_{bit} z_0^2} = \frac{1}{8 \pi^2} \frac{CV_0^2}{2 m_{bit} v_z^2 / 2} L^* \left(\frac{2 \pi \sqrt{L_0 C}}{L_0 / L_z} \right)^2 \]

\[\phi = \frac{C^2 V_0^2 L_C}{2 m_{bit} r_{coil}^2} = \frac{1}{8 \pi^2} \frac{CV_0^2}{2 m_{bit} v_r^2 / 2} L^* \left(\frac{2 \pi \sqrt{L_0 C}}{L_0 / L_r} \right)^2 \]
Physical Meaning of Scaling Parameters

\[\alpha = \frac{C^2 V_0^2 L_C}{2m_{bit} z_0^2} = \frac{1}{8\pi^2} \frac{CV_0^2/2}{m_{bit} v_z^2/2} L^* \left(\frac{2\pi \sqrt{L_0 C}}{L_0/L_z} \right)^2 \]

\[\phi = \frac{C^2 V_0^2 L_C}{2m_{bit} r_{\text{coil}}^2} = \frac{1}{8\pi^2} \frac{CV_0^2/2}{m_{bit} v_r^2/2} L^* \left(\frac{2\pi \sqrt{L_0 C}}{L_0/L_r} \right)^2 \]

Approved for public release. Distribution is unlimited.
Physical Meaning of Scaling Parameters

\[\alpha = \frac{C^2 V_0^2 L_C}{2 m_{bit} z_0^2} = \frac{1}{8 \pi^2} \frac{CV_0^2/2}{m_{bit} v_z^2/2} L^* \left(\frac{2\pi \sqrt{L_0 C}}{L_0/L_z} \right)^2 \]

Axial Decoupling Timescale

\[\phi = \frac{C^2 V_0^2 L_C}{2 m_{bit} r_{coil}^2} = \frac{1}{8 \pi^2} \frac{CV_0^2/2}{m_{bit} v_r^2/2} L^* \left(\frac{2\pi \sqrt{L_0 C}}{L_0/L_r} \right)^2 \]
Physical Meaning of Scaling Parameters

\[\alpha = \frac{C^2 V_0^2 L_C}{2m_{bit} z_0^2} = \frac{1}{8\pi^2} \frac{CV_0^2}{2m_{bit} v_z^2} L^* \left(\frac{2\pi \sqrt{L_0 C}}{L_0 / \dot{L}_z} \right)^2 \]

\[\phi = \frac{C^2 V_0^2 L_C}{2m_{bit} r_{coil}^2} = \frac{1}{8\pi^2} \frac{CV_0^2}{2m_{bit} v_r^2} L^* \left(\frac{2\pi \sqrt{L_0 C}}{L_0 / \dot{L}_r} \right)^2 \]

Radial Decoupling Timescale

Approved for public release. Distribution is unlimited.
Radial Motion Shifts Peak in Thrust Efficiency

Approved for public release. Distribution is unlimited.
Thrust Efficiency Maximum at Lower Values of Phi

\[\eta_t \]

\[\phi \]

Approved for public release. Distribution is unlimited.
Combined Effects of α and ϕ on η_t
Conclusions
Conclusions

- Radial current sheet motion causes slower axial current sheet acceleration.
Conclusions

- Radial current sheet motion causes slower axial current sheet acceleration
- This leads to dynamic impedance matching at longer characteristic circuit times

Approved for public release. Distribution is unlimited.
Conclusions

- Radial current sheet motion causes slower axial current sheet acceleration
- This leads to dynamic impedance matching at longer characteristic circuit times
- Thrust efficiency is maximized when the axial decoupling timescale is shorter than the radial decoupling timescale

Approved for public release. Distribution is unlimited.
Acknowledgments

The authors appreciate the help and support of Mr. Adam Kimberlin, Dr. Adam Martin, Dr. Noah Rhys, Mr. J. Boise Pearson, and Mr. Jim Martin. This work was supported in part by NASA’s Advanced In-Space Propulsion program managed by Dr. Michael LaPointe and the Office of the Chief Technologist In-Space Propulsion Program managed by Mr. Timothy Smith.
Questions?