Probability of Causation for Space Radiation Carcinogenesis following International Space Station, Near Earth Asteroid, and Mars Missions

Francis A. Cucinotta
NASA Lyndon B. Johnson Space Center
Houston, Texas

Myung-Hee Y. Kim and Lori J. Chappell
U.S.R.A., Division of Space Life Sciences
Houston, Texas

February 2012
Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) Program Office plays a key part in helping NASA maintain this important role.

The NASA STI Program Office is operated by Langley Research Center, the lead center for NASA’s scientific and technical information. The NASA STI Program Office provides access to the NASA STI Database, the largest collection of aeronautical and space science STI in the world. The Program Office is also NASA’s institutional mechanism for disseminating the results of its research and development activities. These results are published by NASA in the NASA STI Report Series, which includes the following report types:

- **TECHNICAL PUBLICATION.** Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA’s counterpart of peer-reviewed formal professional papers but has less stringent limitations on manuscript length and extent of graphic presentations.

- **TECHNICAL MEMORANDUM.** Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.

- **CONTRACTOR REPORT.** Scientific and technical findings by NASA-sponsored contractors and grantees.

- **CONFERENCE PUBLICATION.** Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or cosponsored by NASA.

- **SPECIAL PUBLICATION.** Scientific, technical, or historical information from NASA programs, projects, and mission, often concerned with subjects having substantial public interest.

- **TECHNICAL TRANSLATION.** English-language translations of foreign scientific and technical material pertinent to NASA’s mission.

Specialized services that complement the STI Program Office’s diverse offerings include creating custom thesauri, building customized databases, organizing and publishing research results . . . even providing videos.

For more information about the NASA STI Program Office, see the following:

- Access the NASA STI Program Home Page at http://www.sti.nasa.gov
- E-mail your question via the Internet to help@sti.nasa.gov
- Fax your question to the NASA Access Help Desk at (301) 621-0134
- Telephone the NASA Access Help Desk at (301) 621-0390
- Write to: NASA Access Help Desk NASA Center for AeroSpace Information 7121 Standard Hanover, MD 21076-1320
Probability of Causation for Space Radiation Carcinogenesis following International Space Station, Near Earth Asteroid, and Mars Missions

Francis A. Cucinotta
NASA Lyndon B. Johnson Space Center
Houston, Texas

Myung-Hee Y. Kim and Lori J. Chappell
U.S.R.A., Division of Space Life Sciences
Houston, Texas

February 2012
Table of Contents

Glossary .. vi
Abstract ... viii

1. Introduction ... 1
2. Cancer Risk Projection Model ... 4
3. Space Radiation and Organ Exposures .. 7
4. Uncertainty Analysis ... 13
5. Results ... 17
6. Discussion and Conclusions .. 22
7. References ... 24
Glossary

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALARA</td>
<td>as low as reasonably achievable</td>
</tr>
<tr>
<td>AR</td>
<td>Attributable Risk</td>
</tr>
<tr>
<td>BEIR</td>
<td>(NAS) Committee on the Biological Effects of Ionizing Radiation</td>
</tr>
<tr>
<td>BMI</td>
<td>Body Mass Index</td>
</tr>
<tr>
<td>BRYNTRN</td>
<td>baryon transport computer code</td>
</tr>
<tr>
<td>CDC</td>
<td>Center for Disease Control</td>
</tr>
<tr>
<td>CI</td>
<td>confidence interval</td>
</tr>
<tr>
<td>CL</td>
<td>confidence level</td>
</tr>
<tr>
<td>CNS</td>
<td>central nervous system</td>
</tr>
<tr>
<td>DDREF</td>
<td>dose and dose-rate reduction effectiveness factor</td>
</tr>
<tr>
<td>D_r</td>
<td>dose-rate (Gy/hr)</td>
</tr>
<tr>
<td>EAR</td>
<td>excess additive risk, Sv$^{-1}$</td>
</tr>
<tr>
<td>EB</td>
<td>Empirical Bayes</td>
</tr>
<tr>
<td>ERR</td>
<td>excess relative risk, Sv$^{-1}$ yr$^{-1}$</td>
</tr>
<tr>
<td>EVA</td>
<td>extravehicular activity</td>
</tr>
<tr>
<td>F</td>
<td>fluence (number of ions per unit area) no. ions/cm2</td>
</tr>
<tr>
<td>FS</td>
<td>former smokers</td>
</tr>
<tr>
<td>GCR</td>
<td>galactic cosmic rays</td>
</tr>
<tr>
<td>GM</td>
<td>geometric mean</td>
</tr>
<tr>
<td>GSD</td>
<td>geometric standard deviation</td>
</tr>
<tr>
<td>HZE</td>
<td>high-energy and charge</td>
</tr>
<tr>
<td>HZETRN</td>
<td>high charge and energy transport computer code</td>
</tr>
<tr>
<td>ICRP</td>
<td>International Commission on Radiological Protection</td>
</tr>
<tr>
<td>ISS</td>
<td>International Space Station</td>
</tr>
<tr>
<td>LEO</td>
<td>low Earth orbit</td>
</tr>
<tr>
<td>LET</td>
<td>linear energy transfer, keV/μm</td>
</tr>
<tr>
<td>LSS</td>
<td>Life-Span Study of the Japanese atomic-bomb survivors</td>
</tr>
<tr>
<td>MLE</td>
<td>Maximum Likelihood Estimates</td>
</tr>
<tr>
<td>NAS</td>
<td>National Academy of Sciences</td>
</tr>
<tr>
<td>NEA</td>
<td>Near Earth Asteroid</td>
</tr>
<tr>
<td>NRC</td>
<td>National Research Council</td>
</tr>
<tr>
<td>NS</td>
<td>Never-smoker (lifetime use less than 100 cigarettes)</td>
</tr>
<tr>
<td>NSRL</td>
<td>NASA Space Radiation Laboratory</td>
</tr>
<tr>
<td>NTE</td>
<td>Non-Targeted Effect</td>
</tr>
<tr>
<td>PC</td>
<td>Probability of Causation</td>
</tr>
<tr>
<td>PDF</td>
<td>probability distribution function</td>
</tr>
</tbody>
</table>
Q: quality factor
Q\(_{\text{L}}\): quality factor as a function of linear energy transfer
Q\(_{\text{leukemia}}\): quality factor for estimating leukemia risks
Q\(_{\text{solid}}\): quality factor for estimating solid cancer risks
QMSFRG: quantum multiple scattering fragmentation model

RBE: relative biological effectiveness
\(RBE_{\text{max}}\): maximum relative biological effectiveness that assumes linear responses at low doses or dose-rates
REIC: risk of exposure-induced cancer incidence
REID: risk of exposure-induced death
RERF: Radiation Effects Research Foundation
RR: Relative Risks

S: smokers
SD: standard deviation
SEER: surveillance, epidemiology, and end results
SMR: Standard Mortality Ratio
SPE: solar particle event

\(w_T\): Tissue weighting factor
\(x_{\text{Tr}}\): track structure scaling parameter equivalent to \(Z^*/\beta^2\)
\(x_\alpha\): quantiles (random variables) associated with factor \(\alpha\)

UNSCEAR: United Nations Special Committee on the Effects of Atomic Radiation

\(Z\): Charge number
\(Z^*\): Effective charge number

\(\alpha\): Coefficient of linear dose response term, Gy\(^{-1}\)
\(\beta\): particle velocity relative to the speed of light
\(\phi_j(x,E)\): number of particles of type \(j\) with energy, \(E\) at depth, \(x\) in shielding, \(1/(\text{MeV/u cm}^2)\)
\(\lambda_i\): gender and age-specific cancer incidence rate, cancers/yr
\(\kappa\): Parameter in action cross section to determine most biologically effects \(Z^2/\beta^2\)
\(\Sigma\): Track structure derived risk cross section, \(\mu\text{m}^2\)
Abstract

Cancer risk is an important concern for International Space Station (ISS) missions and future exploration missions to Mars and other destinations. As space programs mature, an important question arises as to the likelihood of a causal association between a crew members’ radiation exposure and the occurrence of cancer. The probability of causation (PC), also denoted as attributable risk, is used to make such an estimate. PC estimates above 50% suggest an observed cancer was more likely to be attributed to radiation exposure than not. Because of the uncertainties in estimating radiation cancer risks, analysis of terrestrial occupational exposure risk has estimated PC at the 95th or 99th percentile confidence level (CL) in assessing the possible relationship between prior radiation exposures and cancer. In this report, we first summarize the NASA model of space radiation cancer risks and uncertainties, including improvements to represent uncertainties in tissue-specific cancer incidence models for never-smokers (NS) and the U.S. average population. We then report on tissue-specific cancer incidence estimates and PC for different post-mission times for ISS and exploration missions. Results show that leukemia and stomach cancer are most likely related to space radiation exposures followed by lung, colon, bladder, and liver cancers. PC estimates for a single ISS mission are not found to exceed 50% even at the 95% CL. However, median PC and 95% CL are found to exceed 50% for many cancer types for deep space missions. PC estimates for NS are estimated to be increased compared to a U.S. average population for lung and several other tissues, although absolute risks are reduced for NS compared to the U.S. average population. An important conclusion from our analysis is that the NASA policy to limit the risk of exposure-induced death to 3% at the 95% CL largely ensures that estimates of the PC for most cancer types would not reach a level of significance. Reducing uncertainties through radiobiological research remains the most efficient method to extend mission length and establish effective mitigators for cancer risks. Efforts to establish biomarkers of space radiation-induced tumors and to estimate PC for rarer tumor types are briefly discussed.
1. Introduction

In this paper, we discuss methods to estimate the probability of causation (PC), also known as Attributable Risk (AR), for space radiation exposures. Astronauts are exposed to galactic cosmic rays (GCR)—made up of high-energy protons and high-energy and charge (HZE) nuclei, and solar particle events (SPEs)—comprised largely of low- to medium-energy protons, which are a critical challenge for space exploration. Experimental studies have shown that HZE nuclei produce both qualitative and quantitative differences in biological effects compared to terrestrial radiation (reviewed in NAS, 1996; Cucinotta and Durante, 2006; Durante and Cucinotta, 2008; Schimmerling et al., 1999; NCRP, 2006) leading to large uncertainties in predicting exposure health outcomes to humans. The uncertainties in estimating GCR health risks are a major limitation to the length of space missions and the evaluation of potential risk mitigators. NASA limits astronaut exposures to a 3% risk of exposure-induced death (REID), and protects against uncertainties in risks projections using an assessment of 95% confidence intervals (CIs) of risk estimates (Cucinotta et al., 2011). Beyond efforts related to risk limitation prior to a mission, there will also be a concern for cancers observed in crew members at post-mission and their possible association with prior space radiation exposures. The PC is a conditional probability of risk used as an indicator of a potential causal relationship between radiation exposure and occurrence of cancer in a population. The calculation of PC with concomitant uncertainty analysis will allow NASA to make estimates that an observed cancer was caused by occupational exposure; however, the estimates should be augmented with considerations of an individual’s family history of disease, possible exposure to other carcinogens, and of individual based biomarkers.

Astronauts and other healthy workers enjoy many lifestyle factors that lead to reduced lifetime cancer risks compared to the U.S. average population (Calle et al., 1999). Healthy worker attributes found for astronauts include optimal ranges of body mass index (BMI), moderate alcohol use, excellent nutrition and exercise regimes, and health care (LSAH 2003). More importantly, more than 90% of astronauts are never-smokers (NS) and therefore are expected to have lower background cancer rates than the U.S. average rates, which include current and former smokers along with NS. It is well known that NS have lower rates of cancer, circulatory and pulmonary diseases, and longer lifespan than former or current smokers (Thun et al., 1995; Doll et al., 2004). Indeed, more than 20% of all deaths in the U.S. are associated with tobacco exposure, including over 80% of all lung cancer deaths (CDC 2010). In addition, epidemiology studies suggest a harmful synergistic interaction between radiation and tobacco exposure occurs (Gilbert et al., 2003; Furukawa et al., 2010; Leuraud et al., 2011; Cucinotta et al., 2012). Exposure to second-hand smoke would be variable in the astronaut or other healthy populations, and can significantly increase lung cancer and circulatory disease risk (CDC 2010). Radiation risk estimates have used models based on the U.S. average population (NCRP, 2000) until recently (Cucinotta and Chappell, 2011). Because cancer risk estimates are made using a mixture of multiplicative and additive risk transfer models, the lower background cancer rates of a healthy population reduce radiation risk estimates compared to estimates for the U.S. average population (Cucinotta et al. 2011, 2012). In this report, we show that the opposite effect will occur for the conditional probability represented by the PC, whereby the PC is increased for several radiogenic cancers for a NS population compared to the U.S. average population.
Evidence that astronauts should be considered to be at lower risk for cancers and enjoy longer lifespan compared to the U.S. average population is borne out by analysis of Kaplan-Meir survival curves (Figure 1) and Standard Mortality Ratios (SMR) (Table 1), where the cohort of NASA astronauts and payload specialists is compared to the U.S. average population (CDC MMWR 2008) and the estimates for a NS population. These comparisons include results after censoring 18 of 19 occupationally related accidental deaths from space missions or training considered atypical of U.S. workers. The largely male cohort of astronauts and payload specialists show a longer longevity and reduced SMR in comparison to the U.S. average population, and are more similar to a population of female NS, which is a strong indication that a healthy worker effect occurs for astronauts. The population effective dose (over 90 Sv for the astronaut cohort [Cucinotta, 2001; Cucinotta et al., 2008]) is unlikely to have led to any increase in cancers at this time. We next discuss the NASA 2010 cancer risk assessment model (Cucinotta et al., 2011) and its application to PC estimates for International Space Station (ISS) and exploration missions. In the past, uncertainty analyses of PC estimates have been used to screen exposed persons for a potential causal relationship to an observed cancer, and in the determination of monetary compensation (NIH 2003; DHHS 2002). We describe point estimates and upper 95% confidence levels (CL) of the PC for 15 radiogenic tissue sites and a grouped “remainder” category representing other cancer sites. Predictions for missions to the ISS, near Earth asteroids (NEAs), and Mars are described, including comparisons for different ages of exposure and disease diagnosis.

Figure 1. Kaplan-Meier survival versus age for astronauts and payload specialists compared to U.S. males and our projections for NS males. The left panel includes occupational deaths related to flight accidents or training, and right panel censures occupational deaths. Data from the Astronaut Fact Book (NASA 2005) and http://www.jsc.nasa.gov/Bios/.
Table 1a. Statistics for Fatalities Among Astronauts and Payload Specialists*

<table>
<thead>
<tr>
<th>Category</th>
<th>Total Frequency</th>
<th>Death Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male Astronauts</td>
<td>269</td>
<td>41</td>
</tr>
<tr>
<td>Female Astronauts</td>
<td>40</td>
<td>3</td>
</tr>
<tr>
<td>Total Astronauts</td>
<td>316</td>
<td>43</td>
</tr>
<tr>
<td>Payload Specialist</td>
<td>23</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>339</td>
<td>44</td>
</tr>
</tbody>
</table>

*Causes of death were 10 cancers, 4 circulatory diseases, 1 central nervous system, 19 occupational accidental deaths, 4 non-occupational accidental deaths, and 5 other causes of death. Data from the Astronaut Fact Book (NASA 2005) and http://www.jsc.nasa.gov/Bios/.

Table 1b. Standard Mortality Ratio (SMR) for Astronauts and Payload Specialists Relative to U.S. Average or NS average (gender weighted to proportion of Male and Female astronauts) or Female NS. Suggests Astronauts have Lifetime Risks Similar to Female NS

<table>
<thead>
<tr>
<th>Comparison</th>
<th>SMR</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Astronauts vs. U.S. avg.</td>
<td>0.67 [0.50, 0.90]</td>
<td>0.0006</td>
</tr>
<tr>
<td>Censoring tragedies vs. U.S. avg.</td>
<td>0.40 [0.27, 0.58]</td>
<td><10^-6</td>
</tr>
<tr>
<td>Astronauts vs. NS avg.</td>
<td>0.88 [0.65, 1.18]</td>
<td>0.391</td>
</tr>
<tr>
<td>Censoring tragedies vs. NS avg.</td>
<td>0.52 [0.35, 0.76]</td>
<td>0.00067</td>
</tr>
<tr>
<td>Astronauts vs. Female NS</td>
<td>1.33 [0.99, 1.78]</td>
<td>0.0592</td>
</tr>
<tr>
<td>Censoring tragedies vs. Female NS</td>
<td>0.78 [0.53, 1.15]</td>
<td>0.215</td>
</tr>
</tbody>
</table>
2. Cancer Risk Projection Model

The instantaneous cancer incidence or mortality rates, λ_i and λ_M, respectively, are modeled as functions of dose D, or dose-rate D_a, gender, age at exposure a_E, and attained age a or latency L, which is the time after exposure $L=a-a_E$. The λ_i (or λ_M) is a sum over rates for each tissue that contributes to risk, λ_{iT}. These dependencies vary for each cancer type that could be increased by radiation exposure. The total risk of exposure-induced cancer (REIC) is calculated by folding the instantaneous radiation cancer incidence rate with the probability of surviving to time t, which is given by the survival function $S_0(t)$ for the background population times the probability for radiation cancer death at previous time, and then integrating over the remainder of a lifetime:

$$REIC(a_E, D) = \int_{a_E} dt \lambda_I(a, a_E, D)S_0(t)e^{-e(t)}$$

where z is the dummy integration variable. After adjustment for low dose and dose-rates though the dose and dose-rate effectiveness factor (DDREF) and radiation quality, the tissue-specific cancer incidence rate for an organ dose equivalent, H_T, can be written as a weighted average of the multiplicative and additive transfer models, often called a mixture model:

$$\lambda_T(a, a, H_T) = [v_TERR_T(a, a)\lambda_{0T}(a) + (1-v_T)EAR_T(a, a)]\frac{H_T}{DDREF}$$

where v_T is the tissue-specific transfer model weight, λ_{0T} is the tissue-specific cancer incidence rate in the reference population, and where ERR_T and EAR_T are the tissue specific excess relative risk and excess additive risk per Sievert, respectively. The Hazard rates for cancer mortality λ_M are modeled with similar approaches following the BEIR VII report (2006). Tissue weights assumed in the NASA 2010 model are shown in Table 2 along with recommendations from other reports. In the NASA 2010 Model (Cucinotta and Chappell, 2011; Cucinotta et al., 2011), we used the United Nations Special Committee on the Effects of Atomic Radiation (UNSCEAR) report fitted excess additive risk (EAR) and excess relative risk (ERR) models for most tissue sites with the results from Preston et al. (2007) for a few tissues not reported by UNSCEAR. UNSCEAR employed Poisson maximum-likelihood methods and Bayesian analysis to represent dosimetry errors to fit generalized ERR and EAR models to the Life-Span Study of the Japanese atomic-bomb survivors (LSS) for cancer incidence for REIC. The ERR function fitted to the LSS data was:

$$ERR(a, a_E, L, D) = (\alpha D + \beta D^2)e^{\phi D} \exp[\kappa_1 L + \kappa_2 \ln(a - a_E) + \kappa_3 \ln(a) + \kappa_4 \ln(a_E)]$$

with a similar form for the EAR function. A linear dose response model provided the best fits to the tissue-specific cancer incidence data for solid cancers. For leukemias, the linear-quadratic model provided the best fit. The addition of the latency dependence, $L=a-a_E$, was significant for several tissues, including EAR models for colon, breast, and non-melanoma skin cancer, and ERR and EAR functions for the category of all other solid cancer incidence. For breast and thyroid cancers, the NASA 2010 models follows BEIR VII, which recommended the use of results from a meta-analysis of several exposed cohorts, replacing results from the LSS with
additive transfer models used for breast cancer (Preston et al., 2002) and multiplicative transfer models used for thyroid cancer (Ron et al., 1995). For estimating cancer risks for low dose or dose-rate exposures, NCRP Report 132 (NCRP 2000) used a DDREF of 2. The BEIR VII Report, recommended a DDREF of 1.5 based on Bayesian analysis of the LSS data and a select group of mouse tumor studies. The NIH uses (NIH 2003) a values close to 1.75, which is the choice for the NASA 2010 model (Cucinotta and Chappell, 2011).

<table>
<thead>
<tr>
<th>Tissue</th>
<th>NCRP No. 132</th>
<th>BEIR VII</th>
<th>NASA 2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lung</td>
<td>0.5</td>
<td>0.3</td>
<td>0.5</td>
</tr>
<tr>
<td>Breast</td>
<td>0.5</td>
<td>0**</td>
<td>0**</td>
</tr>
<tr>
<td>Thyroid</td>
<td>0.5</td>
<td>1.0**</td>
<td>1.0**</td>
</tr>
<tr>
<td>Stomach, Colon, Liver,</td>
<td>0.5</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>Esophagus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leukemia</td>
<td>0.0</td>
<td>0.7</td>
<td>0.5</td>
</tr>
<tr>
<td>All Others</td>
<td>0.5</td>
<td>0.7</td>
<td>0.5</td>
</tr>
</tbody>
</table>

**Based on meta-analysis results described in BEIR VII.

Adjusting U.S. Cancer Rates for Never-Smokers Cancer Estimates

We estimated gender-specific NS cancer rates to represent a reference population by using age-specific rates for lung cancer and relative risk factors derived from literature searches for other cancers. Age- and gender-specific NS lung cancer rates were recently compiled by Thun et al. (2008) from an analysis of 13 cohorts and 22 cancer registries. These rates are used for our analysis of radiation lung cancer risks for NS. For other cancers, we use Center for Disease Control (CDC) estimates of proportions of cancer deaths for smokers (S) and former smokers (FS) in the U.S. population. CDC estimates (2010) of relative risks between these populations were used for cancers of the esophagus, stomach, bladder, and oral cavity, and for acute myeloid leukemia. We also considered other published sources for several tissue sites, which are liver, colorectal, and lymphomas (Liang et al., 2009; Sandler et al., 2003; IARC 1986). We estimated the fraction of cancers categorized in the “remainder” category based on the number of cases reported by Preston et al. (2007) for different cancer types related to smoking including pharynx, larynx, and pancreas. Cancer rates reported for the U.S. population are made up of populations of S, FS, and NS, with proportions f_S, f_{FS}, and f_{NS}, which leads to:

$$\lambda_{NS}(a) = f_S \lambda_{NS}^S(a) + f_{FS} \lambda_{NS}^{FS}(a) + f_{NS} \lambda_{NS}^{NS}(a)$$
The relative risks (RR) of S and FS compared to NS, RR_S, and RR_FS, respectively, are then used to compare rates for NS to the U.S. average rates,

\[
\lambda_{\text{NS}}^T(a) = \frac{\lambda_{\text{NS}}(a)}{(RR_S f_S + RR_{FS} f_{FS} + f_{NS})}
\]

We used the 2005 U.S. population data from surveillance, epidemiology, and end results (SEER) (2006) and the CDC (2008) to represent the average U.S. population, and CDC estimates of fractions of populations for S, FS, and NS for males and females above age 40 y. The resulting estimates of RR for NS compared to the U.S. population are shown in Table 3. For NS risk estimates, we considered their longer lifespan due to their reduced mortality for cancer, and circulatory and pulmonary diseases. Age-specific rates for all causes of death for NS were not available; instead, we considered the survival probability for the average U.S. population and made adjustments for the age- and gender-specific rates for these diseases (CDC 2008; Malarcher et al., 2000). Here we modified the survival probability in Eq. (1) to adjust for lower rates for cancers, and circulatory and pulmonary diseases that are also linked to tobacco use (CDC 2008).

Probability of Causation

The PC or AR is the fraction of the incidence of a disease in a population (exposed and non-exposed) that is due to radiation exposure. Thus, the PC represents the incidence of a disease in the population that would be eliminated if there were no radiation exposure. The PC is estimated from Eq. (1) by limiting the upper limit of integration to the date of disease diagnosis, \(a_{\text{Diag}}\) for both the exposed population and the reference population, with the PC defined in terms of the conditional tissue specific ERR for each tissue:

\[
PC = \frac{\text{ERR}(T,a_{\text{Diag}})}{1 + \text{ERR}(T,a_{\text{Diag}})}
\]

where

\[
\text{ERR}(T,a_{\text{Diag}}) = \frac{\int_{a_{\text{Diag}}}^{a_{\text{Tot}}} dt \lambda_T(a,a_E,D)S_0(t)e^{-\int_{a_{E}}^{a_{\text{Diag}}} dt \lambda_T(a,a_E,D)}}{\int_{a_{E}}^{a_{\text{Tot}}} dt \lambda_T(a,a_E,0)S_0(t)} - 1
\]
Table 3. Estimates of Relative Risk (RR) for Never-Smokers (NS) compared to Average U.S. Population for Several Cancers Related to both Smoking and Radiation Exposure

<table>
<thead>
<tr>
<th>Cancer Type</th>
<th>Relative Risk to Never-Smokers</th>
<th>RR(NS/US)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Males</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Current smokers</td>
<td></td>
</tr>
<tr>
<td>Esophagus</td>
<td>6.76</td>
<td>1</td>
</tr>
<tr>
<td>Stomach</td>
<td>1.96</td>
<td>1</td>
</tr>
<tr>
<td>Bladder</td>
<td>3.27</td>
<td>1</td>
</tr>
<tr>
<td>Oral Cavity</td>
<td>10.89</td>
<td>1</td>
</tr>
<tr>
<td>Liver</td>
<td>2.25</td>
<td>1</td>
</tr>
<tr>
<td>Colorectal</td>
<td>1.19</td>
<td>1</td>
</tr>
<tr>
<td>Leukemia</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Remainder</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Lung*</td>
<td>23.26</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Former smokers</td>
<td></td>
</tr>
<tr>
<td>Esophagus</td>
<td>4.46</td>
<td></td>
</tr>
<tr>
<td>Stomach</td>
<td>1.47</td>
<td></td>
</tr>
<tr>
<td>Bladder</td>
<td>2.09</td>
<td></td>
</tr>
<tr>
<td>Oral Cavity</td>
<td>3.4</td>
<td></td>
</tr>
<tr>
<td>Liver</td>
<td>1.75</td>
<td></td>
</tr>
<tr>
<td>Colorectal</td>
<td>1.21</td>
<td></td>
</tr>
<tr>
<td>Leukemia</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>Remainder</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>Lung*</td>
<td>8.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Never-smokers</td>
<td></td>
</tr>
<tr>
<td>Esophagus</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Stomach</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Bladder</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Oral Cavity</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Liver</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Colorectal</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Leukemia</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Remainder</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Lung*</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RR(NS/US)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Males</td>
<td></td>
</tr>
<tr>
<td>Esophagus</td>
<td>0.27</td>
<td></td>
</tr>
<tr>
<td>Stomach</td>
<td>0.71</td>
<td></td>
</tr>
<tr>
<td>Bladder</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>Oral Cavity</td>
<td>0.23</td>
<td></td>
</tr>
<tr>
<td>Liver</td>
<td>0.63</td>
<td></td>
</tr>
<tr>
<td>Colorectal</td>
<td>0.89</td>
<td></td>
</tr>
<tr>
<td>Leukemia</td>
<td>0.69</td>
<td></td>
</tr>
<tr>
<td>Remainder</td>
<td>0.43</td>
<td></td>
</tr>
<tr>
<td>Lung*</td>
<td>0.11</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Females</td>
<td></td>
</tr>
<tr>
<td>Esophagus</td>
<td>0.35</td>
<td></td>
</tr>
<tr>
<td>Stomach</td>
<td>0.85</td>
<td></td>
</tr>
<tr>
<td>Bladder</td>
<td>0.65</td>
<td></td>
</tr>
<tr>
<td>Oral Cavity</td>
<td>0.46</td>
<td></td>
</tr>
<tr>
<td>Liver</td>
<td>0.67</td>
<td></td>
</tr>
<tr>
<td>Colorectal</td>
<td>0.88</td>
<td></td>
</tr>
<tr>
<td>Leukemia</td>
<td>0.74</td>
<td></td>
</tr>
<tr>
<td>Remainder</td>
<td>0.48</td>
<td></td>
</tr>
<tr>
<td>Lung*</td>
<td>0.23</td>
<td></td>
</tr>
</tbody>
</table>

*Lung data shown only for comparison, where risk calculations made using age-specific rates described in the text. For males, current smokers, former smokers, and never-smokers are estimated at 24, 40, and 36% of the population above age 50 y. For females, we use 18, 35, and 47% for these percentages (CDC-MMWR, 2010).

3. Space Radiation and Organ Exposures

For calculations of space radiation tissue-specific cancer risks, Eq. (2) is used for the cancer incidence risk rate with the organ dose equivalent estimated using the high charge and energy transport computer code (HZETRN) (Wilson et al., 1994) with quantum multiple scattering fragmentation model (QMSFRG) cross-sections and Badhwar-O’Neill GCR environment (Cucinotta, et al., 2011). For GCR, the use of risk assessment quantities based on absorbed dose is expected to have shortcomings and instead the NASA 2010 derived radiation quality descriptors of biological effectiveness based on particle track structure and fluence that were then expressed as radiation quality factors (Cucinotta et al., 2011). Here, a cancer risk cross-section representing the probability per particle is written as:

\[
\Sigma(Z, E) = \Sigma_0 [P(Z, E) + \frac{\alpha}{\Sigma_0} (1 - P(Z, E)) L]
\]

with
where the three parameters of the model \((\Sigma_0/\alpha_r, m, \kappa) \) based on subjective estimates of results from radiobiology experiments. A radiation quality factor function is then found as:

\[
Q_{\text{NASA}} = (1 - P(E, Z)) + \frac{6.24(\Sigma_0/\alpha_r)P(E, Z)}{\text{LET}}
\]

The NASA quality factor depends on both particle charge number, \(Z \) and kinetic energy, \(E \) and not linear energy transfer, linear energy transfer (LET) alone as assumed in the International Commission on Radiological Protection (ICRP) definition of quality factors (ICRP 1990; ICRP 2003; NCRP 2000). Distinct quality factors for estimating solid cancer and leukemia risk are used, \(Q_{\text{solid}} \) and \(Q_{\text{leukemia}} \), respectively. The parameters that enter Eq.’s (8) to (10) have straightforward biophysical interpretations: \(\Sigma_0 \) is the maximum value of the cross-section, which is related to maximum relative biological effectiveness (RBE\(_{\text{max}}\)) for the most biologically effective particle types; \(m \) is the slope of the cross-section for increasing ionization density; \(\kappa \) determines the saturation value of the cross-section, where the relative biological effectiveness (RBE) begins to decline due to “overkill” effects. \(\alpha_r \) is related to the initial slope of the gamma-ray dose response. Only the ratio \(\Sigma_0/\alpha_r \) enters into model calculations, and not the individual values of these parameter. For solid cancer risks, radiobiology data is sparse. However, the largest RBE for HZE nuclei is in the range from 20 to 50 for solid tumors in rodents, and for chromosomal aberrations and mutations in human cells. A lower value is observed for leukemia (Weil et al., 2009). This assumes a linear dose response at low particle dose, ignoring non-targeted effects (NTEs) or other possible mechanisms that would lead to deviation from linearity at low fluence. Calculations with the NASA 2010 model include uncertainty analysis through the use of probability distribution functions (PDFs) to represent subjective assessments of ranges for each of the parameters with median values shown in Table 4. We also assume a description of “thindown” at low energies, where the track width of a particle becomes smaller than the biological target. Here at low energies, the Risk cross-section is modified by the factor, \(P_E=1-\exp(-(E/E_{TD})) \) to account for thindown. The value of \(E_{TD}=0.2 \) is based on experimental data for H and He. This factor has a very small impact for heavy ions since at low \(E \) they make a very small contribution to GCR or SPE exposures. The parameter \(\kappa \) is assumed to have distinct values for light and heavy ions (Table 4).

Table 4. Cancer Risk Cross-Section or Quality Factor Parameters for Solid Cancer and Leukemia Risks*

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Solid Cancer</th>
<th>Leukemia</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m)</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>(\kappa)</td>
<td>550 (1000)</td>
<td>550 (1000)</td>
</tr>
<tr>
<td>(\Sigma_0/\alpha_r, \mu m^2 \text{Gy})</td>
<td>7000/6.24</td>
<td>1750/6.24</td>
</tr>
<tr>
<td>(E_{TD})</td>
<td>0.2 MeV/u</td>
<td>0.2 MeV/u</td>
</tr>
</tbody>
</table>

Values in parenthesis for when distinct values for light ions \((Z \leq 4)\) are to be used.
The cancer risk cross-section or related quality factor is expressed in terms of the track structure parameter, \(X_0 = Z^2/\beta^2 \), using the Barkas form for the effective charge function. The quality factor has an additional dependence on LET, which relates the particle track structure to the absorbed dose (Cucinotta et al., 2011). Figure 2 compares the NASA quality factor to the International Commission on Radiological Protection (ICRP) model used at NASA in the past for \(p, C, Si, \) and \(Fe \) nuclei versus LET illustrating the differences as described. The preferred slope on the rising side with increasing ionization density of \(m=3 \) is different than the ICRP \(Q(LET) \), which rises approximately as \(m=2 \). For calculations for a specific particle described by \(Z \) and \(E \), Eq. (2) is replaced by

\[
\lambda_{zz}(F_T, a_E, a) = \lambda_{\beta}(a_E, a)\{D_T(E, Z)(1-P(Z, E)) + (\sum_0 I_{\alpha_j})P(Z, E)F_T(Z, E)\}
\]

where \(\lambda_{\beta} \) is the inner bracketed terms in Eq. (2) that contains the ERR and EAR functions for individual tissues. Using the HZETRN code or similar radiation transport codes, the fluence spectra, \(F(X_\nu) \) can be found by transforming the energy spectra, \(\phi_j(E) \) for each particle, \(j \) of mass number and charge number, \(A_i \) and \(Z_i \) respectively as:

\[
F(X_\nu) = \sum_j \left(\frac{\partial X_\nu}{\partial E} \right)^{-1} \phi_j(E)
\]

where we evaluate the Jacobian in Eq. (12) using the Barkas (1963) form for the effective charge number given by

\[
Z^* = Z(1-e^{-125\rho/Z^{2/3}})
\]

The tissue-specific cancer incidence rate for GCR or SPEs can then be written:

\[
\lambda_{T\nu} \approx \lambda_{\beta} \left\{ \sum_j \int dE \phi_j(E) S_j(E)(1-P(X_\nu)) + (\sum_0 I_{\alpha_j}) \int dX_\nu F(X_\nu)P(X_\nu) \right\}
\]

The first term on the right-hand side of Eq. (14) can be well approximated by the tissue averaged absorbed dose times the low LET risk coefficient. This approximation can be shown to lead to <10% over-estimation of its true value. However, in REIC calculations the error is even smaller because the second term of the right-hand side of Eq.(14) is dominant. We modified the HZETRN and BRYNTRN codes to perform the exact calculation; however, for the Monte-Carlo uncertainty analysis described below, we use the following form for the radiation cancer rate for the mixed particle and energy fields in space:

\[
\lambda_{T\nu} \approx \lambda_{\beta} \left\{ \text{Dose} + \sum_0 \left[\int dX_\nu F_{Li}(X_\nu)P_{Li}(X_\nu) + \int dX_\nu F_{hi}(X_\nu)P_{hi}(X_\nu) \right] \right\}
\]

where we distinguish spectra for light ions \((Z<4) \), \(F_{Li} \) from heavy ions, \(F_{hi}(Z>4) \). A summation over all cancer types is made for the radiation contribution to the survivor function in evaluating tissue specific risks, and a further summation over all cancer types to evaluate the overall cancer risk.
In organ exposure evaluations, fluence spectra are averaged over each tissue using body shielding models. In Figure 3 we show differential REIC spectra versus X_{tr} at solar minimum behind increasing amounts of aluminum shielding for a Mars and an ISS mission. Calculations are made with the HZETRN code using the Badhwar and O'Neill GCR model (1992) and QMSFRG nuclear cross-section database (Cucinotta et al., 2007). Results are shown on a linear-log plot such that the area under the curve for each decade of X_{tr} is equally weighted. Leukemia risk shows a reduced maximum Q-value compared to solid cancer risks, resulting in particles at lower values of X_{tr} making larger contributions compared to solid cancer risks. Figure 3 shows sharp spikes at increasing values of Z^2 for each GCR charge group. For example, at small values of X_{tr} we see peaks at 1 and 4, corresponding to protons and He nuclei. At large values of X_{tr} we observe a prominent peak near $Z^2/\beta^2 = 676$ corresponding to relativistic Fe nuclei. These sharp peaks correspond to the contributions from relativistic particles, with broader peaks for deep space exposure due to contribution of low- to medium-energy GCR not present in the ISS orbit due to the Earth’s geomagnetic field.
Figure 3a. Leukemia and solid cancer risk distribution for 40-y Females versus Z^*/β^2 on 6-month ISS mission at solar minimum with 20 g/cm² of aluminum shielding.

Figure 3b. Leukemia and solid cancer risk distribution for 40-y Females versus Z^*/β^2 for 30-month Mars mission including 18 month surface stay at solar minimum with 20 g/cm² of aluminum shielding.
In Figure 4a (Cucinotta et al., 2011), we compare calculations of annual Effective dose in the ICRP model to the NASA recommended model for ISS missions at solar minimum and maximum. Comparisons for aluminum and polyethylene shielding are shown. Figure 4b shows similar comparisons for 1-year in deep space. The ICRP model provides higher estimates at shallow shielding depth due largely to its higher estimation of contributions for relativistic particles than the NASA model. At deep shielding depths, the NASA model gives higher estimates due to its assignment of higher biological effectiveness to low energy proton and helium nuclei produced by neutrons and other particles and from atomic slowing-down of primaries. For the various mission and shielding scenarios, differences in Effective doses are on the order of 10 to 30%; however, the NASA model allows for an improved uncertainty assessment to be made than the ICRP Q function whose parameters are difficult to relate to biophysical interpretation. Of note is that shielding only provides a minor reduction in GCR organ dose equivalent. Most of the reduction occurs in the first 20 g/cm² of material at solar minimum. The reduced number of low energy particles at solar maximum reduces even this benefit from shielding. To significantly reduce GCR beyond this initial reduction would require several meters of hydrocarbon shielding.

Figure 4a. Comparison of annual Effective dose for males in ISS orbit (51.6 deg x 400 km) versus depth of shielding. Values for solar minimum and maximum are shown comparing ICRP model to recommended NASA model.
4. Uncertainty Analysis

To propagate uncertainties across multiple contributors, we performed Monte-Carlo simulations sampling over subjective PDFs that represent current knowledge of factors that enter into risk models (NCRP, 1997; 2006; Cucinotta et al., 2001, 2006; 2011). In a simplified manner, we can write a risk equation as a product of several factors including the dose, D, quality factor, Q, a low LET risk coefficient normally derived from the data of the atomic-bomb survivors, R_0, and the dose and dose-rate reduction effectiveness factor, $DDREF$, that corrects risk data for dose-rate modifiers. Monte-Carlo uncertainty analysis uses the risk equation, but modified by normal deviates that represent subjective weights and ranges of values for various factors that enter into a risk calculation. First, we define $X \in R(x)$ as a random variate that takes on quantiles x_1, x_2, \ldots, x_n such that $p(x_i) = P(X=x_i)$ with the normalization condition $\Sigma p(x_i) = 1$. $C(x_i)$ is defined as the cumulative distribution function, $C(x)$, which maps X into the uniform distribution $U(0,1)$ and we define the inverse cumulative distribution function $C(x)^{-1}$ in order to perform the inverse mapping of $U(0,1)$ into x: $x=C(x)^{-1}$. Then we write for a simplified form of the risk equation for a Monte-Carlo trial, ξ:

$$
\text{Risk}_{\xi} = R_0(\text{age, gender}) \frac{FLQ}{DDREF} \left\{ \frac{x_{R_0} x_{phys} x_Q}{x_{Dr}} \right\}_{\xi}
$$

where R_0 is the low LET risk coefficient per unit dose, the absorbed dose, D is written as the product of the particle fluence, F and LET, L, and Q the radiation quality factor. The x_{R_0}, x_{phys}, x_{Dr}, and x_Q are quantiles that represent the uncertainties in the low LET risk coefficient, the space physics models of organ exposures, dose-rate effects, and radiation quality effects, respectively.
Monte-Carlo trials are repeated many times, and resulting values binned to form an overall PDF taken into account each of the model uncertainties. In practice, the risk model does not use the simple form of Eq. (15). Instead, risk calculations are made using the REIC described by Eq. (1). For the 95% CIs for the %PC, we use the bootstrap method to infer the values from the uncertainty analysis for REIC.

PDF functions describing the uncertainties to the quantiles, x_i, for the various parameters in the model are described in Table 5 from the recent report by Cucinotta et al. (2011). Two modifications are to introduce tissue-specific statistical uncertainties and to include uncertainties in the estimate of RR for NS compared to the U.S. average. The subjective PDFs are then employed in the Monte-Carlo calculation to describe a given space radiation scenario as described previously (Cucinotta et al., 2001; 2006; 2011). The point estimate for Q_{max} of 40, occurs for the most effective proton energy (~ 0.5 MeV). Values assigned give more weight to the animal model solid tumor data and are influenced by fractionation studies that suggest that higher RBEs are possible. The resulting PDF has a 95% CI for the maximum value of Q for solid cancer as [14, 70], which covers most of the range of values from Fe nuclei tumor induction and earlier neutron studies reflective of low energy protons. In Table 4, we use a GM=0.9 for the PDF associated with Σ_0/α, with the expectation that some tissues would have lower values as found for leukemia; however, there is a lack of information to make a more informed choice. In an alternative model of the radiation quality uncertainties, we assume that the slope, m is correlated with the position of the maximum value of Q as determined by the value of κ. After studying the functional dependence of the parameters of Eq. (10), we find the position of the maximum Q is held fixed for differential values of m if we use the constraint:

$$\kappa(m) = \frac{4\kappa_0}{(m+1)}$$

where κ_0 is the estimated value from Table 4. This alternative uncertainty assessment assumes that the kinetic energy for each Z at the maximum of the risk cross-section for cancer induction in humans is fairly well described by the existing data. In this approach, uncertainties in the maximum Q value, slope of Q with changing X_{tr}, and kinetic energy at the Q maximum are described; however, these values are more constrained compared to the uncertainty analysis without this constraint. The alternative uncertainty model was applied using conditional Monte-Carlo sampling, where a random value of m is selected from its PDF, prior to sampling for the κ value with central estimate defined by Eq. (16).
Table 5. Summary of PDF for Uncertainty Components in NASA Model

<table>
<thead>
<tr>
<th>Uncertainty Contribution</th>
<th>PDF form for Quantile, x_j</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low LET Model:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Statistical Errors</td>
<td>See Table 6</td>
<td>Tissue-specific values used</td>
</tr>
<tr>
<td>Statistical Errors in RR for NS</td>
<td>Normal (M=1.0; SD=0.25)</td>
<td>Applied to tissues considered in Table 3 for NS</td>
</tr>
<tr>
<td>Bias in Incidence Data</td>
<td>Normal (M=1.0; SD = 0.05)</td>
<td>Based on NCRP Report 126</td>
</tr>
<tr>
<td>Dosimetry Errors</td>
<td>Log-Normal (GM=0.9, GSD=1.3)</td>
<td>Based on Preston et al. (2007); UNSCEAR (2008)</td>
</tr>
<tr>
<td>Transfer Model Weights</td>
<td>Uniform distribution about preferred weight</td>
<td>Ignored for breast and thyroid cancers</td>
</tr>
<tr>
<td>DDREF</td>
<td>Log-Normal (GM=1.0; GSD=1.4)</td>
<td>DDREF=1.75; Truncated at 0.75 for inverse dose-rate probability <0.05</td>
</tr>
<tr>
<td>Risk Cross Section or Q:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Σ/α_r</td>
<td>Log-normal(GM=0.9; GSD=1.4)</td>
<td>GM<1 assumes existing data is biased to higher values</td>
</tr>
<tr>
<td>κ</td>
<td>Normal(M=1, SD=0.2)</td>
<td>Position of peak estimates suggests variation on sensitivity, target size/distributed targets</td>
</tr>
<tr>
<td>m</td>
<td>Discrete m={1.5,2.2,2.5,3.3,5,4} with weights [.05,.1,.2,.4,.2,.05]</td>
<td>Values restricted over (1.5,4)</td>
</tr>
<tr>
<td>Physics Uncertainties:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$F(Z^2/\beta^2)$ for $Z<5$</td>
<td>Normal (M=1.05; SD=1/3)</td>
<td>HZETRN does not account for mesons, e- and γ-rays that are low Charge and high velocity; may underestimate neutron recoils of low charge</td>
</tr>
<tr>
<td>$F(Z^2/\beta^2)$ for $Z\geq5$</td>
<td>Normal (M=1.0; SD=1/4)</td>
<td>HZETRN accurate at high Z</td>
</tr>
</tbody>
</table>

Statistical Uncertainties for Tissue-Specific Estimates

For estimating the statistical uncertainties for overall cancer risks from radiation, we previously used (Cucinotta *et al.*, 2011) the recommendations from NCRP Report 126 (1997) for the statistical uncertainty in the total cancer risk derived from cancer mortality data of the LSS survivors. However, larger statistical uncertainties occur for tissue-specific risk estimates derived from cancer incidence data. The various reports on tissue-specific estimates of cancer risks (BEIR VII, 2006; UNSCEAR 2008; Preston *et al.*, 2007) typically combine statistical uncertainties with dosimetry or other uncertainties in reporting confidence levels. The UNSCEAR report did not report uncertainty ranges for their model EAR and ERR functions, which further complicates assessments of tissue-specific statistical uncertainties. The approach used here is to introduce subjective PDFs for the tissue-specific statistical uncertainties based on the Empirical Bayes (EB) results from Pawel *et al.* (2009). The important feature of the EB approach is to consider the correlation between the standards errors for different tissue sites Table 6 shows results from this work. In the last two columns, we show results as the %SD relative to the mean estimate, and the subjective values used in our analysis are shown in parenthesis. Note that statistical errors for leukemia were not considered by Pawel *et al.* (2009)
and for thyroid and breast cancers, meta-analysis results that included data in addition to the Japanese atomic-bomb survivor data was considered as recommended by BEIR VII (2006).

Table 6. Comparison of Maximum Likelihood Estimates (MLE) to Empirical Bayes (EB) Method for Gender Adjusted Site-specific ERR from the LSS Study (Pawel et al. 2008), and %SD Estimates and Subjective %SD Estimates Used for Model Calculations in Parentheses

<table>
<thead>
<tr>
<th>Tissue</th>
<th>ERR/Sv Estimate MLE</th>
<th>Standard Error MLE</th>
<th>%SD EB (subjective)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stomach</td>
<td>0.32</td>
<td>0.06</td>
<td>0.19 (0.2)</td>
</tr>
<tr>
<td>Colon</td>
<td>0.49</td>
<td>0.11</td>
<td>0.21 (0.2)</td>
</tr>
<tr>
<td>Liver</td>
<td>0.31</td>
<td>0.10</td>
<td>0.28 (0.3)</td>
</tr>
<tr>
<td>Lung</td>
<td>0.70</td>
<td>0.13</td>
<td>0.18 (0.2)</td>
</tr>
<tr>
<td>Breast</td>
<td>0.67</td>
<td>0.10</td>
<td>0.14 (0.25)</td>
</tr>
<tr>
<td>Prostate</td>
<td>0.18</td>
<td>0.30</td>
<td>0.60 (0.6)</td>
</tr>
<tr>
<td>Uterus</td>
<td>0.04</td>
<td>0.05</td>
<td>1.0 (1.0)</td>
</tr>
<tr>
<td>Ovary</td>
<td>0.27</td>
<td>0.19</td>
<td>0.47 (0.5)</td>
</tr>
<tr>
<td>Bladder</td>
<td>0.84</td>
<td>0.29</td>
<td>0.31 (0.3)</td>
</tr>
<tr>
<td>Esophagus</td>
<td>0.63</td>
<td>0.31</td>
<td>0.40 (0.4)</td>
</tr>
<tr>
<td>CNS</td>
<td>0.37</td>
<td>0.17</td>
<td>0.37 (0.4)</td>
</tr>
<tr>
<td>Thyroid</td>
<td></td>
<td></td>
<td>(0.4)</td>
</tr>
<tr>
<td>Oral Cavity</td>
<td>0.34</td>
<td>0.15</td>
<td>0.36 (0.4)</td>
</tr>
<tr>
<td>Remainder*</td>
<td>1.15</td>
<td>0.19</td>
<td>0.18 (0.2)</td>
</tr>
<tr>
<td>Leukemia</td>
<td></td>
<td></td>
<td>(0.25)</td>
</tr>
</tbody>
</table>

*Remainder included different tissues in various reports described in text.
5. Results

Figure 5 illustrates some general characteristics of the %PC for different tissue sites. Calculations are shown for an organ dose equivalent of 0.5 Sv to each tissue site for a Female NS. Results for leukemia are made at the same the organ dose equivalent as solid cancers; however, the NASA model would assign a smaller Q-factor for leukemia resulting in a smaller GCR organ dose equivalent for the bone marrow compared to values for solid tissues. The left panel of Figure 5 shows calculation for an age of exposure of 40 y and the dependency of the %PC with time after exposure. Different trends occur for the tissues shown, which are largely determined by the age and time after exposure dependences of the fitted EAR and ERR functions, and the age dependence of the background rates for the tissues. Similar trends are observed for males (data not shown), The %PC peaks early after exposure for leukemia and stomach cancers and rises slowly with time after exposure for breast and lung cancers. There are additional uncertainties that are not accounted for with regards to the calculation of %PC less than 2 and 5 years after exposure for leukemia and solid cancer, respectively, because epidemiology data are often sparse at these times. In addition, heavy ion and neutrons appear to cause an earlier induction of cancers than low LET radiation, which is not accounted for in the current models of cancer risk (NCRP 2000; NCRP 2006). In the right panel of Figure 5, we show calculations of %PC at 20 years post-exposure for different ages of exposure. The %PC declines with age at exposure for most but not all tissues because background cancer risks tend to increase with age.

![Graphs showing %PC calculations](image)

Figure 5. Calculations of %PC for NS Females for organ dose equivalents of 0.5 Sv. The left panel shows results versus time after exposure and the right panel versus age at exposure for disease diagnosis at 20 y post-exposure.

In Tables 7, 8, and 9, we show estimates of tissue-specific %REIC and 95% CL, and point estimates and upper 95% CL for %PC for a 1-year NEA mission, a 30-month Mars mission, and a 6-month ISS mission, respectively. Calculations for males and females represented by the
The estimates of PC for stomach and leukemia cancers show the largest association with GCR exposures followed by colon, liver, bladder, and lung cancers. An important gender dependence occurs between values for several tissues. For a Mars mission, estimates of the %PC at the 95% confidence level would suggest a large proportion of cancers that would be observed in astronauts would be either caused or moved forward in time by radiation exposure. In contrast, a single ISS mission at solar minimum does not lead to %PC estimates above 50% for any tissue even at the 95% CL. However, for an individual making two or more ISS missions, PC values for leukemia and stomach cancers would likely exceed 50% at the 95% CL, and lung cancer PC estimates for NS would approach 50% at the 95% CL. The results shown in Table 8 are for the conjunction-type Mars mission. In comparison, the shorter opposition class missions have more time in deep space than the conjunction class missions. Thus, the conjunction class missions, which have long stays on the Mars surface, benefit from the 2π shielding provided by the solid body of Mars and its atmospheric shielding. The net effect is for a decreased risk for conjunction class missions compared to opposition class missions at solar minimum. The same is true at solar maximum because the risk of a high SPE exposure on the Mars surface is greatly reduced compared to the SPE risk in deep space.
Table 7a. Lifetime %REIC and 95% CI, and %PC for 60 y Females Following 1-year NEA Mission at age 40 y. Calculations Assume 20 g/cm² Aluminum Shielding for Solar Minimum Conditions.

<table>
<thead>
<tr>
<th>Tissue</th>
<th>%REIC</th>
<th>%PC (95% CL)</th>
<th>%REIC</th>
<th>%PC (95% CL)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>U.S. Ave. Females</td>
<td></td>
<td>NS Females</td>
<td></td>
</tr>
<tr>
<td>Stomach</td>
<td>0.331 [0.091, 1.31]</td>
<td>54.0 (82.2)</td>
<td>0.347 [0.095, 1.39]</td>
<td>57.6 (84.5)</td>
</tr>
<tr>
<td>Colon</td>
<td>0.461 [0.135, 1.79]</td>
<td>21.1 (51.0)</td>
<td>0.439 [0.128, 1.71]</td>
<td>21.2 (51.1)</td>
</tr>
<tr>
<td>Liver</td>
<td>0.117 [0.026, 0.459]</td>
<td>27.7 (60.0)</td>
<td>0.117 [0.026, 0.466]</td>
<td>34.6 (67.9)</td>
</tr>
<tr>
<td>Lung</td>
<td>2.06 [0.602, 8.02]</td>
<td>21.6 (51.7)</td>
<td>0.815 [0.238, 3.20]</td>
<td>41.2 (73.3)</td>
</tr>
<tr>
<td>Breast</td>
<td>0.737 [0.215, 2.88]</td>
<td>5.98 (19.9)</td>
<td>0.779 [0.228, 3.00]</td>
<td>5.99 (20.1)</td>
</tr>
<tr>
<td>Uterus</td>
<td>0.133 [0.0, 0.791]</td>
<td>5.73 (26.6)</td>
<td>0.140 [0.0, 0.835]</td>
<td>5.74 (26.6)</td>
</tr>
<tr>
<td>Ovary</td>
<td>0.156 [0.0, 0.693]</td>
<td>11.7 (37.1)</td>
<td>0.165 [0.0, 0.742]</td>
<td>11.7 (37.3)</td>
</tr>
<tr>
<td>Bladder</td>
<td>0.331 [0.079, 1.29]</td>
<td>19.0 (47.6)</td>
<td>0.299 [0.071, 1.18]</td>
<td>22.1 (53.0)</td>
</tr>
<tr>
<td>Esophagus</td>
<td>0.034 [0.006, 0.141]</td>
<td>15.7 (43.5)</td>
<td>0.016 [0.003, 0.069]</td>
<td>23.8 (56.7)</td>
</tr>
<tr>
<td>Brain-CNS</td>
<td>0.044 [0.007, 0.183]</td>
<td>12.1 (36.5)</td>
<td>0.046 [0.007, 0.194]</td>
<td>12.1 (36.7)</td>
</tr>
<tr>
<td>Thyroid</td>
<td>0.123 [0.021, 0.516]</td>
<td>12.1 (36.6)</td>
<td>0.126 [0.021, 0.531]</td>
<td>12.1 (36.7)</td>
</tr>
<tr>
<td>Oral Cavity</td>
<td>0.022 [0.004, 0.090]</td>
<td>5.70 (20.1)</td>
<td>0.022 [0.004, 0.094]</td>
<td>11.6 (35.5)</td>
</tr>
<tr>
<td>Remainder</td>
<td>0.479 [0.132, 1.90]</td>
<td>-</td>
<td>0.242 [0.066, 0.958]</td>
<td>-</td>
</tr>
<tr>
<td>Leukemia</td>
<td>0.392 [0.142, 1.38]</td>
<td>57.3 (82.5)</td>
<td>0.344 [0.125, 1.22]</td>
<td>62.2 (85.5)</td>
</tr>
<tr>
<td>Total</td>
<td>5.71 [1.77, 20.8]</td>
<td>-</td>
<td>4.11 [1.35, 15.1]</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 7b. Lifetime %REIC and 95% CI, and %PC for 60 y Males Following 1-year NEA Mission at age 40 y. Calculations Assume 20 g/cm² Aluminum Shielding for Solar Minimum Conditions.

<table>
<thead>
<tr>
<th>Tissue</th>
<th>%REIC</th>
<th>%PC (95% CL)</th>
<th>%REIC</th>
<th>%PC (95% CL)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>U.S. Ave. Males</td>
<td></td>
<td>NS Males</td>
<td></td>
</tr>
<tr>
<td>Stomach</td>
<td>0.316 [0.087, 1.23]</td>
<td>38.7 (71.0)</td>
<td>0.329 [0.085, 1.29]</td>
<td>45.8 (76.7)</td>
</tr>
<tr>
<td>Colon</td>
<td>0.491 [0.135, 1.89]</td>
<td>20.8 (50.3)</td>
<td>0.485 [0.133, 1.87]</td>
<td>20.8 (50.3)</td>
</tr>
<tr>
<td>Liver</td>
<td>0.141 [0.031, 0.549]</td>
<td>12.3 (35.3)</td>
<td>0.131 [0.029, 0.513]</td>
<td>14.9 (40.8)</td>
</tr>
<tr>
<td>Lung</td>
<td>0.750 [0.206, 2.88]</td>
<td>6.87 (22.1)</td>
<td>0.386 [0.106, 1.50]</td>
<td>30.1 (62.6)</td>
</tr>
<tr>
<td>Prostate</td>
<td>0.289 [0.0, 1.38]</td>
<td>1.94 (8.63)</td>
<td>0.319 [0.0, 1.53]</td>
<td>1.94 (8.66)</td>
</tr>
<tr>
<td>Bladder</td>
<td>0.677 [0.150, 2.61]</td>
<td>14.6 (39.7)</td>
<td>0.466 [0.103, 1.82]</td>
<td>16.7 (43.9)</td>
</tr>
<tr>
<td>Esophagus</td>
<td>0.109 [0.016, 0.45]</td>
<td>11.4 (34.7)</td>
<td>0.037 [0.006, 0.151]</td>
<td>14.0 (40.1)</td>
</tr>
<tr>
<td>Brain-CNS</td>
<td>0.045 [0.007, 0.186]</td>
<td>9.40 (30.0)</td>
<td>0.049 [0.007, 0.201]</td>
<td>9.41 (30.1)</td>
</tr>
<tr>
<td>Thyroid</td>
<td>0.024 [0.004, 0.1]</td>
<td>6.26 (21.5)</td>
<td>0.026 [0.004, 0.107]</td>
<td>6.27 (21.5)</td>
</tr>
<tr>
<td>Oral Cavity</td>
<td>0.019 [0.004, 0.076]</td>
<td>1.83 (6.94)</td>
<td>0.020 [0.004, 0.082]</td>
<td>7.32 (24.6)</td>
</tr>
<tr>
<td>Remainder</td>
<td>0.419 [0.108, 1.65]</td>
<td>-</td>
<td>0.198 [0.051, 0.771]</td>
<td>-</td>
</tr>
<tr>
<td>Leukemia</td>
<td>0.612 [0.211, 2.13]</td>
<td>59.9 (83.4)</td>
<td>0.537 [0.186, 1.89]</td>
<td>66.1 (87.3)</td>
</tr>
<tr>
<td>Total</td>
<td>4.00 [1.31, 14.6]</td>
<td>-</td>
<td>3.07 [1.01, 11.2]</td>
<td>-</td>
</tr>
</tbody>
</table>
Table 8a. Lifetime %REIC and 95% CI, and %PC for 60 y Females Following 30-month Mars Mission at age 40 y. Calculations Assume 20 g/cm2 Aluminum Shielding for Solar Minimum Conditions.

<table>
<thead>
<tr>
<th>Tissue</th>
<th>%REIC</th>
<th>%PC (95% CL)</th>
<th>%REIC</th>
<th>%PC (95% CL)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>U.S. Ave. Females</td>
<td>NS Females</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stomach</td>
<td>0.556 [0.153, 2.15]</td>
<td>66.8 (88.6)</td>
<td>0.585 [0.161, 2.31]</td>
<td>70.0 (90.2)</td>
</tr>
<tr>
<td>Colon</td>
<td>0.762 [0.223, 2.91]</td>
<td>31.3 (63.5)</td>
<td>0.728 [0.213, 2.82]</td>
<td>31.4 (63.9)</td>
</tr>
<tr>
<td>Liver</td>
<td>0.198 [0.044, 0.769]</td>
<td>39.7 (71.9)</td>
<td>0.198 [0.044, 0.792]</td>
<td>47.7 (78.5)</td>
</tr>
<tr>
<td>Lung</td>
<td>3.46 [1.010, 12.5]</td>
<td>31.9 (63.7)</td>
<td>1.37 [0.401, 5.22]</td>
<td>54.3 (81.9)</td>
</tr>
<tr>
<td>Breast</td>
<td>1.18 [0.345, 4.44]</td>
<td>9.65 (28.7)</td>
<td>1.25 [0.366, 4.83]</td>
<td>9.67 (29.2)</td>
</tr>
<tr>
<td>Uterus</td>
<td>0.223 [0.0, 1.32]</td>
<td>9.43 (38.1)</td>
<td>0.235 [0.0, 1.39]</td>
<td>9.45 (38.2)</td>
</tr>
<tr>
<td>Ovary</td>
<td>0.261 [0.0, 1.13]</td>
<td>18.5 (49.7)</td>
<td>0.278 [0.0, 1.22]</td>
<td>18.5 (49.9)</td>
</tr>
<tr>
<td>Bladder</td>
<td>0.559 [0.134, 2.07]</td>
<td>28.7 (59.8)</td>
<td>0.508 [0.122, 1.93]</td>
<td>32.8 (65.0)</td>
</tr>
<tr>
<td>Esophagus</td>
<td>0.057 [0.010, 0.234]</td>
<td>24.1 (56.4)</td>
<td>0.028 [0.005, 0.113]</td>
<td>34.8 (68.6)</td>
</tr>
<tr>
<td>Brain-CNS</td>
<td>0.072 [0.012, 0.294]</td>
<td>18.8 (48.6)</td>
<td>0.076 [0.013, 0.314]</td>
<td>18.9 (49.0)</td>
</tr>
<tr>
<td>Thyroid</td>
<td>0.187 [0.032, 0.788]</td>
<td>18.7 (49.1)</td>
<td>0.194 [0.033, 0.818]</td>
<td>18.7 (49.3)</td>
</tr>
<tr>
<td>Oral Cavity</td>
<td>0.035 [0.007, 0.143]</td>
<td>9.14 (29.0)</td>
<td>0.037 [0.007, 0.152]</td>
<td>17.9 (47.5)</td>
</tr>
<tr>
<td>Remainder</td>
<td>0.777 [0.213, 2.95]</td>
<td>-</td>
<td>0.394 [0.108, 1.52]</td>
<td>-</td>
</tr>
<tr>
<td>Leukemia</td>
<td>0.651 [0.236, 2.24]</td>
<td>69.5 (88.7)</td>
<td>0.573 [0.208, 2.0]</td>
<td>73.6 (90.7)</td>
</tr>
<tr>
<td>Total</td>
<td>9.41 [3.09, 33.1]</td>
<td>-</td>
<td>6.78 [2.22, 24.3]</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 8b. Lifetime %REIC and 95% CI, and %PC for 60 y Males Following 30-month Mars Mission at age 40 y. Calculations Assume 20 g/cm2 Aluminum Shielding for Solar Minimum Conditions.

<table>
<thead>
<tr>
<th>Tissue</th>
<th>%REIC</th>
<th>%PC (95% CL)</th>
<th>%REIC</th>
<th>%PC (95% CL)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>U.S. Ave. Males</td>
<td>NS Males</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stomach</td>
<td>0.530 [0.145, 2.05]</td>
<td>52.1 (80.8)</td>
<td>0.555 [0.152, 2.18]</td>
<td>59.2 (85.1)</td>
</tr>
<tr>
<td>Colon</td>
<td>0.816 [0.238, 3.14]</td>
<td>30.9 (63.3)</td>
<td>0.807 [0.221, 3.11]</td>
<td>31.0 (63.3)</td>
</tr>
<tr>
<td>Liver</td>
<td>0.237 [0.053, 0.918]</td>
<td>19.4 (48.2)</td>
<td>0.221 [0.049, 0.87]</td>
<td>23.1 (54.3)</td>
</tr>
<tr>
<td>Lung</td>
<td>1.26 [0.369, 4.71]</td>
<td>11.2 (32.0)</td>
<td>0.652 [0.179, 2.47]</td>
<td>42.4 (73.6)</td>
</tr>
<tr>
<td>Prostate</td>
<td>0.483 [0.0, 2.27]</td>
<td>3.25 (13.6)</td>
<td>0.535 [0.0, 2.53]</td>
<td>3.25 (13.7)</td>
</tr>
<tr>
<td>Bladder</td>
<td>1.15 [0.254, 4.34]</td>
<td>22.7 (52.7)</td>
<td>0.792 [0.175, 3.01]</td>
<td>25.6 (56.7)</td>
</tr>
<tr>
<td>Esophagus</td>
<td>0.184 [0.031, 0.749]</td>
<td>18.1 (47.3)</td>
<td>0.062 [0.009, 0.252]</td>
<td>21.8 (53.1)</td>
</tr>
<tr>
<td>Brain-CNS</td>
<td>0.073 [0.012, 0.298]</td>
<td>14.9 (41.6)</td>
<td>0.080 [0.013, 0.326]</td>
<td>14.9 (41.8)</td>
</tr>
<tr>
<td>Thyroid</td>
<td>0.038 [0.006, 0.157]</td>
<td>10.2 (32.0)</td>
<td>0.041 [0.007, 0.170]</td>
<td>10.2 (32.0)</td>
</tr>
<tr>
<td>Oral Cavity</td>
<td>0.031 [0.006, 0.122]</td>
<td>3.03 (11.1)</td>
<td>0.032 [0.006, 0.132]</td>
<td>11.8 (35.3)</td>
</tr>
<tr>
<td>Remainder</td>
<td>0.683 [0.188, 2.60]</td>
<td>-</td>
<td>0.325 [0.089, 1.23]</td>
<td>-</td>
</tr>
<tr>
<td>Leukemia</td>
<td>1.02 [0.351, 3.50]</td>
<td>71.8 (89.8)</td>
<td>0.891 [0.308, 3.09]</td>
<td>76.9 (92.0)</td>
</tr>
<tr>
<td>Total</td>
<td>6.70 [2.20, 23.6]</td>
<td>-</td>
<td>5.15 [1.69, 18.3]</td>
<td>-</td>
</tr>
</tbody>
</table>
Table 9a. Lifetime %REIC and 95% CI, and %PC for 60 y Females Following ISS Mission at age 40 y. Calculations Assume 20 g/cm² Aluminum Shielding for Solar Minimum Conditions with Mission Length of 180 d.

<table>
<thead>
<tr>
<th>Tissue</th>
<th>%REIC (95% CL)</th>
<th>%PC (95% CL)</th>
<th>%REIC (95% CL)</th>
<th>%PC (95% CL)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>U.S. Ave. Females</td>
<td>NS Females</td>
<td>U.S. Ave. Females</td>
<td>NS Females</td>
</tr>
<tr>
<td>Stomach</td>
<td>0.031 [0.008, 0.126]</td>
<td>9.75 (30.4)</td>
<td>0.032 [0.008, 0.131]</td>
<td>11.1 (33.7)</td>
</tr>
<tr>
<td>Colon</td>
<td>0.043 [0.012, 0.172]</td>
<td>2.38 (8.88)</td>
<td>0.041 [0.011, 0.161]</td>
<td>2.39 (8.82)</td>
</tr>
<tr>
<td>Liver</td>
<td>0.011 [0.002, 0.045]</td>
<td>3.41 (12.6)</td>
<td>0.011 [0.002, 0.044]</td>
<td>4.67 (16.6)</td>
</tr>
<tr>
<td>Lung</td>
<td>0.192 [0.053, 0.765]</td>
<td>2.45 (9.10)</td>
<td>0.075 [0.021, 0.304]</td>
<td>5.99 (20.4)</td>
</tr>
<tr>
<td>Breast</td>
<td>0.069 [0.019, 0.276]</td>
<td>0.57 (2.24)</td>
<td>0.072 [0.020, 0.291]</td>
<td>0.57 (2.26)</td>
</tr>
<tr>
<td>Uterus</td>
<td>0.012 [0.0, 0.075]</td>
<td>0.56 (3.26)</td>
<td>0.013 [0.0, 0.078]</td>
<td>0.56 (3.26)</td>
</tr>
<tr>
<td>Ovary</td>
<td>0.015 [0.0, 0.066]</td>
<td>1.20 (5.25)</td>
<td>0.015 [0.0, 0.070]</td>
<td>1.20 (5.27)</td>
</tr>
<tr>
<td>Bladder</td>
<td>0.031 [0.007, 0.126]</td>
<td>2.12 (8.02)</td>
<td>0.028 [0.006, 0.113]</td>
<td>2.56 (9.57)</td>
</tr>
<tr>
<td>Esophagus</td>
<td>0.003 [0.001, 0.014]</td>
<td>1.68 (6.79)</td>
<td>0.002 [0.000, 0.006]</td>
<td>2.78 (10.8)</td>
</tr>
<tr>
<td>Brain-CNS</td>
<td>0.004 [0.001, 0.017]</td>
<td>1.22 (5.01)</td>
<td>0.004 [0.001, 0.018]</td>
<td>1.22 (5.01)</td>
</tr>
<tr>
<td>Thyroid</td>
<td>0.011 [0.002, 0.048]</td>
<td>1.21 (4.95)</td>
<td>0.012 [0.002, 0.049]</td>
<td>1.21 (4.93)</td>
</tr>
<tr>
<td>Oral Cavity</td>
<td>0.002 [0.001, 0.009]</td>
<td>0.59 (2.21)</td>
<td>0.002 [0.001, 0.009]</td>
<td>1.21 (4.68)</td>
</tr>
<tr>
<td>Remainder</td>
<td>0.045 [0.012, 0.180]</td>
<td>-</td>
<td>0.022 [0.006, 0.091]</td>
<td>-</td>
</tr>
<tr>
<td>Leukemia</td>
<td>0.036 [0.012, 0.129]</td>
<td>10.9 (30.4)</td>
<td>0.031 [0.011, 0.113]</td>
<td>13.0 (35.0)</td>
</tr>
<tr>
<td>Total</td>
<td>0.529 [0.164, 1.99]</td>
<td>-</td>
<td>0.379 [0.117, 1.43]</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 9b. Lifetime %REIC and 95% CI, and %PC for 60 y Males Following ISS Mission at age 40 y. Calculations Assume 20 g/cm² Aluminum Shielding for Solar Minimum Conditions with Mission Length of 180 d.

<table>
<thead>
<tr>
<th>Tissue</th>
<th>%REIC (95% CL)</th>
<th>%PC (95% CL)</th>
<th>%REIC (95% CL)</th>
<th>%PC (95% CL)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>U.S. Ave. Males</td>
<td>NS Males</td>
<td>U.S. Ave. Males</td>
<td>NS Males</td>
</tr>
<tr>
<td>Stomach</td>
<td>0.029 [0.008, 0.117]</td>
<td>5.52 (18.9)</td>
<td>0.031 [0.008, 0.122]</td>
<td>7.25 (23.7)</td>
</tr>
<tr>
<td>Colon</td>
<td>0.045 [0.012, 0.179]</td>
<td>2.34 (8.64)</td>
<td>0.045 [0.012, 0.174]</td>
<td>2.35 (8.54)</td>
</tr>
<tr>
<td>Liver</td>
<td>0.013 [0.003, 0.053]</td>
<td>1.28 (4.91)</td>
<td>0.012 [0.003, 0.049]</td>
<td>1.59 (6.08)</td>
</tr>
<tr>
<td>Lung</td>
<td>0.070 [0.019, 0.274]</td>
<td>0.67 (2.59)</td>
<td>0.036 [0.010, 0.142]</td>
<td>3.80 (13.5)</td>
</tr>
<tr>
<td>Prostate</td>
<td>0.027 [0.0, 0.130]</td>
<td>0.18 (0.87)</td>
<td>0.029 [0.0, 0.143]</td>
<td>0.18 (0.87)</td>
</tr>
<tr>
<td>Bladder</td>
<td>0.064 [0.014, 0.252]</td>
<td>1.56 (5.91)</td>
<td>0.044 [0.010, 0.173]</td>
<td>1.82 (6.87)</td>
</tr>
<tr>
<td>Esophagus</td>
<td>0.010 [0.002, 0.043]</td>
<td>1.18 (4.77)</td>
<td>0.003 [0.001, 0.014]</td>
<td>1.47 (5.87)</td>
</tr>
<tr>
<td>Brain-CNS</td>
<td>0.004 [0.001, 0.017]</td>
<td>0.93 (3.79)</td>
<td>0.004 [0.001, 0.019]</td>
<td>0.93 (3.78)</td>
</tr>
<tr>
<td>Thyroid</td>
<td>0.002 [0.000, 0.010]</td>
<td>0.61 (2.48)</td>
<td>0.002 [0.000, 0.010]</td>
<td>0.61 (2.46)</td>
</tr>
<tr>
<td>Oral Cavity</td>
<td>0.003 [0.001, 0.008]</td>
<td>0.23 (0.71)</td>
<td>0.002 [0.001, 0.008]</td>
<td>0.77 (2.92)</td>
</tr>
<tr>
<td>Remainder</td>
<td>0.039 [0.010, 0.155]</td>
<td>-</td>
<td>0.018 [0.005, 0.073]</td>
<td>-</td>
</tr>
<tr>
<td>Leukemia</td>
<td>0.056 [0.019, 0.198]</td>
<td>12.0 (32.7)</td>
<td>0.049 [0.017, 0.175]</td>
<td>15.1 (38.9)</td>
</tr>
<tr>
<td>Total</td>
<td>0.372 [0.122, 1.38]</td>
<td>-</td>
<td>0.284 [0.093, 1.05]</td>
<td>-</td>
</tr>
</tbody>
</table>
6. Discussion and Conclusions

The results reported here suggest that a large portion of cancers that would be observed in crews after long-term missions to NEAs or Mars could be attributed to GCR exposure. However, it should be noted that current estimates of 95% confidence levels for the 3% REID limit would restrict deep space missions to 4 to 8 months depending on age, gender, and prior exposures. For example, 40-y NS males and females with small prior exposures would be limited to 7 and 8 months, respectively, with heavy shielding at solar minimum. Thus, the %PC at the maximum allowed mission length would be reduced by about 30% from the values in Table 7 for an NEA mission near solar minimum. In contrast, PC estimates for ISS missions are not estimated to be significant due to the smaller mission length and because of the larger fraction of crew exposures from the higher energy GCR and trapped protons, which have smaller quality factors and uncertainties compared to the full GCR spectrum in deep space. The deep space GCR environment contains a larger fraction of particles with kinetics energies below 1000 MeV/u than the ISS orbit, and HZE nuclei at these energies are expected to have the maximum biological effectiveness (Cucinotta et al., 2011).

The majority of astronauts are surely classified as “healthy workers” based on established evidence of optimal nutrition, exercise, medical care, and NS status, thereby reducing cancer risks. This leads to the paradoxical result that radiation cancer risks are estimated to be significantly reduced for NS and healthy workers such as astronauts compared to the average U.S. population, while probability of causation estimates for several cancer types are increased. Furthermore, the use of an NS population to represent astronauts may lead to an underestimation of PCs, which is suggested by Kaplan-Meir survival analysis and SMR results of Figure 1 and Table 1. These results suggest that adjustment for smoking effects does not account for the entire increase in longevity or reduced SMR found for astronauts at this time. Because multiplicative risk transfer models are most often used for solid cancer risk estimates, further research on categorizing healthy worker effects could play a significant role in both radiation risk and probability of causation estimates. In fact, the level of risk reduction predicted for NS compared to the average U.S. population is greater than the organ dose equivalent reduction that would be provided to crew by more than 1 meter of polyethylene or water shielding. This suggests that research into healthy workers effects could lead to substantial cost reduction for a NEA or Mars missions, because of the very large cost to launch shielding into deep space in comparison to the costs of research efforts. Research into uncertainty reduction remains the principal approach to improvements in this and other areas of radiation risk estimation and mitigation.

Probability of causation provides an indicator of possible association; however, clearly other information should be collected to ascertain potential causal relationships. A %PC above 50% either at the point estimate or at the 95% or even 99% CL has been used in compensation of workers including military and nuclear reactor workers (DHHS 2002; NIH 2003; Leigh and Wakeford, 2001). Family history and an individual’s possible exposure to other carcinogens should be considered in an assessment of possible causality. The use of family history data should consider the possibility that genetic predisposition of specific cancer types (NCRP 2011) may also confer increased radiation sensitivity. Other factors to be considered include smoking...
history, which effects lung, esophagus, oral, bladder, and several other cancers, and reproductive history, which can impact the risk of breast and other cancers in women (NIH 2003).

Stomach cancer and leukemia have the largest PC values, and astronauts that participate in two or more ISS missions could reach a significant PC for these tumor types. Our estimates used the NASA 2010 model, which assigns a smaller quality factors for leukemia compared to solid cancers. An even higher PC for leukemia would be predicted if the ICRP-60 quality factors were assumed. For stomach cancer risk estimates, we used the BEIR VII (2006) recommendation for tissue weighting factors for the relative contributions for multiplicative and additive risk transfer for stomach cancer. It is known that the use of the additive risk transfer model based on the Japanese A-bomb survivor data leads to a much higher risk estimate for stomach cancers in the U.S. population (NCRP, 1997) than the multiplicative transfer model.

Studies of solid tumor risks across different strains of mice are supportive of multiplicative risk transfer (Storer et al., 1988). The BEIR VII report (2006) recommended higher transfer weights for multiplicative risk transfer than earlier reports. This is a good example of the importance of improving the understanding of the extrapolation of radiation data between populations and from experimental results to humans because the choice of transfer models can widely change REIC and PC estimates for exploration missions.

The discovery of biomarkers of radiation-induced cancers is an outstanding problem. Studies of cytogenetic signatures of thyroid cancer were reported (Nikiforov et al., 1997), but very little information is available for other tissues. In recent years, molecular signatures of radiation causality have been investigated, including transcriptome analysis (Detours et al., 2005; Port et al., 2007; Ugolin et al., 2011), but have led to conflicting results. For space radiation exposures, research into biomarkers of causality is more challenging because of the types of radiation in space and lack of any human data. Approaches based on experimentally produced tumors in animal models should be considered, and will require improved understanding of methods of extrapolation to humans.

In future work, the approach used here will be extended to include other cancer types including non-melanoma skin cancer (Kim et al., 2006), bone cancer, and components of the remainder term, which includes renal, gallbladder, pancreatic, larynx, and several other cancers. Also, information of the components of leukemia and lung cancer risks should be considered and may allow for PC estimates based on distinct histological types for these tumors. In addition, more extensive Monte-Carlo evaluations should be made to report 99% CIs, which are used in screening terrestrial radiation workers for possible compensation considerations. Reduction in the uncertainties in projecting space radiation risks through further cost-effective research will have the largest impact on these challenges to NASA and space exploration. Finally, it should be noted that NASA policy to limit REID to 3% at the 95% CL strongly overlaps with a goal of ensuring estimates of the PC for most cancer types do not reach a level of significance.
7. References

Cucinotta, FA. Once we know all of the radiobiology we need to know how can we use it to predict risk and achieve fame and fortune. Physica Medica XVII: 5-12; 2001.

Cancer risk is an important concern for International Space Station (ISS) missions and future exploration missions. An important question concerns the likelihood of a causal association between a crew member’s radiation exposure and the occurrence of cancer. The probability of causation (PC), also denoted as attributable risk, is used to make such an estimate. This report summarizes the NASA model of space radiation cancer risks and uncertainties, including improvements to represent uncertainties in tissue-specific cancer incidence models for never-smokers and the U.S. average population. We report on tissue-specific cancer incidence estimates and PC for different post-mission times for ISS and exploration missions. An important conclusion from our analysis is that the NASA policy to limit the risk of exposure-induced death to 3% at the 95% confidence level largely ensures that estimates of the PC for most cancer types would not reach a level of significance. Reducing uncertainties through radiobiological research remains the most efficient method to extend mission length and establish effective mitigators for cancer risks. Efforts to establish biomarkers of space radiation-induced tumors and to estimate PC for rarer tumor types are briefly discussed.