The Effect of an Isogrid on Cryogenic Propellant Behavior and Thermal Stratification

TFAWS Conference
NASA Glenn Research Center
2007

Florida Institute of Technology

Department of Mechanical and Aerospace Engineering

Justin Oliveira
Daniel R. Kirk
Sunil Chintalapati

NASA Kennedy Space Center

Expendable Launch Vehicle / Mission Analysis Branch

Paul A. Schallhorn
Jorge L. Piquero
Mike Campbell
Sukhdeep Chase
CONTENTS

• Overview

• Computational Modeling

• Current Work

• Future Work

• Concluding Remarks
OVERVIEW
UPPER STAGE MODELING

Lockheed Martin
Atlas V 401

Boeing Delta IV Heavy

2007 TFAWS
MOTIVATION

- During LEO → GEO transfer, upper stage coasts for several hours
- Upper stage must re-start at conclusion of coast phase for insertion

Typical Delta 4 Medium launch sequence to geosynchronous transfer orbit from Cape

http://www.skyrocket.de/space/
WHAT CAN HAPPEN INSIDE TANKS?

- Stage exposed to solar heating
- Propellants (LH₂ and LOX) may thermally stratify
- Propellants may boil
- Slosh events during maneuvers

XSS-10 view of Delta II rocket: An Air Force Research Laboratory XSS-10 micro-satellite uses its onboard camera system to view the second stage of the Boeing Delta II rocket during mission operations Jan. 30. (Photo courtesy of Boeing.), http://www.globalsecurity.org/space/systems/xss.htm
WHY IS IT IMPORTANT?

- Propellant T&P must be within specified range for turbomachinery operation
 - If propellants outside specified T&P box engine may not restart
 - Orbit cannot be circularized

4-m Configuration (Delta IV-M, Delta IV-M+ (4,2))

- LH₂ Tank
- LOX Tank
- Modified Delta III second stage
- 4-m-dia LO₂ tank
- Delta III Pratt & Whitney RL10B-2 engine

5-m Configuration (Delta IV-M+ (5,2), Delta IV-M+ (5,4), Delta IV-H)

- 4-m-dia stretched LO₂ tank
- 5-m-dia LH₂ tank
- Delta III Pratt & Whitney RL10B-2 engine

ENGINE START AND OPERATIONAL REQUIREMENTS

• Propellants must be within a narrowly defined range of temperature and pressure to guarantee engine ignition (restart) at conclusion of coast phase
• Generic LOX map shown
WHAT HAPPENS WITH ISOGRID WALLS?

- Boundary layer profile important for mass flow (thickness of stratum) and heat transfer (temperature of stratum)
- In LH$_2$ tank isogrid wall is present
- Is this momentum and thermal boundary layer similar to laminar, turbulent or something different?
- What is influence of recirculation zones?
- Pursuing numerical and experimental work to assess boundary layer profile with full Gr and Re matching
COMPUTATIONAL MODELING
Computational Modeling: Introduction

- Forced flow CFD analysis over Isogrid performed
 - compared with flat plate analysis
 - boundary layer thickness compared to flat plate
- Results show Isogrid with 200-450% larger boundary layer compared to flat plate
- Good agreement in trends with windtunnel experiment
Computational Modeling: Introduction

- Forced flow CFD analysis give qualitative result to boundary layer thickness of Isogrid surface
- Free convective CFD models needed to properly asses stratification
- Framework first developed for smooth wall tanks; compared to theory

- Computational modeling done in FLUENT
- Free convective CFD model developed using
 - Unsteady coupled implicit solver
 - Boussinesq density model used (ρ const. except in buoyancy term in mom. eq.)
Computational Modeling: Smooth wall

- Simulations run to check Ra scaling on smooth wall tanks
- Temperature contours compared after 10,000 seconds using non-dimensional temperature,

\[\xi = \left(\frac{T - T_\infty}{T_{wall} - T_\infty} \right) \times 100\% = \left(\frac{\theta_{(x,y)}}{\theta_{wall}} \right) \times 100\% \]

- Map interpreted as:
 the results from [col. #] mapped onto the grid of [row #]
Computational Modeling: Smooth wall

- Ra scaling held extremely well at gravity levels below 10^{-1}
- Ra scaling also checked between fluids (Water and LH2)
 - $< 7\%$ difference in results after 1 hour
Computational Modeling: Rough walls

- 2 roughness configurations
 1. 1/10 scale Isogrid baseline case
 2. Full-scale tank at 20% fill level

Velocity and temperature sampled at 9 vertical tank locations

<table>
<thead>
<tr>
<th>Location</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location 9</td>
<td>0.265 m</td>
</tr>
<tr>
<td>Location 8</td>
<td>0.235 m</td>
</tr>
<tr>
<td>Location 7</td>
<td>0.205 m</td>
</tr>
<tr>
<td>Location 6</td>
<td>0.175 m</td>
</tr>
<tr>
<td>Location 5</td>
<td>0.145 m</td>
</tr>
<tr>
<td>Location 4</td>
<td>0.115 m</td>
</tr>
<tr>
<td>Location 3</td>
<td>0.085 m</td>
</tr>
<tr>
<td>Location 2</td>
<td>0.055 m</td>
</tr>
<tr>
<td>Location 1</td>
<td>0.025 m</td>
</tr>
</tbody>
</table>
EXAMPLE OF VELOCITY PROFILES AT LOCATION 1
JUST ABOVE 1st ISOGRID ELEMENT

CFD Velocity Profile Comparison @ Location 1 (y = 0.025)

- Isogrid, 50 s
- Isogrid, 100 s
- Isogrid, 150 s
- Isogrid, 200 s
- Smooth, 50 s
- Smooth, 100 s
- Smooth, 150 s
- Smooth, 200 s

Increasing time

2007 IFAWS
VELOCITY PROFILES AT LOCATIONS 1-9

CFD Velocity Profile Comparison @ Location 1 (y = 0.025)

Isogrid, 50 s
Isogrid, 100 s
Isogrid, 150 s
Isogrid, 200 s
Smooth, 50 s
Smooth, 100 s
Smooth, 150 s
Smooth, 200 s

CFD Velocity Profile Comparison @ Location 2 (y = 0.055)

CFD Velocity Profile Comparison @ Location 3 (y = 0.085)

CFD Velocity Profile Comparison @ Location 4 (y = 0.115)

CFD Velocity Profile Comparison @ Location 5 (y = 0.145)

CFD Velocity Profile Comparison @ Location 6 (y = 0.175)

CFD Velocity Profile Comparison @ Location 7 (y = 0.205)

CFD Velocity Profile Comparison @ Location 8 (y = 0.235)

CFD Velocity Profile Comparison @ Location 9 (y = 0.265)
TEMPERATURE PROFILES AT LOCATIONS 1-9

CFD Temp. Profile Comparison @ Location 1 (y = 0.025)

Increasing time
TEMPERATURE PROFILES AT LOCATIONS 1-9
Computational Modeling: Rough walls

- Various cases run featuring different heat loads and gravity levels
- Sample case shown (geometry 1), $g/g_0 = 10^{-2}$, $\theta = 5$ K, Water
- Rough wall tank compared to equivalent smooth wall case for constant wall temperature
 - Isogrid has larger thermal boundary layer,
 - larger boundary layer thickness,
 - u_{max} dependant on Gr (inc. relative to smooth with inc. Gr)
Computational Modeling: Rough walls

- At low gravity levels, Isogrid mass flow rate larger; fluid entrained faster compared to smooth
- Energy flow rate also larger; stratum warms more
CONCLUSIONS

- Shown for low gravity levels that Isogrid boundary layers entrain fluid faster compared to smooth wall cases
- Results in an increase in stratification rate (up to 100% increase for certain geometries and spacecraft acceleration levels)
- Larger thermal boundary layers and increased heating area from Isogrid results in warmer stratum temperatures compared to smooth
- In addition, wall conduction is currently being added to models
SELECTED REFERENCES

Literature Review References:

Web-based References for Graphics:
• http://www.skyrocket.de/space/index_frame.htm
• http://www.skyrocket.de/space/doc_sdat/goes-n.htm
• http://www.boeing.com/defense-space/space/delta/delta4/d4h_demo/book01.html

2007 TFAWS