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The 0.6-0.7 m absorption band observed for C-
type asteroids is caused by the presence of Fe3+ in 
phyllosilicates [1]. Because Fe-bearing phyllosilicates, 
especially serpentine, are the most dominant product 
of aqueous alteration in the most abundant carbona-
ceous chondrites, CM chondrites [e.g., 2,3], it is im-
portant to understand the crystal chemistry of serpen-
tine in CM chondrites to better understand spectral 
features of C-type asteroids. CM chondrites show vari-
able degrees of aqueous alteration [4,5], which should 
be related to iron valences in serpentine. It is predicted 
that the Fe3+/ΣFe ratios of serpentine in CM chondrites 
decrease as alteration proceeds by Si and Fe3+ substitu-
tions from end-member cronstedtite to serpentine [4], 
which should be apparent in the absorption intensity of 
the 0.6-0.7 m band from C-type asteroids. In fact, the 
JAXA Hayabusa 2 target (C-type asteroid: 1993 JU3) 
exhibits heterogeneous spectral features (0.7 m ab-
sorption band disappears by rotation) [6].  

From these points of view, we have analyzed iron 
valences of matrix serpentine in several CM chondrites 
which span the entire observed range of aqueous alte-
ration using Synchrotron Radiation X-ray Absorption 
Near-Edge Structure (SR-XANES). In this abstract we 
discuss the relationship between obtained Fe3+/ΣFe 
ratios and alteration degrees by adding new data to our 
previous studies [7,8]. 

We have so far analyzed Murray, Nogoya, ALH 
84029 [7], Murchison, Cold Bokkeveld and a clast of 
CM1 lithology within Tagish Lake (thin section KN1) 
[8], and we newly analyzed Kivesvaara (Table 1). The 
SR-XANES analyses were performed at BL-4A of the 
Photon Factory (PF), KEK in Tsukuba, Japan. The 
beam size was ca. 6 x 5 m. We used kaersutite am-
phibole for the Fe2+ and Fe3+ standards whose Fe3+/ΣFe 
ratios were determined by wet chemistry [9], and esti-
mated the Fe3+/Fe ratio of CM serpentine by a linear 
relationship between the centroid energy position of 
XANES Fe K pre-edge spectra and the Fe3+/Fe ratio 
(±10% error). 

In our previous study, we did not observe clear dif-
ference between Fe3+/ΣFe ratios of serpentine and alte-
ration degree, although we analyzed samples showing 
a wide range of aqueous alteration [7,8]. We saw only 
limited ranges of Fe3+/ΣFe ratios of serpentine, show-
ing mostly Fe3+-rich compositions (Table 1). Our new-

ly-obtained Fe3+/ΣFe ratios of serpentine in Kivesvaara 
is ~0.9-1 for intermediate Mg-Fe serpentine, but Mg-
rich serpentine clearly has a lower Fe3+/ΣFe ratio of 
~0.5. Because Kivesvaara is a minimally altered sam-
ple among CM chondrites studied, we expect that its 
Fe3+/ΣFe ratio in serpentine is the most Fe3+-rich. 
However, we again found no correlation between 
Fe3+/ΣFe ratios of serpentine and alteration degree 
[7,8]. 

We suggest that the analyzed serpentine contains 
submicron Fe oxide or oxyhydroxide phases that affect 
XANES spectra in some samples. For example, the 
original serpentine compositions in heavily-weathered 
samples were heterogeneous (Fe2+-rich), but terrestrial 
oxidation has made much of the Fe2+ into Fe3+ to form 
nano-phase ferrihydrite [3]. In contrast, minimally 
weathered samples contain small amounts of Mg-Fe 
anhydrous silicates (Fe2+-rich) with Fe3+-rich serpen-
tine. Probably, smaller spatial resolution may be re-
quired for iron valence analysis of CM serpentine [10]. 

 
Table 1. Alteration degrees and Fe3+/ΣFe ratios of ser-
pentine in CM chondrites using SR-XANES. 
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