General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.

- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.

- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.

- This document is paginated as submitted by the original source.

- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)
Lightning Launch Commit Criteria (LLCC) and Flight Rules (FR) are used for launches and landings at government and commercial spaceports. They are designed to avoid natural and triggered lightning strikes to space vehicles, which can endanger the vehicle, payload, and general public. The previous LLCC and FR were shown to be overly restrictive, potentially leading to costly launch delays and scrubs. A radar algorithm called Volume Averaged Height Integrated Radar Reflectivity (VAHIRR), along with new LLCC and FR for anvil clouds, were developed using data collected by the Airborne Field Mill II research program.

VAHIRR is calculated at every horizontal position in the coverage area of the radar and can be displayed similar to a two-dimensional derived reflectivity product, such as composite reflectivity or echo tops. It is the arithmetic product of two quantities not currently generated by the Weather Surveillance Radar 1988 Doppler (WSR-88D): a volume average of the reflectivity measured in dBZ and the average cloud thickness based on the average echo top height and base height.

This presentation will describe the VAHIRR algorithm, and then explain how the VAHIRR radar product was implemented and tested on a clone of the National Weather Service’s (NWS) Open Radar Product Generator (ORPG-clone). The VAHIRR radar product was then incorporated into the Advanced Weather Interactive Processing System (AWIPS), to make it more convenient for weather forecasters to utilize. Finally, the reliability of the VAHIRR radar product was tested with real-time level II radar data from the WSR-88D NWS Melbourne radar.
Lightning Launch Commit Criteria (LLCC) and Flight Rules (FR) are used for launches and landings at government and commercial spaceports. They are designed to avoid natural and triggered lightning strikes to space vehicles, which can endanger the vehicle, payload, and general public. The previous LLCC and FR were shown to be overly restrictive, potentially leading to costly launch delays and scrubs. A radar algorithm called Volume Averaged Height Integrated Radar Reflectivity (VAHIRR), along with new LLCC and FR for anvil clouds, were developed using data collected by the Airborne Field Mill II research program. This presentation will describe the VAHIRR algorithm, and then explain how the VAHIRR radar product was implemented and tested on a clone of the National Weather Service's (NWS) Open Radar Product Generator (ORPG-clone). The VAHIRR radar product was then incorporated into the Advanced Weather Interactive Processing System (AWIPS), to make it more convenient for weather forecasters to utilize. Finally, the reliability of the VAHIRR radar product was tested with real-time level II radar data from the WSR-88D NWS Melbourne radar.