
General Disclaimer

One or more of the Following Statements may affect this Document

 This document has been reproduced from the best copy furnished by the

organizational source. It is being released in the interest of making available as

much information as possible.

 This document may contain data, which exceeds the sheet parameters. It was

furnished in this condition by the organizational source and is the best copy

available.

 This document may contain tone-on-tone or color graphs, charts and/or pictures,

which have been reproduced in black and white.

 This document is paginated as submitted by the original source.

 Portions of this document are not fully legible due to the historical nature of some

of the material. However, it is the best reproduction available from the original

submission.

Produced by the NASA Center for Aerospace Information (CASI)

Monitoring Agents for Assisting NASA
Engineers with Shuttle Ground Processing

Glenn S. SEMMEL a,I
Steven R. DAVIS a Kurt W. LEUCHT a

Daniel A. ROWE a Kevin E. SMITH a Ladislau BOLONI b
a
National Aeronautics and Space Administration (NASA), Kennedy Space Center

bDept of Electrical and Computer Engineering, University of Central Florida (UCF)

Abstract. The Spaceport Processing Systems Branch at NASA Kennedy Space

Center has designed, developed, and deployed a rule-based agent to monitor the

Space Shuttle's ground processing telemetry stream. The NASA Engineering

Shuttle Telemetry Agent increases simational awareness for system and hardware

engineers during ground processing of the Shuttle's subsystems. The agent

provides autonomous monitoring of the telemetiy stream and automatically alerts

system engineers when user defined conditions are satisfied. Efficiency and safety
are improved through increased automation.

Sandia National Labs' Java Expert System Shell is employed as the agent's rule

engine. The shell's predicate logic lends itself well to capturing the heuristics and

specifying the engineering rules within this domain. The declarative paradigm of

the rule-based agent yields a highly modular and scalable design spanning multiple

subsystems of the Shuttle. Several hundred monitoring rules have been written

thus far with corresponding notifications sent to Shuttle engineers. This chapter

discusses the rule-based telemetry agent used for Space Shuttle ground processing.

We present the problem domain along with design and development

considerations such as information modeling, knowledge capture, and the

deployment of the product. We also present ongoing work with other condition
monitoring agents.

Keywords. Agent, monitoring, rule-based expert system

Introduction

1. Background

NASA Kennedy Space Center (KSC) is responsible for pre-launch ground checkout of
the Space Shuttle. The Launch Processing System (LPS) at KSC provides facilities for
NASA Shuttle system engineers, contractors, and test conductors to command, control,

Correspondence to: Glenn S. Semmel, NASA, YA-D8, Kennedy Space Center, FL 32899. Tel.: +1
321 861 2267; E-mail: Glenn.S.Semmelnasa.gov .

Figure 1. Ground Control and Monitoring at NASA KSC

and monitor space vehicle systems from the start of Shuttle interface testing through
various phases including terminal countdown, launch, abort, safing, and scrub
turnaround.

LPS continually monitors the Shuttle and its ground equipment including
environmental controls and hardware that loads propellants. Consoles with vehicle
responsibilities communicate information directly to and from the Shuttle computer
systems. Consoles with ground support equipment responsibility communicate
information to and from the hardware interface modules which are connected to the
numerous ground support systems. See Figure 1. Each module is capable of
interfacing to approximately 240 sensors or controls. Overall, some 50,000
temperatures, pressures, flow rates, liquid levels, turbine speeds, voltages, currents,
valve positions, switch positions, and many other parameters must be controlled and
monitored.

Using LPS, NASA Shuttle engineers and contractors at KSC are responsible for
certifying that ground checkout of the Space Shuttle has been performed according to
program specifications. The Operations and Maintenance Requirements and
Specifications Document[2] lists those procedures. For over 25 years, engineers have
used LPS to verify Space Shuttle flight readiness and to control launch countdown.
LPS has performed superbly well. Recently, much of the LPS hardware was upgraded
assuring its continuance for many more years. However, the system architecture was
not changed and software remains basically the same. As a result, the level of
situational awareness has not increased proportionally to what would otherwise be
possible with more modern software technologies.

After the Shuttle Columbia disaster on February 1, 2003, the Columbia Accident
Investigation Board[3] proposed recommendations to improve safety from both an
organizational and technical perspective. The Board indicated the need to "[adopt] and
maintain a Shuttle flight schedule that is consistent with available resources." Also,
both management and engineering support staff must maintain an awareness of

anomalies and those must not be lost "as engineering risk analyses [movej through the
process." Given two tragic losses of a crew and Shuttle, today NASA engineers have
an even greater pressure to be more vigilant in identifying problems. At KSC, ground
processing of the Shuttle is performed by thousands of employees, both contractors and
civil servants. Anomalies must be detected and reported to prevent problems with
Shuttle subsystems, countdown, and launch. The aging LPS hardware has limited

resources and precludes the level of automation and notification warranted by this
domain.

Contractors at KSC are responsible for the day to day operations, checkout, and
maintenance of the Shuttle. They are the primary users of LPS. NASA Shuttle
engineers are civil service employees who oversee the contractors. Given the
limitations and resource scarcity of LPS, NASA Shuttle engineers needed a tool to
provide more insight and situational awareness and oversee the work performed by
contractors. An increased insight could help detect anomalies that might otherwise go
unnoticed, whether by process error, software or hardware failures in the monitoring
equipment, or many other possible causes. A tool was needed to complement LPS that
could autonomously and continuously monitor Shuttle telemetry data and automatically
alert NASA Shuttle engineers when predefined criteria have been met. In the latter half
of 2003, a software tool was proposed to provide better insight into Shuttle ground
processing and increase the level of situational awareness. This tool is known as the
NASA Engineering Shuttle Telemetry Agent (NESTA).

1.1. Objectives

Data processed by LPS is distributed on a local area network. As shown in Figure 1,
the distributed data is known as the Shuttle Data Stream (SDS)[4] and contains real-
time vehicle ground processing data. It is used by monitor-only applications. The
primary objective of NESTA is to provide full time autonomous monitoring of the SDS
and to automatically alert NASA engineers in near real-time when pre-defmed criteria
have been met. Types of monitoring criteria include expected operational events or
milestones (e.g. vehicle power up, start of launch countdown test, etc.) as well as
unexpected events or failures (e.g. large difference between redundant sensor values).
NESTA allows Shuttle engineers to work on other tasks while minimizing the risk of
losing awareness of real-time Shuttle processing data and events.

NESTA acts as a software agent for the NASA engineer. For this discussion, an
agent is defmed as rule-based, autonomous software that reacts to its environment and
communicates results to a human, a NASA engineer in this usage. Agents have been
extensively researched[5][6]. Agent standards[7J and frameworks[8][9} have also been
developed.

The primary objectives for NESTA include:

• Allow a NASA engineer to specify rules to be applied to measurements
published in the SDS.

• Generate near real-time notifications and alerts in the form of emails or

wireless pages. Notifications may include a text message and measurement
values, and may be sent to multiple users when the rule's premises are satisfied.

• Monitor up to four separate SDS sources. This includes four control rooms
used for checkout and launch of the Shuttle and its components.

• Process multiple types and subtypes of measurements including discretes (i.e.
boolean measurements), analogs (i.e. floating point measurements), and digital
patterns (i.e. integer measurements).

• Allow users to create and modify multiple monitoring requests without
restarting NESTA.

1.2. Why an Al Solution

NESTA leverages various Al technologies within a rule-based paradigm including
forward chaining, fast pattern matching, declarative programming, predicate logic, and
more. Al was a natural fit for monitoring the SDS since pattern recognition and
analysis are the primary needs. Although pattern identification could be achieved by
employing regular expression libraries within various procedural and object oriented
languages, those paradigms are not specifically intended for this type of application and
have less efficient matching algorithms. The pattern matching algorithms of rule-
based expert system shells are highly specialized and tuned. Also, Al, particularly rule-
based languages, lends itself better to this domain since pattern recognition wrapped
within a premise-action construct closely mirrors the level of abstraction at which the
domain experts work.

The type of data signatures sought by Shuttle engineers requires the derivation of
rules that are of the same granularity as those typically used in rule-based languages.
Fortunately, Shuttle engineers were already accustomed to representing knowledge at a
fine grained level. The engineers are adept at either constructing the rules themselves
or expressing the knowledge in pseudo code that lends itself well for translation
directly into declarative rules. Many of the rules are either standalone or work in
conjunction with several other rules. This suggests a highly modular system with a rule
being a suitably sized working block.

1.3. Other Attempted Solutions

NESTA is a peripheral advisory tool to the real time control system within LPS. There
were three previous projects that attempted to upgrade LPS in the last 15 years. Even
though those efforts had significantly greater objectives that spanned well beyond just
advisory applications, they were advertised to include many of the capabilities that
NESTA provides and much more. Approximately half a billion dollars was spent on
those efforts and upwards of 600 people worked on the most recent of those upgrade
attempts. There were various technical and political hurdles that initially impeded and
then ultimately doomed those full scale replacements of LPS.

NESTAs infusion of state-of-the-art Al technologies and engineering within the
legacy launch system, LPS, is particularly notable given the number and size of the
preceding attempts to modernize the ground control system at KSC. Those fallen
projects, despite having much grander objectives, had little to no spin-offs within the
LPS community. In contrast, NESTA is becoming accepted and internalized by
members of the launch team and appears to be on its way as a widely used tool. From
a business vantage point, NESTAs greatest asset is its development and marketing as a
value added product. That is helping pave its path to acceptance.

2. Application Description

2.1. System Components and How They Interact

Figure 2 shows the context diagram for NESTA. The agent process is represented in
the middle circle. It communicates with various sources and data stores. A

LIR'
--

O	 F,,m, R.qs.z

M

1ASA Shoth. En,,..,o

Figure 2. NESTA Context Diagram

measurement database is used to decode the SDS into usable measurements. The SDS

source broadcasts measurements as data packets over local area networks. NESTA
monitors this stream for data patterns specified by the Shuttle engineers. If a pattern is
matched, a notification is sent as an email or wireless page. The Rules data store
represents the Jess scripts and knowledge base that defines the rules for the monitoring
criteria. All messages and relevant agent activities are also locally logged.

2.2. Languages and AZ Tools Used in Application

The Java Expert System Shell (Jess)[IO] was selected as the rule engine. Jess was
developed and supported by another government agency, Sandia National Labs. As
such, our development team and customer have full usage. of the tool via government
licensing without any fees. This includes access to all the Jess source code.

Jess' forward chaining reasoning system was modeled after production systems

such as CLIPS[ll] and OPS5[l2J. It contains highly efficient and sophisticated
pattern matching based on the Rete algorithm{13]. This enables its inference engine to
process many rules and data rapidly. The engine repeatedly processes through a match-
select-act cycle. As a production system, its consequents can be actions. A conflict
resolution strategy determines the precedence of rule firings.

Several hundred monitoring rules have been written thus far for monitoring Shuttle
ground telemetry. Jess predicate logic lends itself to capturing and specifying the
heuristics and engineering rules of this spaceport domain. The declarative paradigm of
this rule-based agent also makes it highly modular and scalable to span multiple
subsystems of the Shuttle. Jess also includes a fourth generation scripting language and
interactive command line which are very conducive for prototyping and testing.

Jess is written entirely in Java and has access to the full Java application
programming interface from the scripting language. It provides standard control flow
constructs and supports variables, strings, objects, and function calls. Jess
automatically converts between its own types and Java types insulating the developer
from manually performing the conversions. Its use as a Java library made Jess'
selection more appealing since Java supports multiple platforms with its "write once,
run anywhere" paradigm. Beyond that, the need for NESTA to support web enabled
clients also made Java a natural fit given its origins and strong support for developing
Internet based applications.

Meaeurerr,ent (Java Beard
Shuttle Data Stream	 Shuttle Data Stream Reader	 Prooertv Chance Suoort

gettdextPacketl.)

setvaloe()

'	 tirePropertyChange()

tees Shadow Fact

propertyClsangeØ

Figure 3. Sequence Diagram Illustrating Update to Jess Working Memory from Shuttle Data Stream

2.3. Design

Java classes were developed to parse and decode the data stream and represent
measurements as facts in Jess working memory. To interface Jess' rule engine with the
SDS, each data measurement is modeled and implemented as a Java bean[14]. Java
beans provide a component architecture to enable easier integration of applications. A
property change notification mechanism is supported that allows one object to become
a registered listener of another object. The listener object will then automatically
receive changes from the source object. This is also known as a publish-subscribe or
observer pattern[15]. Within Jess, each Java bean corresponds to what is known as a
shadow fact. A Jess shadow fact is a mirror image of a Java bean, such as a pressure
measurement, within Jess' working memory. All shadow facts are registered listeners
of their Java bean counterparts. Thus, whenever a measurement changes in the data
stream, a property change event is automatically generated for the given measurement
and its sibling shadow fact is updated in Jess' working memory. Figure 3 illustrates
this path.

After a shadow fact is updated, the Jess pattern matcher will determine if the
premises of any rules match the new or modified facts. Rules are compared to working
memory to identify premises that are matched by the data in working memory. For
NESTA, this data represents measurements from the SDS and rules represent data
monitoring criteria submitted by NASA Shuttle and system engineers. Rules with
matching premises are activated and placed onto an agenda. .Next, the agenda is
ordered according to Jess' default conflict resolution strategy. The highest priority rule
is then fired and executed. This match-select-act cycle repeats until no more rules are
available to fire. An action handler class was developed and is used to build and send
the notification message to the Shuttle engineer whenever a rule fires.

2.4. Know! edge Capture and Representation

Figure 4 shows the knowledge acquisition workflow for creating or modifying a rule to
monitor specific measurements on the Shuttle data stream. The Shuttle engineer must
specify who is responsible for the rule, the contents of the email notifications, the rule's
firing conditions (i.e. antecedent, left hand side), and rearming conditions. That is,
some rules may need to have a "one shot" behavior and only fire once when activated
the first time. Other rules may need to be re-armed after a given time period or when

Shuttle Engineer

Create or modify existing rule

Define creator and maintainer of rule

Provide descriptive title for rule

Enter email/pager addresses to receive notification

Define contents of emat notificafion	 [rule not correct]

)etine rules premises

Enter rules rearming Condition

Review rule for correctness

[rule correct]

Save rule

.

Figure 4. NESTA Knowledge Acquisition Workflow

certain types of conditions are met.

The current version of NESTA does not have a graphical user interface capturing
this workflow, but all of the steps are effectively provided within script files. Those
files are editable with a plain text editor by the end users. Hundreds of rules have been
produced by the customer.

As the rule database grew, patterns of rules began to emerge. Patterns in software
design and modeling have been extensively investigated and reported{15}. Analogous
to those design patterns, the development team and customer began recognizing

knowledge patterns for this domain and developed rules following these structures.
Some patterns include:

• One shot: Rule fires once regardless of how many times facts cause the
premise to reactivate.

• Recurring: Rule fires each time the premise reactivates.
• Timed: Rule fires every X minutes as premise remains true.

• Queued: Multiple rules will fire but notifications are sent to a queue that gets
flushed based on a user configurable amount of time or maximum number of
firings. One composite notification is sent when the queue is flushed. That
composite notification contains what would have otherwise been multiple
emails or wireless pages.

Some sample rules in English prose include:

• Noty Shuttle Engineer when measurement V79S4126E1 or V79S4132E1 or
V79S4138E1 or V79S4143E1 equal ON Indicates that Flight Control Power

(ASA 1-4) has been activated.

• Noti Shuttle Engineer when measurement V9OQ800ICJ equals 801.
Indicates that a Shuttle is in orbit and is preparing to initiate the on-orbit flight
control checkout activity.

• Not' Shuttle Engineer every 60 minutes with current values of Flight Control
launch countdown measurement list when measurement NMAJOR TEST equals
7. Indicates launch countdown test is occurring. While in launch countdown
test, send a current value email containing a list of Flight Control
measurements every hour.

• Notfji Shuttle Engineer when FD N791V019D Bit masked Ox000l equals 1.
Indicates that an LPS command and control program has stopped due to a
failure and is waiting on the operator for action.

This is an actual NESTA rule written in the Jess scripting language:

(defrule vehicle-pwr-on-rule
'Orbiter electrical power is up."

(recipient-list (recipient-list-name vehicle-pwr-on-rule))

?notpowered <- (vehicle-not-powered)

(DigitalPatternFd (fdNaxne 'NORBTALNO")

(valid TRUE) (value ?vall))
(valid TRUE) (value ?val2))
(valid TRUE) (value ?val3))

(AnalogFd (fdName "V7GVO100A1")
(AnalogFd (fdName "V76V0200A1")
(AxialogFd (fdName "V76VO300A1")
(test

(and
(> ?vall 26.0)
(> ?val2 26.0)
(> ?val3 26.0)

=>

(retract ?notpowered)
(assert (vehicle-powered))
(notifyActionaandler nil nil)

LILLsi iij_ . ' 8 i;

RG"Y	 tl9yt(,A! CFcA	 d	 - X *...

E8' 548 51' n 1asst ftnt Icts	 ts

t5T ,O.€ S,e'	 Te &/T/2 314 AM

(tTA) F1. 12IJç	 53.14:.t5 za

'ri1ter eLectrical power is up.

214:0713/23.571 : V7EVC100AI MAIN BUS A VOLTAGE) is 29.599995 V.
214:3713/19.411 : V76V0203A1 (MAIN BUS B VOLTAGE) is 29.599995 V.
214:0713/23.651 : V76V0300A1 (MAIN BUS C VOLTAGE) is 28.639994 V.
208:1735/31.120 : NORBTAILNO (ORBITER TAIL NUMBER} is 104 (DEC) was 0.

NASA Engineering Shuttle Telemetry Agent (NESTA) vO.6
supporting FBi, SB121H started 272u12005, 13:34:08 local.
This is an uncertified advisory application and is not to be
used as the only means of data verification.

Figure 5. Email Generated by NESTA

For this rule, if all three analog bus voltage measurements, V76VOIO0A1,
V76VO200A1, and V76V0300A1, concurrently exceed 26 volts, the Shuttle Orbiter is
considered to be powered on. Another indicator, SOIADATAV, is used to assure the
validity of the incoming data. Finally, another measurement, NORBTAILNO, is

located on the rule's left hand side. In our terminology, we call this an informational
measurement as its specific value has no bearing on whether the rule fifes, but it is
necessary to include it on the rules left hand side so that it becomes part of Jess'
activation object and then its value is included in the notification. The action handler
parses the fields in the activation object and builds an email with all of the
measurements' values that were listed on the left hand side of the rule. The
notifyActionHandler call has two arguments that allow for the notification to be
queued. This particular example does not use queuing and simply passes nil
arguments in the call. Queuing is discussed later in the chapter.

Figure 5 shows an email that was generated for the preceding rule. As illustrated,
the exact values of all three bus voltages are listed along with the informational
measurement showing which of the three Orbiters was powered up. In this case, 103
refers to Discovery. The informational measurement proves useful in not only
allowing the Orbiter reference to be included in the email, but it does not bind the rule
to a particular Orbiter. That is, NASA Shuttle engineers are interested in any Orbiter
that may become powered up. The rule's pattern matching provides that level of
genericity in a very straight forward representation. Of course, the engineer may be
interested in being notified only about a specific Orbiter. This would require a simple
modification to the rule. One additional slot would be referenced in the
DigitalPatternFd template narrowing the focus to a particular Orbiter. Thus,
minor modifications to the rule demonstrate the rich behavior available to the Shuttle
engineer and show the semantic power of pattern matching.

2.5. Hardware and Software Environment

The NESTA application resides on a Dell 1.7 GHz Pentium server. The server includes
the necessary user and support files such as the facts scripts, rules scripts, measurement
database, logs, and more. Currently, the server executes on a Microsoft Windows 2000
operating system. However, since Java was used exclusively along with its virtual
machine, the ability to execute software on other types of servers is readily available.
Again, this was a primary driver in the selection of Java and Jess so as to not be bound
to a particular hardware platform or operating system. Customers receive notification
on standard email clients including Windows workstations, wireless pagers, personal
digital assistants, cell phones, and more.

2.6. Performance Requirements and Testing

2.6.1. Performance Characteristics of Shuttle Data Stream

At application startup, NESTA connects to a datastream selected by the user. The
datastream includes all measurements at their respective change rates. No data changes
will be missing from this stream. For this discussion, only the FIFO stream will be
presented as it is the stream of choice for the NESTA customer.

The datastream averages 5 to 10 packets per second and peaks around 50 packets
per second at launch. Each SDS data packet can hold up to 360 measurement changes
before rolling over to another packet. This calculates to an average of 1,800 changes
per second for the FIFO stream nominally, and 18,000 changes per second peak at
launch. During peak data loads, the SDS is throttled at the source and does not
maintain true real time updates. It may lag up to 1 minute or so, but all measurement
changes are buffered and none is ever dropped from the data stream. Throttling of the
data typically begins at T+l second, that is, just after launch. Even though it is the
hypothetical peak limit, 18,000 changes per second is the performance load that
NESTA is expected to meet to avoid missing a measurement change. This is referring
strictly to updating 18,000 facts per second and not indicating how many rules might
fire. In fact, only a small percentage of those facts is expected to result in a small
percentage of the total rules to fire at any given time, even during the peak launch data
rates.

The measurement data in the stream is refreshed every three minutes regardless as
to whether or not it has changed. Since the stream is based on User Datagram Protocol
(UDP), this results in an unreliable datagram packet service. When a packet is dropped
on the network, all measurements are marked invalid and the measurements change
back to valid one by one as refresh data is received until the completion of a three

minute refresh cycle.

2.6.2. Performance Testing

Performance testing occurred on an Intel Pentium 4, 1.7 GHz desktop workstation with
768 MB of RAM running Microsoft Windows XP Professional. The SDS reader class
in NESTA parses the data stream and updates facts in Jess working memory. To test
the reader class, 12 high speed analog measurements were selected and instantiated as
shadow facts. In the range of 18,000 (nominal) to 36,000 (peak at launch) data changes
occurred every second in the test-enhanced data stream and were processed by the SDS

reader class This included various types of measurements such as discretes and

analogs. 12,000 analog data changes per second were being processed into current
values and updated in Jess working memory by a property change event handler.

Rules were written for 6 of the high speed analog measurements. The other 6
measurements were still relevant to stress the SDS reader class and updating of facts. 5
of the 6 rules fired once every minute. The 6th rule fired once for every single
measurement change (1,000 per sec) for two full seconds sustained out of every minute.
Thus, a total of 2005 rules fired every minute, with 2000 of them firing within a 2
second period. Analog measurements have considerably more processing overhead
than the discrete measurements so it was not possible to sustain thousands of rules
containing analogs to fire every second without causing CPU starvation. However, the
"fair test" was considered to have only a very small percentage of the measurements
that are in the stream actually causing rules to fire. It was considered fair to have short
bursts of high rate rule firings but not long term sustained high rate rule firings.

NESTA is not intended for users to write rules to notify them via email hundreds or
thousands of times each second for a long and sustained period of time.

To summarije, NESTA sustained the above scenario for many cycles on the test-
enhanced playback file without CPU starvation and without reporting any packet losses.

The CPU utilization on the development workstation was about 90% prior to launch
and higher than that after T-0. It was heavily loaded, but NESTA maintained the pace.
NIESTA performed well considering that the data stream was stuffed with between I
and 2 times the hypothetical peak load of measurement changes for the performance
test. The "long pole" in the process appeared to be the number of rules that actually
fired every second sustained. However, even under launch conditions when a heavy
data change load exists, there is not expected to be many thousands of rules firing every

second. Even several hundred rules firing per minute is considered unrealistically high,
but this performance test suggests NESTA could readily handle that load.

3. Development and Deployment

3.1. Application Use and Payoff

At the time of writing of this chapter, the customer had used NESTA for over a year.
Hundreds of rules have been written. Along with that, hundreds of NESTA

notifications have been generated for multiple NASA engineers. These users have
received both emails and wireless pages at KSC and other remote sites. Since the

customer is a NASA engineer responsible for oversight of contractors, the notifications
act as an extra set of eyes that further assure the quality of government oversight.

To better understand NESTA's payoff, the responsibilities of NASA Shuttle
Engineers must be examined. They include:

• Understanding their system and supporting equipment.

• Knowing how their systems are tested and processed.

• Being aware of when their systems are activated, tested, or in use.

• Analyzing performance and data retrievals from any use of a system.
• Being ready to answer questions about their systems such as

- When was it tested?

- How did testing proceed?

- How did the data look?

- Is it ready to fly?

NESTA has helped Shuttle Engineers meet these responsibilities in varying
degrees. Below are three success stories documenting some of the benefits NESTA

has provided.

3.1.1. Success Story - Increased Situational Awareness

In one usage, a Shuttle avionics system was powered up over a weekend. The NASA
Shuttle Engineer, being responsible for that system, would not have been aware that the
system was powered up except for receiving a NESTA notification. In this case, the
avionics user was not part of the Shuttle Engineer's immediate organization. Thus, the
Shuttle Engineer did not receive any communiqués regarding the system's weekend
usage. Due to NESTA, the Shuttle Engineer was better prepared to address questions
about his system's usage were they to arise. This has not been an uncommon
occurrence. Shuttle Engineers utilizing .NESTA began realizing that some of their
systems were being utilized much more than previously thought. Situational awareness

increased markedly.

3.1.2. Success Story - Increased Efficiency

Some ground operations span 24 hours and include dozens of asynchronous events that
are broadcast on the data stream. For example, checkout of flight control hardware in
the Orbiter Processing Facility occurred 4 to 6 times within the last year. The checkout
included long hydraulic operations, powering up different parts of avionics,
pressurizing/depressurizing the Orbiter, and other work. During a recent flow, the
NESTA notifications gave exact times of events of interest to the Shuttle Engineer.
That allowed the Shuttle Engineer to quickly identify timelines of these lengthy
operations. Effectively, a virtual roadmap identifying significant events was
automatically generated and that saved an hour of labor. More efficient data retrievals

resulted.

3.1.3. Success Story - Customer Testimonial

Below are excerpts of an email received from a NESTA customer in April 2005. The
testimonial details how NESTA notified a NASA engineer of a hardware inspection
that was not previously known to be occurring. That notification provided an increased
awareness and might have prevented a further delay in testing of Shuttle components.

"NESTA earned its keep this weekend and I wanted to share the story with you.
The Shuttle program has a very large test called S0008 - Shuttle Integrated Test.

After the Orbiter is mated to the ET[external tank] and SRB[solid rocket booster] stack,
S0008 is the first big power ON testing which performs numerous tasks mostly
concerned with the integrated Shuttle vehicle. For example, the interaction between
the Orbiter's avionics and the SRB's electro-hydraulic thrust vector control actuators.

Due to sign/Icam technical problems with ET attach point pyros and the ET attach
point electrical connections (the 'monoballs), the schedule for S0008 fell completely
apart. What started as a 42 hour test operation has now consumed the entire weekend
and will probably not bejmnished anytime soon.

One of our NASA engineers came in for third shfl Sunday to cover the testing.
One important NASA function during this time period was star tracker light shade
inspection. What happens in this test is that the star trackers are powered ON, the star
tracker doors are opened, and then [the contractor] and NASA engineers inspect the
inside of the star tracker - a cavity called a light shade which is a large cone coated
with a black non-reflective coating and several baffles. The design of the light shade is
to eliminate any and all extraneous light sources and reflections except for the star in
• view which the star tracker is trying to get a fix on. The inspection is made to make
sure there is no foreign object debris. For example, a flake of paper could cause a
reflection and lead to an erroneous star tracker star fix. If debris is found, special
equipment is available to vacuum out the inside of the light shade. Afier this procedure,
the star tracker is powered OFF and the star tracker door is closed for the last time at
KSC.

Now here s where NESTA payed off During this third shft operation yesterday,
[the contractor] and NASA were all on center waiting on the word from the S0008 test
conductors to perform the star tracker light shade inspection. For whatever reason,
our NASA engineer was never notfied when the checkout was to begin. [The
contractor] began the checkout without attempting to not,i5 NASA. The first indication
the NASA engineer had was when NESTA sent an email to the engineer announcing
that the star tracker was powered ON At this point, the NASA engineer contacted the
test conductor and directed him to keep the doors open until he could witness the
internal cavity inspection. Without NESTA, NASA would have missed the star tracker
inspection. And this would have led to an uncomfortable discussion about whether the
test would have to be repeated or whether NASA èould rely solely on the eyes of the
[contractor] engineers."

3.2. Phased Approach to Implementation and Delivery

Multiple releases of NESTA have been delivered to the customer. The development
team has four members each working approximately sixty percent of his time on the
project. The team works very closely with the customer. Generally, the team meets
with the customer at least once per week and has multiple other correspondences via
email and phone.

The initial NESTA release required six months. Thereafter, a release occurred
approximately every month. Prior to adopting Java and Jess, some preliminary
performance testing was completed to verify that the Java language and Jess rule
engine were fast enough to handle the Shuttle data stream rates. Concurrently with that
coarse performance testing, the initial set of requirements were being developed.

The software process model employed is a combination of extreme programming
and the iterative waterfall model. The team and customer understood the need to
anticipate and accommodate changes in the requirements. The customer, as much of
the development team, had little experience with rule based systems so there was a

learning curve in how best to represent knowledge and interface the data stream with
Jess. After about six months, a baseline set of requirements existed but the requirement
space is still fluid and undergoes change over time. These changes are seen as a

learning process through which we explore the possibilities of the system. As releases
are delivered to the customer, new requirements are elicited and old ones may become

defunct.

3.3. Development Tools

In addition to Java and Jess, other tools used include:

• Eclipse as an integrated development environment.

• Visio 2000 to develop Unified Modeling Language models.

• CVS for configuration management.

• Ant for automating builds.

• JUnit for automated Java unit testing.

• Emma for Java code coverage including measurements and reporting.

• Optimizeit by Borland for profiling performance and detecting and isolating
problems.

3.4. Technical DiffIculties

3.4.1. Data Validity

As indicated earlier in the chapter, the data stream is based on User Datagram Protocol
(UDP). As such, the connection is not always reliable and packets may get dropped.
This poses problems when rules are waiting for data to arrive. Data health and validity
become questionable. If the data stream connection is lost entirely or data becomes
stale (i.e. not updated), false positives or false negatives may result. That is,
notifications of hardware events may never be sent or be sent in error.

To partially address this data validity issue, additional measurements are included
in the rules to check for the validity of the stream. Measurements are now marked
invalid for a dropped packet(s) or when the source of the measurement becomes bad.
There is still a larger problem of false negatives and never receiving an email if the data
stream drops packets while a monitored event occurred. Aside from notifying the
Shuttle engineer of a data loss when it happens, we have not yet identified a mechanism
that guarantees all notifications since the data stream is unreliable.

3.4.2. Measurement Databases Changes

Multiple data streams and control rooms exist. Ofien, the measurement database,
which is used to decode the SDS, dynamically changes on the stream as a result of
operations. When that happens, decoding measurements becomes impossible and facts
can no longer be updated in Jess' working memory. A short term fix to this problem
was to simply notify the NESTA system administrator when the stream changes. A
measurement database Java bean was added and is used within a user rule as a fact.
When the measurement database changes, the administrator automatically gets an email
and may restart NESTA accordingly. Longer term, automatic restarts of the agent will
be provided.

3.4.3. Flood of Emails

If an end user incorrectly writes a rule, a possibility existed of flooding the network and
servers with hundreds or even thousands of notifications. To prevent that, multiple

E —	 Ive

nr'TzJ	 .- -
NESTA Server	 SPS Branch - NASA

- t	 .r-sed Aicaticnt'e-aornent 	 M.3dCc,i4 VA-D, EL Ed; Rm i,
rcerfae (WNi1I)	 KSC FL 329	 S

1-E:2'2	 22 2mma'1 T?-4p -o	 ol-: 0:442 Tner	 Men,7:m:

NESTA Instance Summary

NESTA
lnte 5t-t lime: Timi)I 07 13:13 SS 07T 7205	 STA Verwm: POTS Venom 0.5

Data Stream tO: 13 Rere4ve rr	 (wit: 24
tCfl) Nmve: 5P114((am,uStmvv Deopçmed Perket: 24

Stretm Source: 1(3 Cimuiattve Barkw.-d skipe: S
Stte,t type I20

Process
tp,tlnte. 5 5t4 45 rn U-U Pole: if rmrl 28 s

Threads
live T5ee: 13 Peak tlee.d twit: 17

Dentoo thred: 7 tvi	 tl,-ed	 Steted: 15

Memory
Ci.rtent H04t SOy : 025 r.5.-tei Loememitted Meettory: 15.6 f.t5ttoS

MaO Hem SlOe 502 StIffS itt,)esttt Pttmórttj rematvem: 0
[.artiage toIeFttir: :-,--.	 .1o:mr.e. :242 '::'v 42tfl	 1255.4401
i4arbageLuleFttlt '.-.--.e	 1:-,rS

Classes
iota Ciae.tmtt toat,d: TO Iota Clattsett Oyoade.i: 2

Operating System
Iota Phyi.lrai Memomy: 1,01421 14e320 Free i*tyttlra Meevey: 4ff S

Utnomytted Vrtoal Meetory 42.0 StoleS

Them datn thsorl	 ve is mly a rishot to Enoe (C?)jT2C535. 20:113:21 Lxal)

of the tual anllcaecr dota, whth may be thaogn rldy.

sESTA is ai rre ed &ivipry pkaln d is not to be taed tse noly meote of datd velficaEno

'the WP2.1I so itsldifi (if jot) of the Open Sxrte dX4) Hf tpAd*tor

•

Figure 6. Web Application Maintenance Interface Summary Page

During launch countdown, NASA Shuttle engineers are required to monitor shuttle
telemetry data for violations of launch commit criteria (LCC) and to venfy that the
contractors troubleshoot problems correctly. When a violation is recognized by the
system engineers it is reported to the NASA Test Director. The problem report, or call,
includes a description of the problem, the criticality, whether a hold is requested, and

whether a preplanned troubleshooting procedure exists.
The Shuttle is composed of many subsystems (e.g. Main Propulsion, Hydraulics).

Each of those subsystems has a team of engineers responsible for troubleshooting
problems for that respective system during a launch countdown. Many systems have a
large number of measurements with associated LCC limits and a large number of LCC

requirements.
Shuttle Engineers must monitor for many types of limit violations ranging from

simple high and low limit boundaries to much more complex first order logic
expressions. Each team has its own tools for identifying LCC violations. Many of
these tools use the LPS software and simply change the color of the displayed data

safeguards, such as user defined limits, were provided to filter emails after a given
number have been generated for a -particular email account.

Beyond that possibility of user error, there was a separate need to queue emails
that may be related to some sequence. Queuing provides a mechanism where multiple
messages expected to occur within a short time period are grouped together before
being emailed in bulk. For example, four flight control avionics boxes are often
powered up in a short time period. Rather than a user receiving four separate flight
control emails that may be interrelated, it was necessary to provide a queuing
mechanism that allows a user to tie related emails to the same queue and receive one
bulk email that was a compilation of what would otherwise be multiple emails. Both
the queue time and queue length are configurable by the end user.

3.5. Maintenance -	 -

New releases are delivered approximately every month by the development team.

Those releases may include bug fixes for problems reported in the former release.
However, new releases are generally driven by new functionality as opposed to being
driven by software errors.	 -

The design of the NESTA application facilities update by the end user. The
application uses a data driven approach for the user files. All of the rules and facts are
stored in Jess scripts. When rules have to be created or modified, the user has access to
several text based files. A facts file allows a user to add measurements that should be
monitored. A rules file allows the entry of new rules. Since these are text-based script
files, no compilation is required by the end user. The files are parsed at application

startup. This data driven approach is powerful in that it enables the end users to
maintain their own files and not be at the mercy of the development team to add new
support for new facts and rules.

3.5.1. Web Application Maintenance Interface

A Web Application Maintenance Interface (WAMI) was developed to aid the users in
managing and monitoring the agent. WAMI is based upon JMX[16] and MX4J[17].

Figures 6 and 7 show the Summary and Management Bean Views, respectively. The
Summary View shows the current state of the agent, presenting information such as
agent starting time, the data stream being monitored, the number of dropped packets,

memory usage, and more. The Management Bean page shows a snapshot of the values
of a particular set of measurements from the data stream and also allows the customer

to query the value of any arbitrary measurement on the data stream. Further
information is provided in other pages and views.

4. Launch Commit Criteria Monitoring Agent

Another agent using Jess has also been developed at NASA KSC. The Launch Commit

Criteria Monitoring Agent (LCCMA)[18] identifies limit warnings and violations of
launch commit criteria. As opposed to being used for day to day operations for which

NESTA was developed, LCCMA's scope is targeted for launch countdown activities.

	

Ft Es w.. .-e	 .	 - ___________________________________

NESTA Server	 SPS Branch - NASA
gu,%J	 t	 Mt	 a o 1A-0	 BhigPm td	 .JJi

rata - 	 L,s-t	 Jrrna- 1,	 .'ir	 pw	 tBeai view	 Time-p 	 Fkrp V p	 jt
teon gov.nasa.sps.nesta:type=fdData
Description nkamaticwi on the monagement interlace of the Neci
Attributes
Name	 Description	 Type	 Value New Value

.a In; Sn- q	 :Jj Rea-c,!i. atvtA

V?ie.tIUDAI	 28.959553 V aiba

V?seDacC*1	 IS .28	
29.119993 V Rod-e*	 bUl8

P p6vc1a1	 pva I3.S9r	 28.959993 V 8-wily atStmw

-
C5eatlons ______
Name	 Retm.rn type	 Description

Ctoi e55 iw
Pnet,	 e 5wi Demsly,tion

0	 p1	 0v Sin3	 Fl	 111.4 -

Trw data dxmwr	 jave is o-ml a v yj-ot In Errw
of the	 .tjal	 pisatia data, wiach may taa dwçs-1J raidiy

NSTA is	 . Lrce-ESej aiviary	 licattcn w-md p i-nt to be ia	 t-ie cnty meaca of data veificatiat.

The WN.41 is a modification of the Open Sce.wce P4 HtlAdtm-

Cow

Figure 7. Web Application Maintenance Interface Management Bean View Page

and/or present a text message to the user or set off an audible alarm. Troubleshooting
may require other displays such as plots and troubleshooting flowcharts. Valuable time
is spent locating these procedures and locating the data that supports them.

With LCCMA, when a launch commit criteria violation is detected, the Shuttle
engineer is notified via a Status Board Display on a workstation. Troubleshooting
procedures are automatically made available on the Display. This precludes the Shuttle
engineer from manually searching for the correct procedure mapped to the given
violation

4.1. Graphical User Interface

A graphical user interface currently exists for the Status Board Display. It is being

upgraded and Figure 8 shows a storyboard representative of that future interface. The

5. Conclusion and Future Work

NESTA has increased situational awareness of ground processing at NASA KSC.
More and more Shuttle engineers are relying on NESTA each month and are creating

additional rules for monitoring the data stream. The infusion of Al technologies,
particularly the Jess rule-based library, has proved very fruitful. 	 Interfacing and
integrating these modern Al tools within a legacy launch system demonstrates the
scalability and applicability of the tools and paradigm.

The knowledge patterns that are evolving within NESTA will make it easier to
train new users and also allow faster creation of rules. Many other enhancements are

planned such as providing an advanced graphical user interface for creating the rules.

5.1. Future Exploration Agents

As indicated in the national Vision for Space Exploration[19], an increased human and
robotic presence will be cultivated in space, on lunar and Martian surfaces, and other
destinations. Spaceports will now span from the Earth to the Moon and beyond. A

new set of challenges is presented by this Exploration Vision. In particular, the need
for autonomy significantly increases as people and payloads are sent greater distances
from Earth.

Agents for these future applications will demand much higher degrees of
autonomy than today's Shuttle agents. Few or no human experts will reside at remote
lunar or Martian sites to correct problems in a timely manner. More automation will be
required along with advanced diagnostics and prognostics. This requires higher levels
of reasoning.

Today on Earth, system and hardware engineers along with technicians leverage
multiple skills when monitoring, diagnosing, and prognosticating problems in Shuttle

ground support equipment. For the Exploration Vision, the need for extending these
skills to support other vehicles and payloads at remote locations from the Earth to Mars

becomes essential. These skills include being rational, collaborative, goal driven, and
the ability to reason over time and uncertainty. The agents discussed earlier in the
chapter, NESTA and LCCMA, are capable of shallowing reasoning of short inference
chains within the Shuttle domain. However, these existing agents can be endowed with
higher levels of rationality enabling a deeper reasoning. We are investigating how to
mature these agents into Spaceport Exploration Agents (SEAs) in support of the
Exploration Vision.

SEAs will need to communicate and collaborate along multiple and lengthy
logistics chains. This does not simply include agents monitoring pre-flight checkout of
vehicles at a terrestrial spaceport (e.g. NESTA monitoring Shuttle activities). Rather,

SEAs will reside in multiple locations at great distances. Logistics, scheduling, and
planning are just some of the activities that these agents will manage.

Within this virtual collaborative management chain, SEAs will be inundated with
massive amounts of data that must be sorted and processed. It becomes necessary for
them to revise their sets of beliefs as new data arrives. It is simply not enough to revise
singular data points within an agent's working memory and to have an agent blindly

react to those changes. Rather, an agent must possess the ability to revise previously
concluded assertions based on what may be now stale data. This activity is called truth
maintenance{20]{21J[22J, also known as belief revision, and is particularly important
when deep reasoning of long inferences is necessary. An assumption based truth

,	 S

LCClv1A Status Board Display

SDe tO, 7
	

LUil riSe: FocI CeUMoccn.o

SD
	 Ottir 52841055/54

TCO3: SAAII3B
	 CDT: O04101t/

1)0.0 IletoIlo

3220052112339 GMT (+30 0009/07 CD3
2R5-02 02 Mafid I,b2on Vt (Ocaes 021c,d

V40G4IEI PD 02 MAUF 3 15L34 VLV.0?ENI s OFF
V45)I51 PD 02 MANF 4 Slit VLV.OPtOt} co OFF

322:0051J12.359 GMT (+00;00QV7 CDT)
FRSD-04 02 Monifold lolation V1ve lndscot.s Cloud

41X4l4tEl FFD 02 MAIIF 7 2U VLV-OFMt: OFF

User toki.iSed
Dske4VsJocs/Roleo: 11
	

LCCMA Ve Sic

7L./12141.J021j
PR2D-02 02 Mqfold LsQIauon Vüt'e Indtcai CIoAed	 ________

V5X?I4JE! (PP.50 02 MAN?) 351)1 FL V-OPSN$,t 0P
V45fl1 16Z1 (PP.5002 MAMP I3SLN VLY-OPZNI OPP

328:0048/11359 GMT (+00:0005/07 CDI)
PRSD-01 02 Moesifold holoboo Volve Indicates Closed	 __________

V45X1 IIIEI {F}D 02 MAI4F I 151)1 VLV0PE311 n OFF.
V4SXI 14651 5115002 MANS 2151)4 VLV-OFESJ) cOPS

Act m

Select All	 Acknowledge	 Roles	 Pnet..

Select None	 Remove	 ________	 Help
J	

.it

Figure 8. LCCMA Status Board Display

Status Board Display shows the health of the network connection, data stream status,
countdown time, and other relevant information.

When LCC limits are violated, the LCC call is displayed in the text box. The user
reads the text and, if there is an associated troubleshooting file, clicks the file button
next to the text. This brings up a Troubleshooting Display for that particular LCC and
limit. The LCC text remains bold until the Acknowledge button is pressed. Message
text can be displayed with one of three icons representing a violation, warning, or
informational cue. Measurements associated with the LCC may also be plotted.

The text messages can be read over the Operational Intercommunication System as
LCC calls during the countdown. Calls will change based on what limit is violated (e.g.
warning, LCC, higMow limit), the time criticality of the call, and LCC effectivity. The
agent aids the NASA engineer in making a Go/No-Go decision for launch.

-	 ,.'

maintenance system (ATMS) can reason over many contexts simultaneously. By
capturing, maintaining, and deploying spaceport expertise within ATMS-enabled SEAs,
the costs and manpower required to meet the Exploration Vision are reduced while
safety, reliability, and availability are increased.

References

[I] Semmel, G.S.; Davis, SR.; Leucht, K.W:; Rowe, D.A.; Smith, K.E.; and Böldni, L. July 2005.
NESTA: NASA Engineering Shuttle Telemetry Agent. In Proceedings of the 20th National Conference
on ArtfIcial Intelligence and the 17th Innovative Applications ofAr1flcial Intelligence Conference. pp.
1491-1498. AAAI Press. Menlo Park, CA, USA.

[2] NASA. 2005. Operations and Maintenance Requirements and Specifications Document
htto:/Ikscgrndtskl .ksc.nasa.gov.

[3] Gchman, H.; Turcotte, S.; Bany, J.; Hess, K; Hallock, J.; Wallace, S.; Deal, D.; Hubbard, S.; Tetrault,
R.; Widnall, S.; Osheroff D.; Ride, S.; and Logsdon, J. August 2003. Columbia Accident Investigation
Board (CAIB), Volume]. NASA. Washington D.C.

[4] Lockheed. 1991. PCGOAL Requirements Document, Technical Report KSCL-1 100-0804. Lockheed
Space Operations Company.

[5] Wooldridge, M. 2000. Reasoning about Rational Agents. Cambridge, Massachusetts. The MIT Press.
[6] Russell, S., and P. Norvig. 2003. Art/Icial Intelligence: A Modern Approach. Prentice Hall, 2nd

edition.
[7] FIPA. 2002. Foundation for Intelligent Physical Agents Abstract Architecture Specification.
[8] Böldni, L., and Marinescu, D.C. 2000. An. Object-Oriented Framework for Building Collaborative

Network Agents. In Teodorescu, H.; Mlynek, D.; Kandel, A.; and Zimmerman, H., eds., Intelligent
Systems and Interfaces, International Series in Intelligent Technologies. Kiuwer Publishing House.
Chapter 3,21-64.

[9] JADE. 2004. Java Agent Development Framework. htto://iade.tilab.com/.
[10] Friedman-Hill, E. 2003. Java Expert System Shell. Greenwich, CT. Manning Publications.
[11] Wygant, RM. 1989. CLIPS: A Powerful Development and Delivery Expert System. In Computers and

Industrial Engineering, Volume 17, 546-549.
[12] Brownston, L.; Farrell, R.; Kant. E.; and Martin, N. 1986, Programming Expert Systems in 0P55: An

Introduction to Rule-Based Programming. Reading, MA. Addison-Wesley.
[13] Forgy, C.L. 1982. Rcte: A fast algorithm for the many pattern/many object pattem match problem. In

Art(fIcial Intelligence, volume 19(1), 17-37.
[14] Sun Microsystems. 2004. Java Bean Specification. http://iava.sun.com/.
[15] Gamma, E.; Helm, R.; Johnson, E.; and Vlissidcs, J. 1995. Design Patterns: Elements of Reusable

Object-Oriented Software. Greenwich, CT. Addison-Wesley.
[16] Sun. Java Management Extensions (JMX). htto://java.sun.com/oroducts/JavaManagementiindex.jsp.
[17] MX4J. http://mx4j.sourceforge.net].
[18] Semmel, G.S.; Davis, SR.; Leucht, K_W.; Rowe, D.A.; Kelly, A.O.; and Bdlbni, L. July 2005. Launch

Commit Criteria Monitoring Agent. In The 4th International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2005). pp. 3 - 10. Association for Computing Machinery. New York,
NY, USA.

[19] NASA. 2004. The Vision for Space Exploration. Technical Report, NP-2004-Ol-334-HQ.
[20] Doyle, J. November 1979. A Truth Maintenance System. Art(ficial Intelligence, 12(3): 23 1-272.
[21] de Kleer, J. 1986. An Assumption-based Truth Maintenance System. Art(/icial Intelligence, 28(2):

127-162.
[22] Forbus, K.; and de Kleer, J. 1993. Building Problem Solvers. MIT Press. Cambridge, MA.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21

