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Abstract 

Acceptance sampling is a quality control procedure applied as an alternative to 100% inspection.  
A random sample of items is drawn from a lot to determine the fraction of items which have a 
required quality characteristic.  Both the number of items to be inspected and the criterion for 
determining conformance of the lot to the requirement are given by an appropriate sampling plan 
with specified risks of Type I and Type II sampling errors.  In this paper, we present the results 
of empirical tests of the accuracy of selected sampling plans reported in the literature.  These 
plans are for measureable quality characteristics which are known have either binomial, 
exponential, normal, gamma, Weibull, inverse Gaussian, or Poisson distributions.  In the main, 
results support the accepted wisdom that variables acceptance plans are superior to attributes 
(binomial) acceptance plans, in the sense that these provide comparable protection against risks 
at reduced sampling cost.  For the Gaussian and Weibull plans, however, there are ranges of the 
shape parameters for which the required sample sizes are in fact larger than the corresponding 
attributes plans, dramatically so for instances of large skew.  Tests further confirm that the 
published inverse-Gaussian (IG) plan is flawed, as reported by White and Johnson (2011).  
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Introduction 

Acceptance sampling by attributes (ASA) assesses the quality of a lot based on the number of 

nonconforming items discovered in a random sample drawn for inspection.  Inspection requires only a 

pass/fail determination for each item, where the characteristic is necessarily binomially distributed.  

Because it is conceptually straightforward, easily to implement, and can be applied to qualitative as 

well as quantitative performance measures, ASA is the first choice for sampling inspection.   

For quantitative performance measures, however, a pass/fail determination typically is accomplished by 

comparing the measured value to a limiting value, without regard to magnitude of conformance or 

nonconformance for each item tested.  It seems reasonable that this additional information might be 

exploited to decrease the number of items that need to be inspected.  This is the rationale behind 

acceptance sampling by variables (ASV).  If there is adequate information to posit a distribution for the 

measure, then in many instances the ASV alternative translates into significantly smaller samples to 

achieve the same operating characteristic.  While far more restrictive in its assumptions, ASV should be 

considered when larger samples required by ASA are an issue.   



The objective of this paper is to provide an independent assessment of the accuracy of variables 

plans reported in the literature.  Note that, with the exception of normal plans, our search for off-

the-shelf ASV plan calculators was essentially fruitless.  This scarcity strongly suggests that non-

normal ASV largely has been limited to an academic audience and not fully vetted in practice.  

The need to implement and test plans reported in the literature is especially important for those 

plans based on approximations.  We report here on the results of empirical tests conducted using 

spreadsheet implementation of calculators developed for this purpose. 

1. Test protocol 

The following sampling plans were implemented as spreadsheet calculators and tested 

empirically using Monte Carlo simulation:  binomial (White et al., 2009), exponential (Guenther, 

1977), normal (Bowker and H. P. Goode, H.P., 1952; Guenther, 1977; Kao, 1971; G. J. 

Lieberman and G.J Resnikoff; and Montgomery, 2005; among others), gamma (Takagi,1972), 

Weibull(Takagi,1972), inverse Gaussian Aminzadeh (1996), and Poisson (Guenther, 1977). The 

test protocol enforced a limit standard (I,,) with (1) a specification limit on the measured 

variable X , either xmin or xmax, as the performance indicator I, (2) minimum reliability=0.005, 

and (3) maximum consumer’s risk =0.100 (the risk of accepting a nonconforming lot).  

Additionally, maximum producer’s risk of =0.200 (the risk of rejecting a conforming lot) was 

enforced.  We chose these particular test conditions as representative of certain high-level 

requirements in the design of spacecraft (White, et al., 2009).  

For each test, values were specified for the limit and for any distribution parameters assumed to 

be known or estimated.  The null and alternative means 0 and 1 were determined such that, for 

a lower limit, F(xmin;0)=0.001 and F(xmin;1)=0.005.  For an upper limit, 1-F(xmax;0)=0.999 and 

1-F(xmax;1)=0.995 .  The corresponding (n,) sampling plan was then determined from the 

appropriate calculator.   

100,000 Monte Carlo trials were run for both the null and alternative distributions, each run 

comprising n observations as determined by the sampling plan.  The proportions ̂ and ̂  were 

estimated from the sampling distribution of the acceptance limit A(n,k).  These estimates were 

compared to the specified operating characteristic to assess the accuracy of the plan.  The 



efficiency of the variable sampling plan was determined by comparing the required sample size 

to that for the closest attributes sampling plan.   

2. Test results 

Test results are summarized in Tables 1-3.  The last column in each table is the ratio of the 

sample size for the variables plan to the sample size for the corresponding attributes (binomial) 

plan. 

Table 1.  Summary of test results for continuous variables given lower limit xmin=1000 and nominal OC 
(p0,)=(0.001,0.2) and  (p1,)=(0.005,0.1). 

Variable n k ̂  ̂  nv/na 

Exponential() 2 2.43x10-3 0.200 0.082 0.003 

Normal(,=100) 18 2.886 0.191 0.097 0.023 

Normal(,̂ ) 88 2.886 0.191 0.097 0.099 

Gamma( 10ˆ  , 338ˆ  ,) 206 2.131 0.193 0.096 0.224 

Weibull( 10ˆ  , 1995ˆ  ,) 91 3.623 0.189 0.079 0.117 

IG( ̂ =1502, ̂ =100,000,) 18 2.886 0.173 0.382 unusable 

 

Table 2.  Summary of results for continuous variables given upper limit xmax=10,000 and nominal OC 
(p0,)=(0.001,0.2) and  (p1,)=(0.005,0.1). 

Variable n k ̂  ̂  nv/na 

Exponential() 66 6.26922 0.200 0.082 0.085 

Gamma( 10ˆ  , 441ˆ  ,) 77 3.667 0.189 0.104 0.099 

Weibull( 10ˆ  , 3800ˆ  ,) 156 3.623 0.188 0.081 0.201 

 

Table 3.  Summary of results for Discrete Variables  

Variable n c ̂  ̂  nv/na 

Binomial(n,p) 777 1 0.188 0.100 1 

Poisson(n,p) 21 88 0.191 0.097 0.035 

 



Conclusions 

In this paper we report the results of empirical tests designed to provide an independent 

assessment of the validity and accuracy of six published ASV procedures.  Overall, the plans are 

shown to provide adequate or superior protection against producer’s and consumer’s risk for 

samples substantially smaller than those required for the corresponding ASA plans.  The 

exception is the IG plan, which was previously shown to be in error. 

While this overall conclusion supports the assertion in the literature that ASV plans require 

smaller samples than ASA plans, we also discovered that this assertion does not hold absolutely.  

In particular, for gamma and Weibull variables with small shape parameters, the ASV plans are 

in fact larger than the corresponding ASV plans.  We believe that this discovery is original and 

needs to be assimilated into the literature on acceptance sampling. 
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