
1Astromaterials Research and Exploration Science Directorate, NASA Johnson Space Center, Houston, TX 77058, paul.a.abell@nasa.gov. 2Space Mission Analysis Branch, NASA Langley Research Center, Hampton, VA 23681. 3Navigation and Mission Design Branch, NASA Goddard Space Flight Center, Greenbelt, MD 20771. 4NASA Wallops Flight Facility, Wallops Island, VA 23337. 5Aerospace Consultant, Houston, TX 77059. 6Planetary Science Division, NASA Headquarters, Washington, DC 20546. 7Solar System Dynamics Group, Jet Propulsion Laboratory, Pasadena, CA 91109. 8Analytical Mechanics Associates, Inc. Hampton, VA 23666. 9NASA Johnson Space Center, Houston, TX 77058. 10Human Exploration and Operations Mission Directorate, NASA Headquarters, Washington, DC 20546.

Introduction: Over the past several years, much attention has been focused on the human exploration of near-Earth asteroids (NEAs). Two independent NASA studies examined the feasibility of sending piloted missions to NEAs, and in 2009, the Augustine Commission identified NEAs as high profile destinations for human exploration missions beyond the Earth-Moon system as part of the Flexible Path. More recently the current U.S. presidential administration directed NASA to include NEAs as destinations for future human exploration with the goal of sending astronauts to a NEA in the mid to late 2020s. This directive became part of the official National Space Policy of the United States of America as of June 28, 2010.

Dynamical Assessment: The current near-term NASA human spaceflight capability is in the process of being defined while the Multi-Purpose Crew Vehicle (MPCV) and Space Launch System (SLS) are still in development. Hence, those NEAs in more accessible heliocentric orbits relative to a minimal interplanetary exploration capability will be considered for the first missions. If total mission durations for the first voyages to NEAs are to be kept to less than one year, with minimal velocity changes, then NEA rendezvous missions ideally will take place within 0.1 AU of Earth (~15 million km or 37 lunar distances).

Human Exploration Considerations: These missions would be the first human expeditions to interplanetary bodies beyond the Earth-Moon system and would prove useful for testing technologies required for human missions to Mars, Phobos and Deimos, and other Solar System destinations. Missions to NEAs would undoubtedly provide a great deal of technical and engineering data on spacecraft operations for future human space exploration while conducting detailed scientific investigations of these primitive objects. Current analyses of operational concepts suggest that stay times of 15 to 30 days may be possible at these destinations. In addition, the resulting scientific investigations would refine designs for future extraterrestrial In Situ Resource Utilization (ISRU), and assist in the development of hazard mitigation techniques for planetary defense.

Conclusions: The scientific and hazard mitigation benefits, along with the programmatic and operational benefits of a human venture beyond the Earth-Moon system, make a piloted mission to a NEA using NASA’s proposed human exploration systems a compelling endeavor.