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Space Radiation: 
A Key Challenge 

• We cannot explore the solar 
system until the space radiation 
problem has been solved 

• Three principle sources of space 
radiation 



Galactic Cosmic Radiation (GCR) 

• Charged particles accelerated in the shock 
waves surrounding supernovae 

• Ever-present, low-level flux of high-energy 
particles 

• Large cumulative dose over the course of 
• • a mission 

• Penetrate our solar system isotropically 



Solar Particle Events (SPEs) 

• Particles accelerated by solar phenomena 

• Sporadic 

• High flux when it does occur 

• Lower-energy spectrum than. GCR 

• Approximately isotropic flux due to 
magnetic interactions in the solar system 
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Effects in Spaceflight 

• Biological Effects 
- Delayed: cumulative effects of total dose 

- Acute: immediate effects of intense exposure 
• A single SPE may be lethal 

• Electronic Effects 



Passive (Material) Shielding 

• The most successful method, to date 
• Foams or other materials on outside 

of spacecraft 
• The spacecraft structure, itself 
• Consumables placed strategically 

-food 
- drinking water 



Passive Shielding, continued 

• Problems 
-' Spacecraft Mass may become 

• excessive 

- Secondary radiation 

~ Some radiation gets through, which is 
not acceptable during the high flux of 
SPEs 

• "Storm-Shelter approach" 



Problems with Storm Shelters 

• Excessive time in cramped quarters 
- Gradual SPE may last 4 or 5 days 

-. Psychologically and physically distressing 

• Provides no protection for spacecraft electronics 
- May suffer irreparable damage resulting in eventu~1 

loss of mission and crew 

• Crew unable to attend to the spacecraft 
- During the precise time when it needs the most 

attention (due to radiation effects) 

- May need quick response to manage spacecraft 



Magnetostatic Shield 

• Attempt to mimic the shielding due to 
Earth's magnetic field 

• Requires heavy, superconducting coils to 
produce sufficient magnetic field 

• Hazard that coil could explode under the 
energy of the fields 

• Better to use the mass of the coil as foam 
on the outside of the spacecraft 
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Multipole Expansions 

o 
Monopole Dipole Quadrupole etcetera 

• An arbitrarily-complex electric field can be 
described as an infinite sum of these 
terms 



Multipole Electrostatic Shield 

• Each term in the multipole expansion falls off 
with respect to distance more quickly than the· 
previous term 
- Monopole term dominates far away 

- Higher-order terms dominate in close 

• Assign different functions to different terms 

• Result: Spherical zones of protection to repel 
both protons and electrons 
- ,But no charges need to be physically deployed 

around the spacecraft 
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Vast quantities of low
energy electrons kept 

out of this region 
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A bunch of math .. . 
Ax = (C23C32 E X -C22C33E x -c13c 32E y +C12C33Ey +C13C22E z -CI2 C23EJ Q 

Ay = (-C23C3IEx +C21C33Ex +C13C3I E y -cllcnEy -C13C2I E z +CIIC23EJQ 

QE(r) = Ii = !!..-(y rno v) 
dt 

A z = (C22C31Ex -C2I C32E x -CI2C3IEy +Cll c 32E y +CI2C2IEz -CII C22EJ Q V·V ( . ) =yrno V+y2 c2 V 
N 

E(r) = L V;Rj r -rj 3 

j=1 Ir - rjl Vo = 
_ (1 2 / 2 ) -112 r= -V c 

a= 

y= 

Ro sin 0 cos ¢ - ~ sin 0' cos ¢' 
Ro sinOcos¢-~ sinO' cos¢' 

Ro sinOsin¢-~ sinO' sin¢' 

Ro cosO - ~ cosO' 

Ro cosO-R~ cosO' 
Ro sinOcos¢ - ~ sinO' cos¢' 

Ro sin () sin ¢ - ~ sin 0' sin ¢' 

Ro cosO-~ cosO' 

Vx \ (a 

Vy I=vol f3 
Vz ) ,y a 2 + f32 + y2 = 1 

Ro sin 0 sin ¢ - R~ sin 0' sin ¢' 
f3 = 1/ Ro sinOcos¢ - ~ sinO' cos¢" I 

Ro sin 0 sin ¢ - R~ sin 0' sin ¢' 

Ro cosO - R~ cosO' 

sinO' cos¢' 

ro = ROI sinO'sin¢' 
cosO' 

v = o 1+( rn;2J -1 J2T 
moe 

112 



Model Length Parameters ... I 

rhoO • 110 . II [m] IAU] 

RO = 120 ' [m] [km] 

tharged Particle Energy · . I 

[keV] sigmaE = 11 .0 [keV] 

Particle tomposition . 11 

Np= 

Monte Carlo Parameters _. I 

r Claosi",,11 RelatiYistic Iotechanict - 1 
I~ - [ll Relativistic Acceleration ON ~ __ _ 

Suppress Trails 

....,, 11 Disengage Shield 

rhoC= 

5.0 I [m] 

Output Filename 
, xyPlot.bmp 

xzPlot.bmp 

yzPlot.bmp 

z-Start Coordinate of Slices = 
Separation Between Slices = 

Base Filename = (Xy_Z 

Sliced Plots ON 

""" 11 )C-y 

~I x-z 

....,, 11 y-z 

[m) 

[m] 

Wide Points 

~phere Potential (Zeroth Order Approximation) ====1 

Sphere Voltage Shading ON 

frogram Output Log II 

vO I: 0.00421 
qO- 2 

fc == 

ft I: 

.... mll'l == 

vrnax
.... avg= 

3.77777 
25. m77 

0.00405 
0.00441 
0.00421 

[c) (initial particle velocity, fraction of c, corresponding to Eo) 
[q] [total number of unit charges on particle) 

[%) [total particle I sphere collisions) 
[%] (percentage of particles arri .... ing inside rhoC sphere] 

[c) (minimun particle v of all particles, as a fraction of c) 
[c) [maximum particle Y of aU particles, as a fraction of cJ 
[c) (average particle v of aD particles, as a fraction of c) 

I [-jpp~"-'"'I I 7_ "'w ...... J Run Status: Done Processing Exit 
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Cutoff Energy 

• All particles unable to get over the "hump" 
are deflected 
- The hump's magnitude is the cutoff energy 

• Particles with energy above cutoff may 
strike the spacecraft 
- But many are turned slightly and therefore 

"miss" the spacecraft 

- The number that "miss" is a function of energy 



Deflection of Over-Cutoff Particles 
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Shield Efficiency 
as a Function of Particle Energy 
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Space Radiation Spectrum 
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Maximizing Cutoff Energy 

• Geometry of Shield 
- Arrangement of Spheres 

- Bigger Spheres 

- More Spheres 

• Higher Voltage! 

These affect 
shielding 
efficiency, but not 
cutoff energy 

Developing higher-voltage, space-based 
power supplies is the key technology 
challenge 



Shield Efficiency 
as a Function of Particle Energy 
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Power Supplies 

• Van de Graaf 
generators 
- 1 0 to 20 MV for 

particle accelerators 
• But very large! 

- 500 kV for inexpensive 
desktop versions 

• Limited by charge 
bleed-off into the 
atmosphere 



Achievable Voltages 

• Take advantage of the space environment 

• No atmosphere 
- Breakdown voltage in space is 20 to 30 times higher 

than on Earth 

- Should achieve 10 - 15 MV in space with a small 
power supply 

• No gravity or ground plane 
- Easier spatial arrangement 

- Daisy-chaining 7 - 10 small power supplies along an 
insul~ting truss can achieve over 100 MV 



Integration with the Spacecraft 

• Ion Thrusters 
- Ion exhaust cannot escape radiation shield 

- Incompatible with electrostatic shield! 

• Strategy 
- Use passive shielding only, except during 

SPEs 

- Also use electrostatic shield in planetary orbit 



Conclusion 

• The radiation problem is a serious obstacle to 
solar system exploration 

• Electrostatic shielding was previously dismissed 
as unworkable 
- This was based on the false assumption that radial 

symmetry is needed to provide isotropic protection 
• KSC recentl'y demonstrated the feasibility of 

asymmetric, multipole electrostatic shielding 

• Combined with passive shielding it 
might solve the radiation problem 

~ 
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