Overview of Hydrazine Fuels Infrastructure

Presented to:
LMP103S Technical Interchange Meeting

By:
Chuck Davis, NASA

25Jan2012
Kennedy Space Center
Hydrazine Requirements

♦ Most “hydrazine” is, MIL-PRF-26536, HPH-grade
 ➢ No aniline
 ➢ Produced by Arch Chemical (Lonza) in Lake Charles, LA
 ➢ Used by spacecraft for in-orbit propulsion
 ▪ Most are mono-propellant applications
 ▪ HPH/N2O4 bi-prop engines are becoming less rare
 ➢ NASA uses HPH most often in its science spacecraft

♦ Other “hydrazine” is MPH grade
 ➢ Up to 0.5 wt% aniline
 ➢ Was primarily used by Shuttle for APUs and HPUs
 ➢ No longer in production by Arch
 ➢ Once DLA inventory is depleted, MPH will no longer be available
♦ Various containers are used in hydrazine service
 ➢ All constructed of 304L SS
 ➢ All pressure load and offload
 ➢ Most containers are covered by various DOT SPs
 ➢ Non-bulk containers
 ▪ No pressure relief devices
 ▪ DOT4BW specification w/ SPs
 ▪ 5-, 30-, 55- and 120-gallon water capacity
 ➢ Bulk containers
 ▪ NASA 500-gallon GPTU
 ▪ Industry-owned DOT110A500W cylinders

♦ Similar or identical container designs are used with MMH and N2O4
GPTU fluid system access is supported with roll-around platform and stairs

Gauge Valve

Pressurization/Vent Valve

Relief Valve W/ Isolation Valve

Liquid Valve W/ Dip Tube To The Bottom Sump

Containers - GPTU
Containers - Cylinders

DOT110 cylinder

DOT4BW cylinder
Toxic Vapor Scrubbers

- Hydrazine family fuels and N2O4 oxidizers produce toxic vapors
- Transfer operations use helium or nitrogen to move propellant from one container to another
- Receiving container must be vented to the atmosphere through a scrubber

- NASA standard 4-tower wet scrubber
 - Mobile and fixed versions
- Dry-bed scrubber used at Astrotech
Personal Protect Equipment

♦ Hydrazine is toxic by both dermal and inhalation exposure

♦ “Class A” PPE is required

♦ NASA developed the SCAPE suit as an alternative to industrially available PPE
 ➢ Fully encapsulated butyl-rubber-based suit
 ➢ Supply breathing air via either back-pack or air-hose

♦ Emergency escape device
 ➢ ELSA
 ➢ 10-minute breathing air supply
 ➢ Deployed in operational areas where a potential toxic vapor hazard exists
The suited technician is ready for work. Air-pack has 2-hr capacity. Radio-com allows free mobility.

Built-up suit meets the technician's size. The 35-pound liquid air-pack is adjusted for comfort.

The zipper is then closed providing the full encapsulation of the technician.
PPE - ELSA

ELSA storage box usually located at evacuation route exit points

ELSA in use
If NASA were to implement an alternative to hydrazine?

- Would only reduce (or eliminate) SCAPE for hydrazine replacement
 - SCAPE is required for MMH and N2O4 operations
- May or may not reduce scrubber requirements due to ammonia being present in the LMP103S fuel
- LMP103S is a blend; volatile components may be lost during transfer operations due to venting

Alternative fuels will probably not be a significant cost factor at KSC and CCAFS unless all MMH and N2O4 requirements shift to less-toxic alternative propellants
Acronyms

♦ APU – Auxiliary Power Unit
♦ DLA – Defense Logistics Agency
♦ DOT SP – Department of Transportation Special Permit
♦ ELSA – Emergency Life Support Apparatus
♦ GPTU – Generic Propellant Transfer Unit
♦ HPH – High Purity Hydrazine
♦ HPU – Hydraulic Power Unit
♦ MMH – MonoMethyl Hydrazine
♦ MPH – MonoPropellant Hydrazine
♦ N2O4 – Nitrogen Tetroxide; also NTO
♦ PPE – Personal Protective Equipment
♦ SCAPE – Self Contained Atmospheric Protective Ensemble
♦ SS – Stainless Steel