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Abstract 

During the 2005 Conference for the Advancement for Space Safety, after a typical presentation of safety 
tools, a Russian in the audience simply asked, "How does that affect the hardware?" Having participated in 
several International System Safety Conferences, I recalled that most attention is dedicated to safety tools 
and little, if any, to hardware. The intent of this paper on the hazard of fracture and failure modes 
associated with fracture is my attempt to draw attention to the grass roots of system safety - improving 
hardware robustness and resilience.

Introduction 

Fracture often results in catastrophic accidents as illustrated in the historical cases in the next section. 
Brittle fracture seemingly often occurs with little or without warning because the flaws or cracks are often 
hidden within the structure. This paper summarizes the science or art of fracture mechanics in terms useful 
to a safety engineer. 

Data supporting fracture mechanics is typically published in reports summarizing test of various materials 
under very specific and controlled test conditions. The activity at the crack tip is where all the action is 
taking place and is least understood. There are more things or variables contributing to the fracture 
mechanics than there are equations, so the results of the test data is reduced often through regression 
analyses techniques to attain equations which can only be applied for a specific material, under the 
conditions for which the material was tested. There are often patterns but with exceptions for every pattern. 
The primary factors influencing a structure's resistance to fracture are listed below and discussed in other 
sections of the text: 

> Material toughness 
) Crack attributes 
> Applied load 
> Environment/Temperature 
> Material thickness

Historical Lessons 

The Silver Bridge spanned over the Ohio River connecting Point Pleasant, West Virgnia, and Kanauga, 
Ohio. It was constructed in 1928 and consisted of a 700 foot center span and 380 foot side spans. At 5:00 
PM on December 15, 1967, the Silver Bridge collapsed claiming 46 lives and injuring 9. The Christmas 
rush applied an extra load to the 39 year old bridge causing a cleavage fracture in one of the "eyebars". The 
structure only took about 1 minute to completely fall into the river below. The 700-foot center span, the 
two 380-foot side spans,- and the towers collapsed. In January, 1919, a molasses tank ruptured in Boston 
spilling 2.3 million gallons of molasses killing 21 people and drowning several horses. The flow crumpled 
the steel support of an elevated train, and knocked over a fire station. The Dc Havilland Comet built in 
Hatfield, Hertfordshire, United Kingdom in 1949 was the first non-military jet. But cracks originating at 
the square windows resulted in aircraft crashes. In the early 1970's several ships were lost as a result of 
brittle fracture. Nine T-2 tankers and seven Liberty ships broke in to. In 1966 a NASA rocket motor case 
failed at 542 psi which was only 56% of intended proof pressure. Crack velocities were estimated of 
approximately 500 ft/sec. The 65 foot high chamber was .73 inches thick. A competitor built a similar test 
article constructed of 200 grade steel with 10% lower yield but higher toughness. That rocket motor case 
had 2 successful proof test and 2 successful firings producing 6 million pounds thrust.



Fracture Mechanics Principles 

Recollection of the stress-strain curve from strength of materials is essential to gaining the most basic or 
elementary understanding of the concept of fracture mechanics. Fracture is the failure of a material in a 
brittle manner. The first section of the stress-strain curve is linear representing plane strain. Even though 
this represents an elastic region, under certain conditions ductile material fails in a brittle manner and these 
failures are often catastrophic. Factors influencing a structure's resistance to fracture are addressed below: 

Material Toughness: Rolfe and Barsom define material toughness as, "Material toughness is defined as the 
ability to carry load or deform plastically in the presence of a notch and can be described in terms of the 
critical stress-intensity factor under conditions of plane stress or plane strain for slow loading and linear 
elastic behavior." Simply stated, material toughness is the resistance of a material to crack; or material 
toughness may be thought of as the resistance of a pre-existing crack in a material to propagate. High 
strength structural steels with a corresponding high yield value, normally exhibit a lower toughness value 
than do lower strength structural steels with a lower yield. Again, this is typical behavior, but not absolute. 
Only testing under the conditions for which the structure is expected to see insures the design can support 
the assumed loads in the presence of cracks below the size of the assumed threshold. 

Crack Attributes: Elimination of all cracks without consideration of the flaw or crack size or elimination of 
crack causes is impossible since this means elimination of corrosion and vibration for which structures are 
subjected along with the inappropriately implied assumption that all structural material can be perfectly 
cast and without stress risers such as holes and welds. Crack size, crack location and crack orientation 
contribute to probability of structural failure. Fracture mechanics evaluate material based on the following 
3 basic crack types, each of which reflects different constants in the fracture mechanics equations: 

• Through thickness crack 
• Edge crack 
• Surface crack 

Applied Load: The simplest scenario is when a tensile load is lowly applied to a test article. The test 
article may or may not have a pre-existing crack. Then a determination is made if a crack formed or the 
pre-existing crack propagated and if so, by how much. In this manner, the material is allowed time to 
adjust to the load in a ductile manner. When the load is applied quickly or dropped onto the test article, the 
test article may or may not have time to yield depending on the material toughness. When cyclic load 
fatigue is involved the test is complicated further because the result is influenced by both the range within 
the amplitude and the time elapsed between each cycle. The material must be tested to the anticipated 
loading that the design is expected to encounter. 

Environment/Temperature: Most material attributes change with temperature changes. As temperatures 
are reduced further and further, a ductile material begins transition to brittle behavior. This estimated 
temperature is called the Nil-ductility transition temperature (NDT). This is not an exact point on a curve 
which is a gentle curve, but is an assigned location based on slope change. Because of significant 
differences in fracture toughness attributes, planning design about the expected service temperature range is 
essential. Temperature is especially important when working in the extremes such as with Cryogenics (e.g. 
Hydrogen which boils at 422 F and freezes at 434 F). 

Material Thickness: One of the surprises in the study of fracture mechanics is to see a ductile material 
failing in a brittle manner at a reasonable working temperature. Action in the crack tip is affected by the 
thickness of the material. A thin sheet of ductile material shows flexibility which the exact same material 
in a thick plate at the exact same temperature appears stiff. The material in the form of the plate only 
exhibits the ductile behavior at a thin surface layer. The material in the middle is 'constrained' in a manner 
such that it behaves in a brittle manner once the crack penetrates below the ductile surface layer. This is 
the reason why care must be taken when conducting research for published test data to support a future 
design effort. The material in the test data needs to be thick enough to correspond with the thickness of the 
material in your design.



Fracture Mechanics Design 

The fracture hazard is managed through use of a fracture control plan. In addition to the fracture mechanics 
principles listed in this report, the plan includes objectives such as leak before burst. The plan should also 
provide maintenance and service instructions such as coatings to reduce corrosion and inspections 
techniques for both first time acceptance and follow-on inspections for the life of the structure. 

To minimize the probability of failure from brittle fracture, the design engineer has three controllable 
factors: 

• Material toughness at the assumed service temperature and load rate. 
• Nominal stress level. 
• Flaw size present in the structure. 

The design engineer must have established the following general information related to fracture mechanics 
for all types of structures: Service conditions, and applied stress or stress range for cyclic loadings. 

Sources of cracks and crack growth: 

Material voids 
Fatigue 
Stress corrosion 

Fracture Control Plans: The safety and reliability of a design is best managed through use of a fracture 
control plan. Project goals related to fracture such as leak before burst which set design constraints are 
listed in the fracture control plan. Barsom and Rolfe maintain that a fracture control plan is used: 

• "To identify all the factors that may contribute to the fracture of a structural detail or to the failure 
of the entire structure. 

• To assess the contribution of each factor and the synergistic contribution of these factors to the 
fracture process. 

• To determine the relative efficiency and trade-off of various methods to minimize the probability 
of fracture. 

• To assign responsibility for each task that must be undertaken to ensure the safety and reliability 
of the structure." 

Barsom and Rolfe further assert that the fracture control depends on: 

"The fracture toughness of the material at the temperature and loading rate representative of the 
intended application. The fracture toughness can be modified by changing the material used in the 
structure. 

• The applied stress, loading rate, stress concentration, and stress fluctuation, which can be altered 
by design changes, loading changes, and by proper detailing. 

• The initial size of the discontinuity and the size and shape of the critical crack, which can be 
controlled by design changes, fabrication, and inspection." Inspection methods along with 
attributes of each method are listed in Table 1.



TECHNIQUE FLAW TYPE STRENGTH WEAKNESS/LIMITATION 
Dye Penetrant Surface Inexpensive, reliable Must be completely removed before subsequent 

Best method for passes on multipass welds because the 
detecting surface penetrants may break down 
cracks on 
nonmagnetic material  

Radiography all Show flaw size and Expensive and slow 
orientation Does not detect oxide films whose density is 

similar to the weld 
• rough surface obscures flaws 
• tight crack in a plane parallel to lines of x-ray 
not detectable 
Does not detect fatigue cracks less than 1% of 
material 

Mag Particle Surface thru Effective detecting Material must be magnetic 
1/8" below root slag, or Unsatisfactory for joints between metals with 
surface excessive porosity on dissimilar magnetic characteristics 

root passes  
Ultrasonic All Inexpensive, fast Difficult to interpret results 
Eddie current Surface or near Only method to Material must be conductive 

surface detect bolt hole Accuracy reduced when used on magnetic 
defects material 

Slow

Table 1
Non Destructive Test Methods Sample 

Summary 

This paper only provides the system safety engineer with the basics associated with the hazard - fracture. 
The next level of understanding is accomplished with a terse review of graphs and equations available in 
the reference below. 

The use of protective coatings to prevent corrosion which is a primary tool preventing one source of crack 
initiation is outside the scope of this course. The American Society of Corrosion Engineers is one source 
for both inspectors and training in this area.
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