Intelligent Integrated System Health Management

Fernando Figueroa
NASA Stennis Space Center, MS

Presentation at Louisiana Tech

February 3, 2012
Support the rocket engine test mission with sustainable facilities that produce unquestionable measurements, affordably.

Others:
- High-pressure Gas
- Industrial Water
Outline

• ISHM Definition.
• ISHM Capability Development.
 – ISHM Knowledge Model.
 – Standards for ISHM Implementation.
 – ISHM Domain Models (ISHM-DM’s).
 – Intelligent Sensors and Components.
• ISHM in Systems Design, Engineering, and Integration.
• Intelligent Control for ISHM-Enabled Systems.
Requirements Driving ISHM

Through comprehensive and continuous vigilance

- **Improve quality**
 - By more accurately understanding the state of a system.
- **Minimize costs**
 - Of configuration
 - Of repair and calibration
 - Of operations
- **Avoid downtime**
 - By predicting impending failures
 - By timely intervention
 - By faster diagnosis and recovery
- **Increase safety (protect people and assets)**
ISHM Objectives

• Use available data, information, and knowledge to
 – Identify system state
 – Detect anomalies
 – Determine anomaly causes
 – Predict system impacts
 – Predict future anomalies
 – Recommend timely mitigation steps
 – Evolve to incorporate new knowledge

ISHM implementation is a problem of “management” of data, information, and knowledge (DIaK) focused on achieving the objectives of ISHM
Concepts for iISHM

THE CAPABILITY MUST BE CREDIBLE AND AFFORDABLE

- **Intelligent System:** Manages data, information, and knowledge (DIAK) to achieve its mission (Manage: storage, distribution, sharing, maintenance, processing, reasoning, and presentation)

- **iISHM:**
 - Employs knowledge about the system embodying “systems thinking” (captures interactions among elements of the system).
 - Is continuously vigilant.
 - Is comprehensive in assessing health of each element of a system.
 - Is systematically evolutionary to achieve higher and higher functional capability levels (increasing effectiveness).

- In order to make this capability possible, the health management system needs to incorporate “intelligence.”
ISHM Definition

• Its own discipline, or sub-discipline under Aerospace Systems Design, Engineering, and Integration.

• Management of data, information, and knowledge (Dlak) with the purposeful objective of determining the health of a system (Management: storage, distribution, sharing, maintenance, processing, reasoning, and presentation).

• ISHM is akin to having a broad-base team of experts who are all individually and collectively observing and analyzing a complex system, and communicating effectively with each other in order to arrive at an accurate and reliable assessment of its health.
People-Based ISHM is Being Done Today

<table>
<thead>
<tr>
<th>Layer 1</th>
<th>Vehicle/Test Stand</th>
</tr>
</thead>
<tbody>
<tr>
<td>International Space Station</td>
<td>System: ON BOARD AUTOMATED ANALYS CAPABILITY</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Layer 2</th>
<th>Astronaut/Test Conductor</th>
</tr>
</thead>
<tbody>
<tr>
<td>International Space Station</td>
<td>Operator: FASTER, MORE ACCURATE ANALYSIS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Layer 3</th>
<th>Control Room</th>
</tr>
</thead>
</table>
| **International Space Station** | **Support:** FASTER, MORE ACCURATE ANALYSIS
Decreased Need |

<table>
<thead>
<tr>
<th>Layer 4</th>
<th>Back Control Room</th>
</tr>
</thead>
</table>
| **International Space Station** | **Support:** FASTER, MORE ACCURATE ANALYSIS
Decreased Need |

<table>
<thead>
<tr>
<th>Rocket Engine Test Stand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal threshold violation detection</td>
</tr>
</tbody>
</table>

- Added DIaK from on-board users.
- Added DIaK from broad group of experts.
- Added DIaK resources from larger community.
Determination of Health

- Use available SYSTEM-WIDE data, information, and knowledge (Dlak) to
 - Identify system state.
 - Detect anomaly indicators.
 - Determine and confirm anomalies.
 - Diagnose causes and determine effects.
 - Predict future anomalies.
 - Recommend timely mitigation steps.
 - Evolve to incorporate new knowledge.
 - Enable integrated system awareness by the user (make available relevant information when needed and allow to dig deeper for details).
 - Manage health information (e.g. anomalies, redlines).
 - Capture and manage usage information (e.g. thermal cycles).
 - Capture and manage design life and maintenance schedule.
 - Enable automated configuration.
 - Implement automated and comprehensive data analysis.
 - Provide verification of consistency among system states and procedures.
A plethora of Data, Information, and Knowledge (DIaK) must be applied to achieve high functional capability level (FCL) health management.

The ISHM Domain Model (ISHM-DM) encompasses DIaK and the tools to implement ISHM capability.
Data, Information, and Knowledge Management Architecture for ISHM (Information Architecture)
Classic architecture describing how systems are built
ISHM Capability Development

Standards for ISHM

- IEEE 1451 Family of Standards for Smart Sensors and Actuators. Lead by NIST (Dr. Kang Lee).
- OSA-CBM (Open Systems Architecture for Condition Based Maintenance). Developed by industry and government, and transferred to the MIMOSA (Machine Information Management Open Standards Alliance) organization.

ISHM capability must integrate DIaK across physical, virtual, and discipline boundaries. This is not possible in an affordable manner unless standards are used to achieve plug&play and interoperability.
ISHM Capability Development
Standards for ISHM

OSA-CBM (MIMOSA)

- **Advisory Generation**
 - Operations and maintenance advisories, capability forecast assessments, recommendations, evidence, and explanation.
 - Future health grade, future failures, recommendations, evidence and Explanation.

- **Prognostics Assessment**
 - Health grade, diagnosed faults and failures, recommendations, evidence and explanation.

- **Health Assessment**
 - Current enumerated state indicator, threshold boundary alerts, and statistical analysis data with timestamp and data quality

- **State Detection**
 - Descriptor data with timestamp and data quality

- **Data Manipulation**
 - Digitized data with timestamp and data quality

- **Data Acquisition**
ISHM Capability Development

Standards for ISHM

Architecture for pilot ISHM system implemented at NASA Kennedy Space Center, Launch Complex 20 (LC-20) showing the use of IEEE 1451.1, OSA-CBM, and OSA-EAI standards.
Software to develop ISHM Domain Models (ISHM-DM’s)

A software system for ISHM capability should support all core capabilities by integrating systematically DIAK through the ISHM-DM

- **Iconic representation of systems objects with visible and virtual links (relationships) used to provide intuitive representation of reasoning and context**: The mix of object orientation and iconic representation of DIAK provides the ability to intuitively visualize interrelationships and dig deep into details of the ISHM system. As complexity increases, graphical programming and visualization become essential.
Pilot ISHM Implementation
Chemical Steam Generator (CSG)
CSG ISHM Domain Model: User Interfaces
CSG ISHM Domain Model: Blueline/Redline User Interfaces
Example Redline Handling

E2 Control Room Redlines UI
- Requires extensive expertise in interpreting events
- Analysis of events takes considerable time and effort
- Only viewed by selected personnel at control room facility

ISHM CSG Model Redlines UI
- Provides easily recognizable details of events
- Immediately accessible to all personnel at control room facility, hardcopy printouts allow for ease of distribution and record keeping
- Additional event and test parameters and associated data are depicted
CSG ISHM Domain Model: Redline Event Handling

Auto-generated Redline Report

Navigation to Transducer Where Redline Event Occurred
Failures Modes and Effects Analysis (FMEA)
MIL-STD-1629A(2) NOT 3

<table>
<thead>
<tr>
<th>ID #</th>
<th>Item-Functional Identification</th>
<th>Function</th>
<th>Failure Modes and Causes</th>
<th>Mission Phase-Operational Mode</th>
<th>Failure Effects</th>
<th>Failure Detection Method</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Process Equipment</td>
<td>Fluid feed subsystem</td>
<td>Leak</td>
<td>Sealed subsystem maintaining pressure</td>
<td>Pressure leak</td>
<td>Decreasing pressure measurement</td>
</tr>
</tbody>
</table>

- **Mission Phase-Operational Mode**:
 - **Local End Effects**: Decreasing pressure measurement
 - **Next Higher Level**: Identify sealed subsystem, and check pressure sensors for decreasing pressure.

[Diagram of fluid feed subsystem and leak locations and effects connections]
“The IEEE (Institute of Electrical and Electronics Engineers) 1451 smart transducer interface standards provide the common interface and enabling technology for the connectivity of transducers to microprocessors, control and field networks, and data acquisition and instrumentation systems. The standardized TEDS specified by IEEE 1451.2 allows the self-description of sensors and the interfaces provide a standardized mechanism to facilitate the plug and play of sensors to networks. The network-independent smart transducer object model defined by IEEE 1451.1 allows sensor manufacturers to support multiple networks and protocols. Thus, transducer-to-network interoperability is on the horizon. The inclusion of P1451.3 and P1451.4 to the family of 1451 standards will meet the needs of the analog transducer users for high-speed applications. In the long run, transducer vendors and users, system integrators and network providers can all benefit from the IEEE 1451 interface standards [1].”

“Intelligent Sensor” is a “Smart Sensor” with the ability to provide the following functionality: (1) measurement, (2) measure of the quality of the measurement, and (3) measure of the “health” of the sensor. The better the sensor provides functionalities 2 and 3, the more intelligent it is.
ISHM Capability Development

Intelligent Sensors and Components

Typical Process Models for Sensors

- Noise Level Assessment and History
- Spike Detection and History
- Flat Signal Detection and History
- Response Time Characterization
- Intermittency Characterization and History
- Physical Detachment Characterization and History
- Regime Characterization and History
- Curve Fit on Identified Regimes

“Intelligent Sensor” is a “Smart Sensor” with the ability to provide the following functionality: (1) measurement, (2) measure of the quality of the measurement, and (3) measure of the “health” of the sensor. The better the sensor provides functionalities 2 and 3, the more intelligent it is.
The Virtual Intelligent Sensor Environment (VISE) converts all classic sensors installed in a rocket engine test stand into “intelligent sensors.”
CSG Anomalies Detected

- Evidence of TC degradation detected by VISE anomaly detection
- Advanced notification to determine the health of the whole system before beginning a test

Transducer Anomaly Report Graphs for one sensor in four consecutive tests.
ISHM Capability Development
Intelligent Sensors and Components

Example Intelligent Sensor Implementations

Mobitrum
www.mobitrum.com

Smart Sensor Systems
www.smartsensorystems.com

NIST
www.mel.nist.com

Esensors
www.eesensors.com
Health Assessment Database System (HADS)

- Health Electronic Data Sheets (HEDS)
- Repository of anomalies and algorithms
- Transducer Electronic Data Sheets (TEDS)
- Historical test data and analysis results
- Provides ease of data analysis and data trending
HADS Browser Application

HADS Browser Capabilities

- Allows longitudinal analyses and comparisons with previous test results
- Viewing usage statistics on monitored elements
 - cycle times on valves
 - mean time to failure
- Viewing anomalous events/data trends
- Viewing TEDS

Digital Data – 3 tests, multiple channels

Anomalous Data – 2 tests, 1 channel

TEDS Data
• SDI&E practices are employed to build complex systems.
• SDI&E for aerospace systems has developed into its own discipline, although theories and concepts have not been adequately formalized in an academic sense.
• The role of ISHM in SDI&E is linked to the concept of ISHM-DM’s, whereby every element that is part of a system comes with its own ISHM-DM that can be rolled-up into an overall system ISHM-DM in a plug&play approach.
• When two elements are assembled, the ISHM-DM of each element is incorporated into the ISHM-DM of the assembly. In this manner, DIaK compartmentalized in each element becomes immediately available and useful to the ISHM-DM of the assembly.
ISHM in Systems Design, Integration, and Engineering (SDI&E)

Paradigm Shift
Connecting Parts and Knowledge/Information

Assembling parts without knowledge/information --- We do this well

Integrated Knowledge ON SYSTEM

Manageable burden on people and documents

Reduced burden

We MUST do this

Intelligent Components: Specs, health, network enabled.

Intelligent Sensors: Specs, data, health, network enabled.

ISHM concept for systems integration of ISHM-DM’s
Intelligent Control for ISHM-Enabled Systems

• Control of complex systems that are ISHM-enabled is a nascent area, simply because ISHM itself is also relatively new.
• The objective is for the control function to make use of system health information in order to achieve its objectives.

The paradigm implies that control systems become users of health information, while at the same time making use of actuators to help further improve determination of the system health.
Intelligent Control for ISHM-Enabled Systems

Example Application (Reference 18 of the paper)
Conclusions

• A sound basis to guide the community in the conception and implementation of ISHM capability in operational systems was provided.

• The concept of “ISHM Model of a System” and a related Data, Information, and Knowledge (DIAK) architecture were described. The ISHM architecture is independent of the typical system architecture, which is based on grouping physical elements that are assembled to make up a subsystem, and subsystems combine to form systems, etc.

• It was emphasized that ISHM capability needs to be implemented first at a low functional capability level (FCL), or limited ability to detect anomalies, diagnose, determine consequences, etc. As algorithms and tools to augment or improve the FCL are identified, they should be incorporated into the system. This means that the architecture, DIAK management, and software, must be modular and standards-based, in order to enable systematic augmentation of FCL (no ad-hoc modifications).

• A set of technologies (and tools) needed to implement ISHM were described. One essential tool is a software environment to create the ISHM Model. The software environment encapsulates DIAK, and an infrastructure to focus DIAK on determining health (detect anomalies, determine causes, determine effects, and provide integrated awareness of the system to the operator). The environment includes gateways to communicate in accordance to standards, specially the IEEE 1451.1 Standard for Smart Sensors and Actuators.
Challenges and Opportunities

• EDUCATION
 – Inclusion of ISHM in the design process (Design for ISHM).
 – ISHM concept as a knowledge-based capability.
 – Software environments to build ISHM models.
 – Physics of failure.
 – Anomaly detection (algorithms, approaches, strategies).
 – Failure modes and effects analysis (FMEA) and root-cause tree analysis concepts and automation.
 – Software environments supporting processing within networked intelligent elements and standards-based interaction.
 – User interfaces: “integrated awareness of system elements.”

• RESEARCH
 – ISHM incorporates multiple disciplines: physics modeling or modeling of any phenomena occurring in a system, algorithm development, knowledge systems, user interfaces, software environments, intelligent systems, standards, network capabilities, etc.
 – Laboratory/pilot implementations (e.g. university power plant) for validation of the research. Very few “low functional capability” ISHM systems have been implemented (Space Shuttle Main Engine, Boeing 777 are the more visible cases). Experimental validation will bring high visibility to potential users/investors (NASA, DoD, DoE, Chemical and Oil industries, power plants, ships, etc.).
 – ISHM is in its infancy, but can develop very fast. Three notable annual conferences specific to ISHM are on-going:
 • ISHM Conference (usually in Covington Ky. Or Cincinnati, OH), started by AFRL (In its fifth year or so).
 • Prognostics and Health Management Annual Conference (its second event to take place at the end of September, in San Diego).
 • AIAA Infotech@jAerospace Conference has added ISHM as a technical area.
 – ISHM capability can be implemented and validated without disturbing on-going normal operations.
Mars Colony

It looks like someone needs a hug!

HEY! A little help over here!

Where did I leave the keys?

WEEEEEE!!!
Backup Slides
CSG ISHM Domain Model:
Top Layer View
CSG ISHM Domain Model:
Transducer Data Plots

Streaming data plots from selected sensors
Elements of an ISHM System:
ISHM Model - Proximate Cause Analysis
<table>
<thead>
<tr>
<th>Anomaly/Behavior</th>
<th>Demonstrated Cause</th>
<th>Detection Approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leaks (pipes, valves, etc.)</td>
<td>Various</td>
<td>Checking for pressure leaks using the concept of Pressure Subsystems.</td>
</tr>
<tr>
<td>Valve state undetermined</td>
<td>Defective feedback sensor</td>
<td>Determines valve state by checking consistency of command, feedback, open/close switches, and pressure conditions upstream and downstream.</td>
</tr>
<tr>
<td></td>
<td>Controller failure</td>
<td></td>
</tr>
<tr>
<td>Valve oscillation</td>
<td>Fluid contamination in hydraulic supply</td>
<td>Compare running standard deviation of command versus feedback.</td>
</tr>
<tr>
<td>Valve stuck</td>
<td>Fluid contamination in hydraulic supply Seat seizure</td>
<td>Feedback remains horizontal while command changes.</td>
</tr>
<tr>
<td>Excessive noise, spikes, etc.</td>
<td>Interference</td>
<td>Running standard deviation exceeds set limits. Thresholds violations during short time spans (compared to sensor time-constant).</td>
</tr>
<tr>
<td>Degradation</td>
<td>Wear, aging</td>
<td>Trend detection using curve fitting and determination of time-constants.</td>
</tr>
<tr>
<td>Prediction-Measurement mismatch</td>
<td>Various</td>
<td>Use predictive model (e.g. from Modeling & Analysis Group) to predict sensor values and compare with measurements.</td>
</tr>
</tbody>
</table>
Short-Time Fourier Transform Segmentation

Figure 1: Simulated input signal

Figure 2: Short-time FFTs window
Determining Valve-State

<table>
<thead>
<tr>
<th>Valve State</th>
<th>Command</th>
<th>Feedback</th>
<th>Open limit</th>
<th>Closed Limit</th>
<th>Associated Sensors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open</td>
<td>Open</td>
<td>Open</td>
<td>True</td>
<td>False</td>
<td>Agree with model</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Healthy</td>
</tr>
<tr>
<td>Closed</td>
<td>Closed</td>
<td>Closed</td>
<td>False</td>
<td>True</td>
<td>Agree with Model</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Healthy</td>
</tr>
</tbody>
</table>
Checking for Pressure Leaks

1. Wait for Valve State Change
 - No
 - Do Closed Elements Form a Boundary?
 - Yes
 - Define Pressurizable Subsystem
 - No
 - Mark All Elements of PS SUSPECT for Leak Anomaly
 - For Each Element
 - Change Health Parameters in Leak Process Model to SUSPECT
2. Do Sensors Indicate a Change in Pressure?
 - Yes
 - Check All Pressure Sensors
 - No
3. For Each PS
 - Root-Cause-Analysis
 - Root Cause

Pressurizable Subsystems:
- PS
- PS
- PS
Runtime Predictive Modeling
Intelligent Sensors

- Smart sensor
 - NCAP (Go Active, Announce)
 - Publish data
 - Set/Get TEDS
- Intelligent sensor
 - Set/Get HEDS
 - Publish health
- Detect classes of anomalies using:
 - Using statistical measures
 - Mean
 - Standard deviation
 - RMS
 - Polynomial fits
 - Derivatives (1^{st}, 2^{nd})
 - Filtering—e.g., Butterworth HP
 - FFT—e.g., 64-point
 - Wavelet Transforms (segmentation)
- Algorithms for
 - Flat
 - Impulsive (“spike”) noise
 - White noise
- Other (ANN, etc.)
Software to develop ISHM Domain Models (ISHM-DM’s)

A software system for ISHM capability should support all core capabilities by integrating systematically DIaK through the ISHM-DM

• **Object orientation**: object representation of system physical elements and associated process models is the best way to embed DIaK in a systematic and in an organized manner.

• **Distribution of ISHM-DM’s within and across networks**: ISHM-DM’s might be distributed among processors connected to a network, simply because it is necessary to use parallel processing, and/or ISHM-DM’s might be created by different people in various geographic locations
Software to develop ISHM Domain Models (ISHM-DM’s)

A software system for ISHM capability should support all core capabilities by integrating systematically DIaK through the ISHM-DM

- **Distribution across processing units**: Since multiple process models are expected to be running at any given time, the software environments should support parallel processing.

- **Inference engine**: Many tasks require an inference engine. Reasoning and decision making leading to anomaly detection, diagnostics, effects, and prognostics; require contextual integrity and cause-effect analysis using heterogeneous data and information.
Software to develop ISHM Domain Models (ISHM-DM’s)

A software system for ISHM capability should support all core capabilities by integrating systematically DIaK through the ISHM-DM

• **Integrated management of distributed DIaK**: DIaK must be managed in a way to allow embodiment of systems thinking across elements and subsystems. Often this is enabled by definitions of relationships among elements of systems that can be physically visible (i.e. attached to, belong to a system); or more abstracted relationships, as it relates to involvement by groups of objects in process models.

• **Definition of dynamic relationships among objects for use in reasoning**: Often, the framework for reasoning and application of process models changes dynamically with configuration changes, stages of operation, etc.