Cross-cutting Interoperability in an Earth Science Collaboratory

Christopher Lynnes, NASA/GSFC
Rahul Ramachandran, Univ. Alabama -- Huntsville
Kuo-Sen Kuo, NASA/GSFC

The Situation Today

Earth Science Stuff is (still) hard to use...

- data
- science tools / svcs
- analysis results
- knowledge about
 - data
 - tools
 - analysis methods
- find
- share
- reuse
- put together
 - data + data
 - data + tool
 - tool + tool
 - desktop + online svc
What Is An Earth Science Collaboratory?

- A rich data analysis environment with:
 - Access to a wide spectrum of Earth Science data
 - A diverse set of science analysis services and tools
 - A means to collaborate on data, tools and analysis
 - Supports sharing of data, tools, results and knowledge

Earth Science Collaboratory
Types of Interoperability

- Horizontal
- Vertical
- Procedural
- Meta

Search Client

Common Protocol

Catalog A

Catalog B

Catalog C

Types of Interoperability

- Horizontal
- Vertical
- Procedural
- Meta

Article

Analysis Results

Workflows

Tools/Svcs

Data

standard formats

CF* Convention
data citations
Types of Interoperability

- Horizontal
- Vertical
- Procedural
- Metadata

Procedural Interoperability Challenge
Types of Interoperability

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Framework</th>
<th>Framework</th>
<th>Meta-Interop</th>
</tr>
</thead>
<tbody>
<tr>
<td>Search</td>
<td>OGC Catalog Services for the Web</td>
<td>OpenSearch</td>
<td>Envelopment</td>
</tr>
<tr>
<td>Access</td>
<td>OGC Web Coverage Service</td>
<td>Data Access Protocol (OPeNDAP)</td>
<td>Gateways, Profile</td>
</tr>
<tr>
<td>Analysis</td>
<td>CF/netCDF</td>
<td>GIS formats</td>
<td>Profile?</td>
</tr>
<tr>
<td>Provenance</td>
<td>Open Provenance Model</td>
<td>Proof Markup Language</td>
<td>??</td>
</tr>
<tr>
<td>Model-Data “Fusion”</td>
<td>Data regridding</td>
<td>Model resampling</td>
<td>??</td>
</tr>
</tbody>
</table>

ESC Interoperability Status

Some interoperability ↔ Little or no interoperability
Cross-Cutting Interoperability Strategies for Legacy Standards

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Interoperability Addressed</th>
<th>Example</th>
<th>Achilles' Heel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Client plug-ins</td>
<td>Procedural: Search-access-analysis</td>
<td>Environmental Data Connector for ArcGIS</td>
<td>Scalability</td>
</tr>
<tr>
<td>Omnivorous APIs</td>
<td>Meta: standard formats</td>
<td>netCDF-Java API, reads (some) HDF</td>
<td>Adoption</td>
</tr>
<tr>
<td>Gateways</td>
<td>Meta: OPeNDAP + OGC</td>
<td>OPeNDAP + WCS</td>
<td>Performance</td>
</tr>
<tr>
<td>Multi-lingual Servers</td>
<td>Meta: OPeNDAP + OGC</td>
<td>THREDDS Data Server, ERDDAP</td>
<td>?</td>
</tr>
<tr>
<td>Standards Convergence</td>
<td>Meta: standard formats</td>
<td>netCDF4 + HDF</td>
<td>Scope, Cost</td>
</tr>
<tr>
<td>"Microformats"</td>
<td>Vertical</td>
<td>Data citations, esp. w/DOI</td>
<td>Adoption, Identifiers</td>
</tr>
</tbody>
</table>

We need standards for higher levels in the information stack to enable cross-cutting interoperability

<table>
<thead>
<tr>
<th></th>
<th>Article</th>
<th>Results</th>
<th>Workflow</th>
<th>Tool</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Article</td>
<td>M</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>Results</td>
<td>V</td>
<td>H</td>
<td>V</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>Workflow</td>
<td>V</td>
<td>V</td>
<td>M</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>Tool</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>H</td>
<td>H,M</td>
</tr>
<tr>
<td>Data</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

H = Horizontal Interoperability
V = Vertical Interoperability
M = Meta-Interoperability
Lessons for Standards Engineering?

- Go beyond horizontal interoperability: consider implications for vertical and procedural interoperability
- Incorporate both syntax AND semantics
- Leverage microformats
- Embrace the Open World Assumption