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Abstract 

Advancements in both land surface models (LSM) and land surface data assimilation, especially 

over the last decade, have substantially advanced the ability of land data assimilation systems 

(LDAS) to estimate evapotranspiration (ET).  This article provides a historical perspective on 

international LSM intercomparison efforts and the development of LDAS systems, both of which 

have improved LSM ET skill.  In addition, an assessment of ET estimates for current LDAS 

systems is provided along with current research that demonstrates improvement in LSM ET 

estimates due to assimilating satellite-based soil moisture products.  Using the Ensemble Kalman 

Filter in the Land Information System, we assimilate both NASA and Land Parameter Retrieval 

Model (LPRM) soil moisture products into the Noah LSM Version 3.2 with the North American 

LDAS phase 2 (NLDAS-2) forcing to mimic the NLDAS-2 configuration.  Through comparisons 

with two global reference ET products, one based on interpolated flux tower data and one from a 

new satellite ET algorithm, over the NLDAS2 domain, we demonstrate improvement in ET 

estimates only when assimilating the LPRM soil moisture product.  
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INTRODUCTION 1 

Land surface models predict terrestrial water, energy, momentum, and in some cases, 2 

biogeochemical exchange processes by solving the governing equations of the soil-vegetation-3 

snowpack medium based on atmospheric boundary conditions including precipitation, radiation, 4 

wind, temperature, humidity and pressure. By constraining land surface models with observed 5 

atmospheric boundary conditions and land surface states, land surface data assimilation improves 6 

our ability to understand and predict terrestrial water and energy fluxes and states, including 7 

evapotranspiration. The ability to predict evapotranspiration is critical for applications in weather 8 

and climate prediction, agricultural forecasting, water resources management, and hazard 9 

mitigation (e.g., NRC, 2010; 2011). Until recently, global or continental land surface modeling at 10 

horizontal scales of 1 km or finer was infeasible due to limits in computational and observational 11 

resources. 12 

 13 

Land Data Assimilation Systems (LDAS, Figure 1), are typically run “uncoupled” (or 14 

“offline”) to estimate water and energy fluxes and states using observationally-based 15 

precipitation, radiation and meteorological inputs.  However, they may also be run “coupled” to 16 

an atmospheric model for weather forecasts.  17 

 18 

This paper reviews current and developing capabilities for estimating evapotranspiration 19 

(ET) using land surface models (LSMs) as part of an LDAS.  First, we present a survey of land 20 

surface modeling for ET estimation, including recent intercomparison studies and LDAS efforts.  21 

Next, we compare LSM ET estimates from current LDAS systems to global gridded tower-based 22 

and remote sensing-based flux estimates.  Finally, we present the results from simulations that 23 
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employ data assimilation (DA) of remotely sensed soil moisture measurements to improve LSM 24 

ET estimates. 25 

 26 

BACKGROUND 27 

The ability of LSMs or soil-vegetation-atmosphere transfer schemes (SVATS) to predict 28 

evapotranspiration has advanced significantly since the original bucket (Manabe, 1969), Simple 29 

Biosphere (SiB; Sellers et al., 1986) and Biosphere-Atmosphere Transfer Scheme (BATS; 30 

Dickinson et al., 1986) models pioneered at the National Oceanic and Atmospheric 31 

Administration’s Geophysical Fluid Dynamics Laboratory (NOAA/GFDL), National 32 

Aeronautics and Space Administration’s Goddard Space Flight Center (NASA/GSFC) and the 33 

National Center for Atmospheric Research (NCAR), respectively.  Numerous advancements in 34 

second-generation LSMs have brought additional focus to snow physics and hydrology, such as 35 

the community Noah (Ek et al., 2003; Barlage et al., 2010; Livneh et al., 2010) and the Variable 36 

Infiltration Capacity (VIC; Liang et al., 1996; Bowling and Lettenmaier, 2010). So-called “third 37 

generation” LSMs include dynamic phenology and carbon stores, such as the Community Land 38 

Model (CLM; Bonan et al., 2002; Lawrence et al., 2011). To a large extent, this advancement has 39 

come as the result of three key community activities:  first, the Global Land Atmosphere System 40 

Study (GLASS) intercomparison studies, second, the North American and Global LDAS 41 

projects, and third, the recent LandFlux initiatives.  Below, we provide background on these 42 

efforts, including their major findings related to evapotranspiration estimation from LSMs. 43 

 44 

GLASS Intercomparison Studies:  PILPS, Rhone-AGG, and GSWP 45 

The international GLASS panel, as part of the Global Energy and Water Cycle Experiment 46 

(GEWEX), has spearheaded three major intercomparison projects designed to evaluate the skill 47 
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of land surface models for predicting water and energy fluxes and states.  The first was the 48 

Project to Intercompare Land-Surface Parameterization Schemes (PILPS; Henderson-Sellers et 49 

al., 1995; Pitman and Henderson-Sellers 1998).  This project focused on a series of evaluations 50 

conducted in phases using specified atmospheric boundary conditions and parameters at points or 51 

regions.  One of the key findings in this project is the documentation of the systematic 52 

improvements in LSMs from first-generation (bucket) to second-generation (e.g., SiB, BATS, 53 

Noah, VIC) through third generation (e.g., CLM).  Another major finding from PILPS is the 54 

synthesis work by Koster and Milly (1997), in which it was shown that the interplay between the 55 

evaporation and runoff formulations in any LSM, could be expressed via two model-independent 56 

quantities:  1) the soil-depth-integrated evaporation sink efficiency and 2) the runoff-generation 57 

fraction over this integrated evaporation sink.  A third major finding was that hydrologically-58 

oriented models such as VIC were shown to be more skillful for continental scale water budgets. 59 

 60 

The second major GLASS intercomparison projects, which represented a global-scale 61 

follow-on to PILPS, were the Global Soil Wetness Projects (GSWPs, Dirmeyer, 2011).   GSWP-62 

1 (Dirmeyer et. al, 1999) focused on the International Satellite Land-Surface Climatology Project 63 

(ISLSCP) Initiative I forcing data for the period 1987-88, and produced the first ever global, 64 

offline, multimodel land analysis based on “best possible” meteorological forcings.  In addition, 65 

GSWP-1 served as a pathfinder for the NLDAS and GLDAS efforts described below.  GSWP-2 66 

(Dirmeyer et al., 2006) built on the foundation of GSWP-1, and produced 1 degree global multi-67 

model fluxes and states for the ISLSCP II period from 1986-95 and showed that, in the absence 68 

of robust in-situ and/or remotely sensed soil moisture to provide constraints, the best estimate of 69 

soil wetness from multiple model products is a simple average.  In addition to this finding, 70 
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GSWP-2 also derived multi-model soil wetness values normalized to the LSM dynamic range 71 

controlling the ET-runoff interplay, as described above in the PILPS analyses by Koster and 72 

Milly (1997).  With respect to ET, GSWP-2 showed that ET has the smallest interannual 73 

variability of any water budget variable, and that global average transpiration is about one-third 74 

larger than direct evaporation from the soil. For the GSWP-2 period, latent heat flux exceeded 75 

sensible heat flux by about 20%, although that may reflect an absence of soil moisture limitations 76 

in later periods as observed by Jung et al. (2010) and discussed further below. 77 

The third major intercomparison project, which occurred between GSWP-1 and GSWP-2, is 78 

known as Rhone-AGG (Boone et al., 2004).  Rhone-AGG significantly advanced the 79 

community’s ability to observationally diagnose deficiencies in LSM hydrological cycles by 80 

looking at spatial scaling of water and energy balance processes finer than GSWP (8km vs. 1o), 81 

particularly the interplay of high-elevation snow accumulation/melt and lower-elevation 82 

streamflow.  Techniques for evaluating and diagnosing physical processes with simulated 83 

hydrographs helped advance LSM’s ability to simulate the daily hydrological cycles at multiple 84 

scales, most notably by implementing subgrid runoff formulations and elevation-based tiling for 85 

snow pack modeling.  Rhone-AGG and GSWP-2 occurred in parallel with and greatly benefitted 86 

the development of NLDAS and GLDAS, as described in the following sections. 87 

 88 

The North American Land Data Assimilation System 89 

The primary goal of the North American Land Data Assimilation System (NLDAS; Mitchell 90 

et al., 2004; http://ldas.gsfc.nasa.gov/nldas/; http://www.emc.ncep.noaa.gov/mmb/nldas/) is to 91 

construct quality-controlled, and spatially- and temporally-consistent, land-surface model (LSM) 92 

datasets from the best available observations and model outputs.  NLDAS is a collaboration 93 

project among several groups: NOAA/NCEP's Environmental Modeling Center (EMC), NASA's 94 
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Goddard Space Flight Center (GSFC), Princeton University, the University of Washington, the 95 

NOAA/NWS Office of Hydrological Development (OHD), and the NOAA/NCEP Climate 96 

Prediction Center (CPC).  The NLDAS project produces a LSM forcing dataset from a daily 97 

gauge-based precipitation analysis (temporally disaggregated using hourly radar data, satellite 98 

estimates, or other sources), bias-corrected shortwave radiation, and surface meteorology 99 

reanalyses.  This forcing is used to drive four separate LSMs to generate hourly model outputs of 100 

surface fluxes, soil moisture, snow cover, and runoff.  The current operational version of 101 

NLDAS uses the following LSMs: Noah – from NOAA/NCEP, Mosaic – from GSFC, VIC – 102 

from Princeton University, and SAC – from NOAA/OHD.  Datasets and simulations from 103 

NLDAS Phase 2 (NLDAS-2) extend back to January 1979 and continue to be produced in near 104 

real-time on a 1/8th-degree grid over central North America (from 25 to 53N and 125 to 67W).  105 

NLDAS individual and ensemble-mean LSMs are also used for drought monitoring and as part 106 

of an experimental drought forecast system.  The ensemble-mean on the drought monitor is a 107 

simple type of a multi-model analysis of LSMs, which have been shown to improve the depiction 108 

of simulated states in many ways (e.g., Guo et al., 2007, for GSWP-2 datasets).  NLDAS data 109 

products are distributed at EMC as well as at the NASA Goddard Earth Sciences Data and 110 

Information Services Center (GES DISC; http://disc.gsfc.nasa.gov/hydrology/).   111 

 112 

The first incarnation of the project, Phase 1 (NLDAS-1), comprised data since October 1996 113 

and consisted of a somewhat-similar yet different LSM forcing dataset (Cosgrove et al., 2003).  114 

Earlier versions of the same four LSMs (Noah, SAC, VIC, and Mosaic) were used in NLDAS-1 115 

as well.  NLDAS-1 datasets were extensively evaluated and validated against available 116 

observations in numerous studies, including examinations of the forcing (Luo et al., 2003) and of 117 
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the LSM output (Robock et al., 2003).  Robock et al. evaluated the LSM-simulated soil 118 

moistures and temperatures against observations from the Oklahoma Mesonet, and also 119 

evaluated surface latent, sensible, and ground fluxes using ARM/CART stations.  They found 120 

that the Noah LSM was closest to the observations of the latent heat flux in this region over a 121 

two-year period.  Lohmann et al. (2003) intercompared water balance and streamflow between 122 

the LSMs and found regional differences up to a factor of 4 in the simulated mean annual runoff 123 

and up to a factor of 2 in the mean annual evapotranspiration, with monthly differences even 124 

greater.  Other land parameters evaluated from NLDAS-1 included soil moisture (Schaake et al., 125 

2004), snow cover extent (Sheffield et al., 2003), and snow water equivalent (Pan et al., 2003).  126 

Many of these studies from NLDAS-1 also tested the effects of LSM physics and parameter 127 

changes on the evaluation results. 128 

 129 

The NLDAS-2 forcing dataset corrects the daily gauge precipitation analysis using a PRISM 130 

(Parameter-elevation Regressions on Independent Slopes; Daly et al., 1994) method which 131 

considers the topographic effect on precipitation.  The precipitation is temporally disaggregated 132 

to hourly, primarily using Stage II radar data.  In locations/times when the radar data is not 133 

available, satellite retrievals, a coarser-scale hourly gauge analysis, or reanalysis data is used.  134 

The non-precipitation land-surface forcing fields for NLDAS-2 are derived from the analysis 135 

fields of the NCEP North American Regional Reanalysis (NARR, Mesinger et al., 2006).  136 

Surface pressure, surface downward longwave radiation, and near-surface temperature and 137 

humidity fields are vertically adjusted to the terrain on the NLDAS grid.  The surface downward 138 

shortwave radiation is bias-corrected using GOES satellite observations.  NLDAS-2 also 139 

contains numerous improvements to the equations of the LSMs as well as their calibration.  The 140 
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snow physics in the Noah LSM was upgraded (Livneh et al., 2010), VIC model parameters were 141 

calibrated using streamflow observations (Troy et al., 2008), SAC used an updated potential 142 

evaporation dataset (Xia et al., 2011b), and Mosaic used updated model parameters (for details, 143 

see Robock et al., 2003).  Xia et al. (2011a) analyzed water and energy fluxes in the upgraded 144 

NLDAS-2 LSMs, including their ensemble-mean and model spread.  In a separate study, Xia et 145 

al. (2011c) examined the spatial distribution of the correlation between monthly-mean 146 

precipitation and evapotranspiration (ET) the four LSMs; they found that the two soil vegetation 147 

atmosphere transfer (SVAT) LSMs (Noah and Mosaic) had a stronger correlation, while the two 148 

hydrological LSMs (VIC and SAC) had a stronger correlation between the precipitation and 149 

runoff.  Wei et al. (2011) evaluated improvements of the Noah LSM related to warm season 150 

simulation in NLDAS by adding a seasonally- and spatially-varying LAI as well as 151 

modifications to Noah’s treatment of the vertical profile of root density, the minimum stomatal 152 

resistance parameters, the diurnal variation of surface albedo, the roughness length for heat, and 153 

the vapor-pressure and soil moisture deficit terms.  This study compared the NLDAS-2 version 154 

of Noah to ARM/CART latent heat flux observations and found reduced biases, which also 155 

helped improve the simulation of the mean annual water balance.  Mo et al. (2011) compared ET 156 

from three NLDAS-2 LSMs against Ameriflux observations and found that Noah and VIC 157 

tended to exhibit low ET biases in the winter, with slight high ET biases in the summer, despite 158 

no apparent biases in NLDAS-2 net radiation. Mosaic generally had higher ET than the 159 

observations as well as from Noah and VIC, with a three-member ensemble-mean performing 160 

the best,, consistent with the findings of GSWP discussed in the previous section.  Kovalskyy et 161 

al. (2011) estimated evapotranspiration using a scheme that combines a water balance model 162 

with an event-driven phenology model, driven with NLDAS-2 forcing; they compared these 163 



 

10 

estimates against ET from the MODerate Resolution Imaging Spectroradiometer (MODIS) 164 

instrument (Mu et al., 2007) as well as from the NLDAS-2 Mosaic LSM, and showed better 165 

agreement to the MODIS-derived ET at the 5-km scale of the study. 166 

 167 

The Global Land Data Assimilation System 168 

The Global Land Data Assimilation System (GLDAS) led at NASA/GSFC (Rodell et al., 169 

2004a) also uses satellite- and ground-based observations to construct a forcing dataset to drive 170 

four LSMs.  The four LSMs in GLDAS are Noah, Mosaic, VIC, and CLM, and GLDAS data 171 

extends globally from January 1979 at both 1.0-degrees (all LSMs) and 0.25-degrees (Noah 172 

only).  In addition to extending an NLDAS-style framework to the global scale, GLDAS was one 173 

of the first LDASs to routinely assimilate satellite-based surface states to improve simulated 174 

water and energy fluxes and states.  GLDAS has included data assimilation of MODIS snow 175 

cover to constrain the modeled SWE (after Rodell and Houser, 2004), and has also studied the 176 

effects of assimilating remotely-sensed skin temperatures and soil moistures.  While considering 177 

ET produced by GLDAS, Rodell et al. (2004b) compared basin-scale estimates of 178 

evapotranspiration produced by GLDAS/Noah and other models against a water balance 179 

approach using the Gravity Recovery And Climate Experiment (GRACE) satellites, and found 180 

that the GRACE estimates were generally within the range of the model results, and the biases 181 

were consistent and the uncertainty on the same order as GRACE..  Kato et al. (2007) examined 182 

the choice of LSM, land cover, soils, elevation, and forcings using GLDAS on the simulated 183 

latent and sensible heat fluxes and soil moisture compared to CEOP in situ observations.  They 184 

found that the LSM choice had the biggest effect on the simulated output (including ET), and 185 

that ET was most sensitive first to precipitation, then land cover, and then radiation.  Syed et al. 186 

(2008) compared variations in terrestrial water storage from GRACE compared to GLDAS 187 



 

11 

simulations and found that ET was most effective in dissipating terrestrial water storage in the 188 

mid-latitudes.  Despite all these detailed studies, however, none have directly evaluated both 189 

GLDAS and NLDAS using observations over CONUS.  One study that did compare early 190 

versions of both systems (Jambor et al.,2002) demonstrated the benefit of satellite-based 191 

precipitation used in conjunction with model precipitation in GLDAS while using the gauge-192 

based precipitation in NLDAS as the evaluation dataset. Overall, GLDAS’s advancements in 193 

land data assimilation and GRACE-based ET estimation significantly advanced the ability of 194 

LSMs to estimate ET, subject to observational constraints.  195 

 196 

The LandFlux Initiative and Reference ET Products 197 

The LandFlux initiative has been coordinated by the GEWEX Radiation Panel to develop 198 

and evaluate consistent and high-quality global ET datasets for climate studies.  Recently 199 

developed capabilities for global ET estimation using LSMs (as discussed above) as well as 200 

techniques for synthesizing satellite data, flux tower data, and atmospheric reanalyses provide 201 

the opportunity to produce global ET products using different approaches.  The LandFlux-EVAL 202 

project (Mueller et al., 2011; Jiménez et al., 2011) is currently evaluating multiple global ET 203 

products produced using four different categories of techniques: 1) Observations-based 204 

diagnostic datasets; 2) observationally-driven “offline” LSM products (e.g., GSWP, GLDAS); 3) 205 

atmospheric reanalyses; and 4) IPCC AR4 simulations from 11 GCMs.  In Mueller et al., 41 206 

global land ET datasets were evaluated along with IPCC AR4 GCM simulations for the 1989–207 

1995 time period.  An interesting finding of a cluster analysis conducted as part of this study is 208 

that the GLDAS-Noah and CLM products were closely related to two different reference ET 209 

products, including the Jung et al., 2009 product described further below. 210 

 211 
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Jiménez et al. (2011) evaluated 12 monthly mean land surface ET and other flux products for 212 

the period 1993–1995 and found that the 12-product global annual mean latent heat flux (Qle) 213 

was approximately 45 Wm−2 with a spread of approximately 20 Wm-2.  Similar spreads were 214 

found for sensible (Qh) and net radiative (Rn) fluxes, with larger spreads for tropical rainforest 215 

year-round and grassland or crop in the dry season.  Analysis for large river basins indicated 216 

large spreads for the Danube, Congo, Volga, and Nile basins, with smaller spreads for other 217 

basins, including the Mississippi. 218 

 219 

One of the key reference datasets for the LandFlux-EVAL effort, also used as one of the  220 

reference datasets in our LDAS analysis described in subsequent sections, is the Max Planck 221 

Institute (MPI) flux dataset from Jung et al., (2009), which was created by synthesizing 222 

FLUXNET (Baldocchi et al., 2001) tower data with meteorological forcings and vegetation 223 

information from interpolated station and satellite data to produce a global, monthly, 1/2 degree 224 

resolution estimate of land ET from 1982 to 2008.  Jung et al. (2010) found that global annual 225 

ET has been increasing by approximately 7 mm per year per decade during the period 1982-226 

1997, with moisture limitation eliminating this trend during the period 1998-2008. Another ET 227 

product used as a reference dataset in this study is the global 1km ET estimates based on MODIS 228 

satellite data (Mu et al., 2011).  In this dataset, ET estimates are derived using Mu et al. (2011)’s 229 

algorithm, which is improved relative to the previous Mu et al. (2007) work. The ET algorithm is 230 

primarily based on the Penman-Monteith equation and considers the surface energy partitioning 231 

and environmental constraints to derive ET. In this study, we employ the monthly averaged 232 

MOD16 ET datasets.  233 

 234 
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Although the LandFlux-EVAL effort has compared model-based GLDAS and GSWP flux 235 

estimates to observationally-based MOD16 and MPI reference flux estimates, a key question not 236 

previously addressed by LandFlux-EVAL is the extent to which assimilating observed soil 237 

moisture can reduce the differences between the model-based and observationally-based flux 238 

estimates.  Addressing this question is one of the primary motivations of the current work. 239 

 240 

EXPERIMENTAL SETUP 241 

To illustrate the current capability of the current LDAS systems to simulate 242 

evapotranspiration at continental scales, we compare estimates from GLDAS, and two NLDAS-243 

equivalent simulations over the NLDAS-domain with two reference datasets: (1) the gridded 244 

FLUXNET dataset from Jung et al. (2009) and (2) the MOD16 dataset developed by Mu et al. 245 

(2011). Further, we also present estimates from the NLDAS-equivalent simulations that employ 246 

the assimilation of satellite surface soil moisture retrievals. Because the NLDAS uses only a 247 

single version of the Noah LSM, we chose to produce our NLDAS-equivalent products using the 248 

Land Information System (LIS; Kumar et al., 2006, Peters-Lidard et al., 2007) with Noah 249 

versions 2.7.1 and 3.2 so that we can examine the impacts of recent physics changes in Noah on 250 

ET estimation. The experiments employ the same domain configuration used in the NLDAS 251 

project (from 25-53oN and 125-67oW at 1/8th-degree resolution) and are designed in a manner as 252 

similar as possible to the NLDAS-2 Noah model simulations.  While the forcings and NLDAS-253 

equivalent simulations are at a 1/8 degree horizontal resolution, we average the outputs to ½ 254 

degree resolution prior to comparisons with the FLUXNET and MOD16 datasets. The GLDAS 255 

Noah datasets are similarly averaged from ¼-degree to the ½ degree resolution.  The forcing for 256 

the NLDAS-equivalent runs is the NLDAS-2 described above. The simulations are run with a 15 257 
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minute timestep, and the models are spun up by running from 1979 to 1985 and then 258 

reinitializing the model from 1979 to generate outputs from 1979-2010.  259 

 260 

In the data assimilation integrations, we employ surface soil moisture data derived from the 261 

Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) sensor 262 

aboard the Aqua satellite. Two different AMSR-E retrieval products are employed in the data 263 

assimilation simulations; (1) the NASA Level-3, “AE_Land3” product (version 6, Njoku et al., 264 

2003) and (2) AMSR-E Land Parameter Retrieval Model (LPRM) product developed at NASA 265 

GSFC and VU Amsterdam (Owe et al., 2008). The NASA product is primarily based on X-band 266 

brightness temperatures, whereas both X-band and C-band brightness temperature-based 267 

retrievals are used in the LPRM product.  Measurements from both ascending and descending 268 

overpasses are used in these products.  A number of quality control measures are applied to the 269 

soil moisture retrievals prior to data assimilation, similar to the approaches followed in Reichle 270 

et al. (2007) and Liu et al. (2011). In the soil moisture products, retrievals flagged for dense 271 

vegetation, precipitation, snow cover, frozen ground, and Radio Frequency Interference (RFI) 272 

are excluded in the assimilation system. Further, additional quality control is applied based on 273 

the information from the land surface model, where the retrievals are excluded when the land 274 

surface model indicated active precipitation, non-zero snow cover, frozen soil or dense 275 

vegetation (when green vegetation fraction > 0.7).  276 

 277 

The assimilation integrations employ a one-dimensional Ensemble Kalman Filter (EnKF) 278 

algorithm, which is a widely used technique for soil moisture data assimilation (Reichle et al., 279 

2002, Crow and Wood, 2003, Reichle et al., 2007, Kumar et al., 2008, Kumar et al., 2009). An 280 
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ensemble size of 12 is used in these simulations (Kumar et al., 2008), with perturbations applied 281 

to both the meteorological fields and model prognostic fields to simulate uncertainty in the soil 282 

moisture fields. The parameters used for these perturbations are listed in Table 1, which are 283 

based on earlier data assimilation studies (Kumar et al., 2009). As algorithms such as EnKF are 284 

designed to correct random, zero-mean errors and assume the use of unbiased observations 285 

relative to the model generated background, it is often a common practice to scale the 286 

observations prior to data assimilation to match the model’s climatology (Reichle and Koster, 287 

2004, Drusch et al., 2005, Reichle et al., 2007, Kumar et al., 2009). Here we employ the 288 

Cumulative Distribution Function (CDF)-scaling approach of Reichle and Koster (2004), where 289 

the observations (roughly corresponding to a maximum depth of 2cm) are rescaled to the 290 

model’s 10cm surface soil moisture climatology by matching the CDF of the observations to the 291 

CDF of the model soil moisture. The model CDF and observation CDF are computed using 7 292 

years of data (2002-2008), separately for each grid point.     293 

 294 

As the soil moisture retrievals are available only from 2002 onwards, the NLDAS-equivalent 295 

simulations with data assimilation are conducted during the period of 2002-2008.  During this 296 

period, we update not only the surface (10cm) soil moisture in Noah, but also the layer 2 through 297 

layer 4 soil moisture, following the parameters in Table 1.  The comparisons presented in next 298 

section are limited to the data assimilation period (2002-2008).   299 

 300 

CURRENT RESEARCH FINDINGS AND FUTURE WORK 301 

The results presented in this section focus first on the evaluation of the LDAS ET estimates 302 

that do not employ data assimilation. This is followed by the description of the impact of soil 303 

moisture data assimilation on ET estimation.  304 
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 305 

Evaluation of the ET estimates from LDAS simulations 306 

Table 2 presents the domain-averaged root mean square and bias errors and the associated 95% 307 

confidence intervals, for latent (Qle) and sensible (Qh) heat flux estimates from the three LDAS 308 

simulations compared against the gridded FLUXNET and MOD16 datasets. This table also 309 

shows results from the data assimilation experiments to be discussed in the next section.  310 

Overall, the NLDAS-like simulation using the Noah 2.7.1 model provides better estimates of Qle 311 

(RMSE of 19.3 Wm-2 against FLUXNET and 21.5 Wm-2 against MOD16) relative to other 312 

products. Average seasonal cycles of these error metrics stratified monthly are presented in 313 

Figure 2. In both sets of comparisons, the largest differences between the LDAS simulations are 314 

observed during the spring and fall months, with NLDAS-like simulations with Noah 2.7.1 315 

providing the better estimates. Qle estimates from GLDAS show underestimation in the late 316 

summer and fall months and an overestimation in the spring and early summer months, relative 317 

to both reference datasets. Comparatively, NLDAS-like integration with Noah 2.7.1 indicates 318 

lower biases most months, but the biases are consistently positive.  Though Noah 3.2 is a newer 319 

version of the Noah model, the flux estimates appear to be degraded overall relative to Noah 320 

2.7.1, with the comparison against FLUXNET data indicating more severe degradations relative 321 

to the MOD16.  This may reflect uncertainty in the reference flux datasets during the springtime, 322 

in particular. During the fall months, bias estimates in Noah 3.2 are improved relative to Noah 323 

2.7.1 (in the comparisons against FLUXNET), but during spring and summer months, biases in 324 

Noah 3.2 ET increase compared to that of Noah 2.7.1. It can be noted that these trends in RMSE 325 

and bias errors are highly statistically significant, as indicated by the 95% confidence interval 326 

values given for each error estimate. Note that any spatial auto-correlation of RMSE and Bias 327 

values across the domain is ignored in computing these confidence intervals. The tight intervals 328 
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reported in Table 2 are likely to increase if allowances for spatial autocorrelation of errors are 329 

included in the confidence interval computations. The trend of increased flux error estimates in 330 

Noah 3.2 relative to Noah 2.7.1 is likely a result of the changes in model parameters (such as 331 

LAI) along with other changes to Noah’s warm season physics as described in Wei et al. (2011).  332 

As discussed in the Background section, Wei et al. (2011) showed improvement of these physics 333 

changes when compared to ARM/CART flux datasets, whereas our analysis uses gridded data 334 

(FLUXNET and MOD16) over the entire NLDAS domain, including many different vegetation 335 

types and climate regimes. Other studies (also presented in the Background section) showed 336 

Noah 3.2’s improved simulation of streamflow, snow, and other hydrologic variables relative to 337 

Noah 2.7.1. 338 

 339 

Figure 3 provides an intercomparison of the seasonally-averaged Qle computed using 340 

estimates from three consecutive months (DJF represents December-January-February, MAM 341 

represents March-April-May, JJA represents June-July-August and SON represents September-342 

October-November) from the three LDAS integrations and the two reference datasets, the 343 

gridded FLUXNET and MOD16 product.  Relative to FLUXNET, all three LDAS datasets show 344 

higher ET in the spring MAM months in the Southeast and Lower Mississippi River Basin.  345 

During JJA, however, GLDAS compares much better than the NLDAS-like Noah simulations.  346 

Interestingly, the Noah 2.7.1 and Noah 3.2 results for JJA are generally similar except over 347 

highly vegetated crop regions in the upper Midwest and the irrigated growing areas along the 348 

Mississippi River.  Neither reference dataset seems to reflect irrigated areas (see, for example 349 

Table 4 in Mu et al., 2011), and the differences in Noah2.7.1 and Noah3.2 do not include 350 

irrigation effects, so these differences for crops are likely due to changes in the aerodynamic 351 
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conductance formulation in Noah, implemented primarily for improved snowmelt modeling.  352 

Here, the Noah 3.2 JJA Qle is much higher, indicating that the parameter values used for the 353 

vegetation type(s) in these regions may need refinement. A closer look during MAM also shows 354 

this same pattern with higher Qle in Noah 3.2 relative to Noah 2.7.1. It can be noted that except 355 

MOD16, all other datasets show an artifact of lower Qle in California and West Coast regions.  356 

Interestingly, the higher Qle areas for MOD16 do not seem to correspond to known irrigated 357 

areas. During the fall SON months, the Qle from GLDAS is low compared to FLUXNET, 358 

particularly over the Upper Plains and Southeast; the Noah simulations show a pattern overall 359 

much closer to FLUXNET, but with too high Qle magnitudes right along the Gulf Coast. 360 

MOD16, on the other hand, indicates lower Qle over the High plains consistent with GLDAS, 361 

and higher Qle over the Southeast, consistent with the NLDAS-based estimates.  362 

 363 

Impact of soil moisture data assimilation on ET estimates 364 

Figure 4 provides a comparison of the average seasonal cycles of RMSE and Bias in Qle 365 

estimates (again, relative to the two reference datasets) from the NLDAS-like simulation without 366 

any data assimilation (termed as the "open loop" (OL) simulation) and the two integrations that 367 

employ the assimilation of surface soil moisture retrievals from NASA and LPRM products 368 

(NASA-DA and LPRM-DA, respectively). In this comparison, all three model integrations 369 

employ Noah 3.2. It can first be observed that the assimilation of soil moisture retrievals impact 370 

the Qle estimates, primarily during the summer and fall months. The Qle estimates from the open 371 

loop simulation are systematically improved by the assimilation of LPRM soil moisture 372 

retrievals, whereas the assimilation of NASA retrievals shows degradation. Compared to 373 

FLUXNET, the domain averaged RMSE of the open loop integration is 27.6 Wm-2 and it 374 

increases to 29.4 Wm-2 in the NASA-DA integration (Table 2). The improvements shown in 375 
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Figure 4 from LPRM-DA translates to a domain averaged RMSE of 25.6 Wm-2 when compared 376 

to FLUXNET. The trends in RMSE and Bias are similar in the comparisons against MOD16. 377 

The RMSE of the open loop integration is 22.7 Wm-2 and it improves to 21.9 Wm-2 with the 378 

assimilation of LPRM soil moisture retrievals. The assimilation of NASA soil moisture retrievals 379 

degrades the ET estimates, with a domain averaged RMSE of 24.5 Wm-2.  380 

 381 

To quantify the spatial improvements due to assimilation, we define an "improvement 382 

metric" as difference between the RMSE of the integration with data assimilation and the RMSE 383 

of the open loop integration (RMSE (DA) – RMSE (OL)). If data assimilation improves the flux 384 

estimates (i.e., reduces the RMSE), then the improvement metric will be negative. On the other 385 

hand, the improvement metric will be positive if the assimilation simulation degrades the flux 386 

estimates. Figures 5 and 6 present a comparison of the improvement metric stratified seasonally, 387 

from both assimilation integrations, as compared to both reference ET datasets. Figure 5 388 

represents the improvement metric when using the NASA AMSR-E product and Figure 6 shows 389 

the corresponding comparisons when using the LPRM product. In both sets of comparisons, the 390 

LPRM-based assimilation provides more systematic improvements in the flux estimates, whereas 391 

the NASA-based integration indicates degradations over several regions. For example, during 392 

MAM months, the flux estimates from NASA-DA show degradation over the Southern Great 393 

Plains, with improvements observed over Illinois, Indiana, Ohio and areas along the Mississippi 394 

river; these are the same areas discussed earlier in Figure 3 where Noah 3.2 had higher simulated 395 

ET.  The LPRM-integration on the other hand, shows improvements over large areas of 396 

Midwest, and South-central U.S during MAM, with no significant degradations observed as a 397 

result of soil moisture assimilation. During JJA, the NASA-DA shows degradations in most 398 
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regions interspersed with improvements over a few regions near North Dakota, Illinois, Eastern 399 

Texas and the West coast, in the comparisons using the FLUXNET data. The MOD16-based 400 

comparisons show similar results, with small regions of improvements over the Central and 401 

Eastern US with degradations over most of the domain. In contrast, the JJA comparisons for 402 

LPRM-DA show degradations in a few regions only, with improvements observed over large 403 

areas of the Midwest U.S. During the SON months, similar trends are seen, with degradations 404 

over Mexico and regions near Ohio and Illinois (when compared to FLUXNET) and Mississippi 405 

river basin areas (when compared to MOD16). The LPRM-DA based simulations show 406 

improvements over Midwest and Central US in the comparisons against MOD16 and no 407 

significant degradations in the comparisons against FLUXNET.  408 

Further analysis of the differences shown in Figures 5 and 6 reveals that the magnitudes of 409 

the differences are strongly related to landcover type.  Based on further analysis (not shown), 410 

stratifying the Qle RMSE improvements due to DA with respect to landcover type, we found that 411 

the most significant improvements occur in croplands for both soil moisture datasets and both 412 

reference datasets.  Grassland was also found to have significant changes in Qle RMSE with both 413 

datasets, and more so with respect to the MOD16 reference data.  In general, DA does not occur 414 

over heavily vegetated regions, due to masking out high-vegetation water content areas which 415 

make soil moisture retrievals difficult.  Nonetheless, our results suggest modest changes over 416 

evergreen needleleaf forests and woodlands, especially for the NASA product.  417 

 418 

In order to relate the improvements and degradations in latent heat flux estimates to changes 419 

in soil moisture resulting from data assimilation, we present a comparison of the surface soil 420 

moisture difference maps in Figure 7. The difference maps represent the mean surface soil 421 



 

21 

moisture of the data assimilation integration subtracted by the mean surface soil moisture of the 422 

open loop integration. In other words, the difference maps represent the changes in soil moisture 423 

values introduced by data assimilation, averaged seasonally. A negative difference indicates that 424 

the soil moisture is drier due to assimilation and a positive difference indicates that the soil 425 

moisture is wetter from assimilation. By comparing Figures 5 and 6 against Figure 7, it can be 426 

observed that the spatial patterns of the improvement metric correlates well with those of the soil 427 

moisture difference maps. For example, during MAM, both the NASA-DA and the NASA-428 

LPRM (with a smaller magnitude) soil moisture difference maps indicate drier patterns over 429 

Illinois, Indiana, Ohio and areas along the Mississippi river that leads to corresponding 430 

improvements in latent flux estimates (Figure 5) over these same regions. During JJA, the soil 431 

moisture changes due to assimilation of NASA and LPRM are generally of opposite sign, and 432 

seem to show a mix of improvements and degradations in the fluxes, depending on landcover.  . 433 

During SON, assimilation of NASA retrievals dries the soil moisture over Lower Texas and 434 

Mexico (relative to OL) and it leads to a corresponding degradation in the flux estimates over 435 

these regions when compared to FLUXNET (Figure 5, panel for SON). Similar patterns of tight 436 

correlation between the soil moisture difference patterns and the flux improvement patterns can 437 

be observed in the LPRM-DA integration. During JJA, over the Midwest US, the LPRM-DA 438 

causes the soil moisture simulations to be drier than the open loop simulation leading to 439 

improvements in the latent heat flux estimates over the same areas.   440 

 441 

It is important to note that the CDF-scaling approach for data assimilation used here (and 442 

described previously) is intended to preserve the soil moisture climatology of the LSM, while 443 

taking advantage of observed anomalies.  Therefore, the results suggest that the 444 
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improvements/degradations in Qle due to soil moisture assimilation are a direct result of 445 

improved/degraded soil moisture stress responses in the stomatal resistance formulation of the 446 

Noah 3.2 LSM.  This sort of non-linear feedback is likely due to the ability of LPRM-DA to 447 

redistribute water in a seasonal cycle that corresponds to Noah’s biases in soil moisture and ET.  448 

By design, and verified by us (not shown) the soil moisture increments from both NASA-DA and 449 

LPRM-DA do not change the mean surface soil moisture relative to the open loop.  However, as 450 

most easily explained via the bias time series in Figure 4, significant seasonal changes in soil 451 

moisture, translate into varying ET responses.  In winter, the change in ET from the OL to the 452 

DA is nominal (since Rnet, and therefore Qle is small).  In spring, LPRM tends to reduce soil 453 

moisture relative to the open loop and therefore Qle bias while NASA-DA increases soil 454 

moisture and Qle bias.  In the summer, the open loop skill is higher, and both products further 455 

compensate for errors, with LPRM tending to overdry and NASA tending too wet.   Overall, the 456 

net effect is a domain-averaged increase of 2 Wm-2 in total Qle for the LPRM-DA, and a 3 Wm-2 457 

reduction in Qle for NASA-DA.   458 

 459 

Evaluation of the surface energy partition from LDAS simulations 460 

The surface energy partition consists of two key components, the latent heat and the sensible 461 

heat fluxes. Though the primary focus of this article is to evaluate the latent heat estimates, we 462 

also evaluated the sensible heat flux (Qh) estimates from the LDAS simulations using 463 

FLUXNET data to examine if the trends seen in the Qle estimates are consistent for both energy 464 

partition terms. Trends in error metrics similar to those seen with latent heat flux estimates are 465 

found in the sensible heat estimates. As shown in Table 2, Qh estimates from GLDAS has a 466 

domain averaged RMSE of 23.4 Wm-2 whereas the NLDAS-like simulations with Noah 2.7.1 467 

and Noah 3.2 have domain averaged RMSEs of 21.1 and 32.5 Wm-2, respectively. The 468 
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assimilation with LPRM data improves the domain averaged RMSE to 30.4 Wm-2 (over that of 469 

the open loop integration NLDAS-like simulation with Noah 3.2), whereas the assimilation of 470 

NASA retrievals degrades the sensible heat flux estimates with a domain averaged RMSE of 471 

34.5 Wm-2. Spatial patterns of improvements and degradations similar to that seen in Figures 5 472 

and 6 are observed for sensible heat fluxes as well (not shown; for FLUXNET only, as Qh is not 473 

available from MOD16). Again, these trends are statistically significant, as seen from the 474 

confidence interval values presented in Table 2.  475 

 476 

SUMMARY 477 

This article provides a description of the capabilities of Land Data Assimilation Systems (LDAS) 478 

for generating ET estimates and presents a quantitative evaluation of ET estimates, expressed as 479 

latent heat flux (Qle), from a number of LDAS simulations. The simulated ET values from 480 

GLDAS and LSM simulations conducted over the NLDAS-domain using two different versions 481 

of the Noah land surface model (Noah version 2.7.1 and version 3.2) are compared against two 482 

reference ET datasets: the gridded tower-based estimates from the FLUXNET measurements and 483 

ET estimates based on MODIS satellite data, known as the MOD16 product. The article also 484 

presents an evaluation of the impact of soil moisture data assimilation in ET estimation. The data 485 

assimilation integrations employ two different retrievals of the AMSR-E soil moisture 486 

measurements; the NASA Level-3 product and the AMSR-E Land Parameter Retrieval Model 487 

product from VU Amsterdam.  488 

 489 

The evaluation of ET fields indicate that the simulation using NLDAS forcing with Noah 490 

2.7.1 provides slightly better estimates among the LDAS simulations without data assimilation, 491 

although all Noah simulations suffer from significant high biases relative to the two reference 492 
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dataset.  This could be due to a combination of parameter and structural errors in addition to 493 

errors in the reference data themselves. The three LDAS simulations differ most during the 494 

spring and fall months. Comparison of the seasonally averaged ET fluxes show overestimations 495 

during MAM in all three LDAS products over the Southeast and Lower Mississippi River basin. 496 

During JJA, the differences between the two Noah model-based simulations are more prominent 497 

over vegetated crop regions in the upper Midwest and irrigated areas along the Mississippi river. 498 

GLDAS product shows underestimation in ET during the SON months, whereas the NLDAS-499 

forced Noah simulations show better agreement with both FLUXNET and MOD16 estimates 500 

during this period.  501 

 502 

The assimilation of surface soil moisture impacts the ET estimates, particularly during the spring 503 

(MAM) and summer (JJA) months, which is when the expected impacts would be largest due to 504 

increasing soil moisture stress, insolation, and vegetation fraction conditions. The assimilation of 505 

LPRM retrievals demonstrates systematic, statistically significant but modest improvements in 506 

ET estimates relative to the Noah model simulation without data assimilation. The assimilation 507 

of NASA retrievals, on the other hand, provides mixed results, with improvements in a few 508 

regions of the NLDAS-domain. Overall, the integration using the NASA soil moisture retrievals 509 

indicates degradation of the open loop ET estimates. The results also indicate strong correlations 510 

between the improvements/degradations of ET estimates and the changes in soil moisture fields 511 

introduced by soil moisture assimilation. Finally, the analysis of the sensible heat flux estimates 512 

indicates consistent trends in both surface energy partition terms (latent and sensible estimates). 513 

 514 
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Table 1: Parameters for perturbations to meteorological forcings and soil moisture 765 

prognostic model variables in the data assimilation integrations.  766 

Variable Perturbation 
Type 

Standard 
Deviation 

Cross Correlations with 
perturbations in  

Meteorological Forcings 

 Downward 
Shortwave 

Downward 
Longwave 

Precipitation 

Downward 
Shortwave 

Multiplicative 0.3 [-] 1.0  -0.5 -0.8 

Downward 
Longwave 

Additive 50 Wm-2 -0.5 1.0 0.5 

Precipitation Multiplicative 0.5 [-] -0.8 0.5 1.0 

Noah LSM soil moisture states 

   Sm1 Sm2 Sm3 Sm4 

Total soil 
moisture – 
layer 1 (sm1)  

Additive 0.6E-3 m3m-

3 
1.0 0.6 0.4 0.2 

Total soil 
moisture – 
layer 2 (sm2)  

Additive 1.1E-4 m3m-

3  
0.6  1.0 0.6   0.4 

Total soil 
moisture – 
layer 3 (sm3) 

Additive 0.6E-5 m3m-

3  
0.4 0.6 1.0 0.6 

Total soil 
moisture – 
layer 4 (sm4) 

Additive 0.4E-5 m3m-

3  
0.2 0.4 0.6 1.0 
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Table 2: NLDAS domain-averaged root mean square and bias errors (all with 95% 770 

confidence intervals) in latent heat flux (Qle) and sensible heat flux (Qh) estimates from 771 

five LDAS simulations with respect to two reference datasets : (1) the gridded FLUXNET 772 

data from Jung et al., (2009) and (2) MOD16 data from Mu et al. (2011), which only 773 

provides Qle.  Two of the NLDAS simulations show differences due to Noah version, and 774 

two of the NLDAS simulations include soil moisture data assimilation from the NASA and 775 

LPRM products, as discussed in the text. 776 

 FLUXNET MOD16 

Qle RMSE 
(Wm-2)  

Bias  
(Wm-2) 

RMSE 
(Wm-2) 

Bias  
(Wm-2) 

GLDAS 24.7 ± 0.3  5.5 ± 0.4 28.0 ± 0.2 4.4 ± 0.3 

NLDAS (Noah v2.7.1) 19.3 ± 0.3  11.9 ± 0.4  21.5 ± 0.2 10.3 ± 0.3 

NLDAS (Noah v3.2) 27.6 ± 0.3  12.9 ± 0.4  22.7 ± 0.2 11.2 ± 0.3 

NLDAS (Noah v3.2)+NASA DA 29.4 ± 0.3  15.9 ± 0.4  24.5 ± 0.2  14.2 ± 0.3  

NLDAS (Noah v3.2)+LPRM DA 25.6 ± 0.3 10.9 ± 0.3 21.9 ± 0.2  9.2 ± 0.3  

Qh     

GLDAS 23.4 ± 0.2 -5.6 ± 0.4  N/A N/A 

NLDAS (Noah v2.7.1) 21.1 ± 0.3 -7.0 ± 0.4  N/A N/A 

NLDAS (Noah v3.2) 32.5 ± 0.3 -9.2 ± 0.4  N/A N/A 

NLDAS (Noah v3.2)+NASA DA 34.5 ± 0.3 -12.2 ± 0.4  N/A N/A 

NLDAS (Noah v3.2)+LPRM DA 30.4 ± 0.3 -7.3 ± 0.4 N/A N/A 
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System.  As shown, input parameter and meteorological data or “forcings” can obtained 817 
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and Noah3.2 produced using LIS (Kumar et al., 2006). All units are in Wm-2. 832 



 833 

 834 

 FLUXNET MOD16 

RMSE 

  
Bias 

  
 835 

Figure 4: Comparison of the seasonal cycles of RMSE and Bias in Qle estimates from 836 

NLDAS-equivalent simulations for the period Jan 2002- Dec 2008 against the gridded 837 

FLUXNET data (left column) and MOD16 data (right column). The comparisons present 838 

the impact of the assimilation of surface soil moisture retrievals on latent heat flux 839 

estimates. OL represents the “open loop” model simulation without data assimilation, 840 

which is equivalent to the NLDAS-N32 curves in Figure 2.  NASA-DA and LPRM-DA 841 

represents simulations that assimilate the NASA and LPRM retrievals of AMSR-E soil 842 

moisture, respectively. All units are in Wm-2. 843 
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Figure 5: Comparison of the latent heat flux improvement metric (RMSE (DA) – RMSE 846 

(OL)) from the data assimilation integrations using the NASA AMSR-E soil moisture 847 

retrievals (NASA-DA). The two columns represent the reference datasets used in the 848 

RMSE computations: FLUXNET (left column) and MOD16 (right column). The red and 849 



 

46 

blue shades indicate improvements and degradations as a result of data assimilation, 850 

respectively. All units are in Wm-2. 851 
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Figure 6: Same as Figure 5, but from data assimilation integrations using LPRM AMSR-E 855 

soil moisture retrievals (LPRM-DA). 856 
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Figure 7: Comparison of the mean soil moisture difference maps (soil moisture (DA) – soil 860 

moisture (OL)) from soil moisture data assimilation integrations. The left and right panels 861 

represent the NASA-DA and LPRM-DA, respectively. All units are in m3m-3. 862 
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