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Abstract—A model is presented for times during a space 

mission that specified solar proton flux levels are exceeded.  This 
includes both total time and continuous time periods during 
missions.  Results for the solar maximum and solar minimum 
phases of the solar cycle are presented and compared for a broad 
range of proton energies and shielding levels.  This type of 
approach is more amenable to reliability analysis for spacecraft 
systems and instrumentation than standard statistical models. 
 

Index Terms—solar particle event, time exceedance, worst case 
flux 

I. INTRODUCTION 

Evaluating the risk due to solar particle events is a 
significant concern for all space missions, especially those 
away from the protective shielding effects of the Earth’s 
magnetic field.  Due to the difficulty in forecasting the 
occurrence and magnitude of solar particle events [1] 
probabilistic approaches are widely used to characterize 
events.  In this regard, useful models have been developed to 
describe cumulative fluences [2-6] and worst case events [7,8] 
at a given level of confidence over the course of a mission.  
For the situation of worst case events it is also common to 
pick a severe event such as the well known one that occurred 
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in October 1989 and assume this is worst case for the mission, 
as is done in the CREME96 suite of codes [9]. 

When trying to establish a worst case environment 
additional information can be required by the space system 
designer.  It is also useful for the designer to know how much 
total time during the mission that a pre-determined flux level 
is exceeded.  This allows a straight forward assessment of the 
mission time period during which there should be reliable 
system or instrument operation.  In many instances this is 
closely related to the design goals of the mission.  For 
example, within the NASA Living With a Star (LWS) 
program the goal of the Solar Dynamics Observatory (SDO) 
instrumentation is to capture essentially complete data over 22 
72-day periods during its 5 years of operations.  This allows 
for data loss due to planned and unplanned events, the latter of 
which includes radiation.  Another example within LWS is the 
Space Environment Testbed (SET) payload, which has a full 
mission success criterion of delivering 95% of the data for 40 
weeks out of the 1 year of planned operations.  The SET 
payload will be flown on the US Air Force Research 
Laboratory’s Demonstration and Science Experiment (DSX) 
spacecraft.  Another emerging development is that compact 
radiation monitors such as QinetiQ’s Merlin [10], and ESA’s 
Standard Radiation Environment Monitor (SREM) [11] are 
being flown with increasing frequency.  An application of 
such monitors is to send out alerts when specified radiation 
levels are exceeded.  Thus, quantitative prediction of the 
periods of high radiation levels is becoming increasingly 
important during the mission design phase. 

Besides the total time during a mission that a radiation flux 
level is exceeded, it can also be important to evaluate the 
longest continuous time period that a given level is exceeded.  
This is significant for evaluating single event effects in 
microelectronics as well as imagers such as CCDs. 

This work develops an approach for analyses of solar 
proton fluxes that contributes directly to these spacecraft 
design requirements.  It evaluates both the expected total time 
and longest continuous time during a mission that a specified 
solar proton flux level is exceeded.  These time intervals can 
be viewed as the periods during which an instrument or 
system may not operate reliably.  Corresponding flux-energy 
spectra bounding the expected periods of unreliability are then 
constructed.  This is done for both spacecraft incident protons 
and for shielding levels that are appropriate for modern 
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Developing and implementing strategies to deal with the 
space radiation environment is critical for new robotic and 
manned exploration initiatives.  In order to have reliable and 
cost-effective spacecraft design and implement new space 
technologies accurate models that view things from varying 
perspectives are needed for estimating radiation risks. 
Underestimating radiation levels leads to excessive risk and 
can result in degraded system performance and loss of mission 
lifetime.  Overestimating radiation levels can lead to use of 
excessive shielding, reduced payloads, over-design and 
increased cost. 
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spacecraft.  The results complement currently available 
models for solar protons used for spacecraft design. 

 

II. METHODS 

A. Data Base 
The solar proton flux data used for this study span a 36 year 

period from November 1973 through October 2009.  Given a 
conventional 7-year definition of solar maximum during a 
solar cycle [3] this represents exactly 21 total years during 
solar maximum and 15 total years during solar minimum.  The 
first 28 years were during a time period when the Goddard 
Medium Energy (GME) instrument on the Interplanetary 
Monitoring Platform-8 (IMP-8) spacecraft operated nearly 
continuously [12].  The IMP-8 spacecraft orbit was a near 
circular one at approximately 35 Earth radii and was therefore 
well positioned to measure interplanetary particle fluxes.  The 
GME data have a proton energy range from 0.88 to 485 MeV 
divided into 29 non-overlapping energy bins.  These data have 
been supplemented with data obtained from the Geostationary 
Operational Environmental Satellites (GOES) beginning in 
1986.  The reason is that the GME instrumentation saturates 
during very high flux levels while the GOES instrumentation 
performs better in this regard.  Reference 12 gives the details 
of how these data sets were combined so the best features of 
each could be taken advantage of.  Thereafter the IMP-8 data 
became intermittent and the spacecraft was eventually de-
commissioned. 

For the last approximately 8 years the Space Environment 
Monitors (SEM) on the GOES-8 and GOES-11 spacecraft 
were used as data sources.  Due to both the GOES orbit and 
the SEM design these solar proton flux measurements are not 
as accurate as those obtained with the scientific 
instrumentation on the IMP-8 spacecraft.  Thus, the GOES-8 
SEM was calibrated against the GME instrument 
measurements during the approximately 4-year period 
beginning in 1998 through the end of the GME data.  Since 
the GOES-8 data end in May 2003 and the GOES-11 data 
begin in June 2003 it was not possible to directly cross 
calibrate these two similar instruments.  Thus, it was assumed 
that the same calibration factors applied to the GOES-11 SEM 
that were obtained for the GOES-8 SEM.  Examination of the 
GOES-11 energy spectra with and without these corrections 
indicated that they were reasonable and resulted in improved 
energy spectra. 

B. Model Calculations 
This model is based on relatively straight forward, although 

computationally intensive, direct analyses of the solar proton 
flux time series (flux vs. time measurements) in the 36-year 
data base that has been developed.  The direct analysis of the 
time series avoids some of the usual difficulties that are 
encountered when constructing probabilistic solar particle 
event models.  One such difficulty is the unavoidably arbitrary 
definition of an event, including start and stop times.  This can 

be particularly difficult when there are several rises and falls 
in the flux values before the flux returns to the background 
rate.  Once events are defined it is commonly assumed that 
they are independent of one another, although this may not be 
the case [1]. 

The above difficulties are avoided in the current analyses.  
The approach is to choose a time period during the solar cycle 
corresponding to the mission of interest and evaluate the 
amount of time during this period that a pre-determined flux 
level is equaled or exceeded.  This is done for both the total 
time and the longest continuous time that flux level is equaled 
or exceeded.  The flux level is then incremented and the 
calculation repeated.  This is continued until the maximum 
observed flux for that time period is reached.  In order to 
combine data from different solar cycles, time periods are 
referenced to the peak period of each solar cycle as 
determined by the maximum sunspot number.  This is taken as 
1968.9, 1979.9, 1989.9 and 2000.2 for the last 4 cycles.  The 
above procedure is repeated for all energies in the time series 
of flux values.  The integral energy spectra of the data base 
range from > 0.88 to > 327 MeV. 

These results are most useful for mission planners if they 
are determined for different shielding levels.  For lightly 
shielded and heavily shielded applications, “worst case” 
fluxes may arise from different events.  It is therefore useful to 
transport the time series of energy spectra through various 
shielding thicknesses before the flux levels are evaluated 
according to the procedure outlined above.  Transport 
calculations were done whenever at least one energy bin had a 
flux level above background during a 30-minute measurement 
period.  This was done using the NOVICE code [13] for a 
shielding thickness range of 50 to 500 mils in solid aluminum 
sphere geometry.  Calculations for the amount of time that 
specified flux levels were equaled or exceeded during the 
period of interest were then repeated for each shielding level. 

 

III. RESULTS 

A. Total Time Exceedances 
The model can be implemented for any time period during 

the solar cycle.  Due to the large number of possibilities, 
results shown are restricted to the solar maximum and solar 
minimum time periods.  A conventional definition is used 
where solar maximum is assumed to be the 7-year period 
consisting of 2.5 years prior and 4.5 years after the time of the 
peak sunspot number [3], the latter of which is given in 
section IIB for solar cycles 20-23.  The solar minimum period 
is the remaining time during each solar cycle.  Calculations 
were done as described in the previous section.  Results 
presented here incorporate either the entire 21 years of data 
measured during solar maximum or the entire 15 years of data 
measured during solar minimum. 

Figure 1 is a plot of the total number of hours per solar 
maximum year that the proton flux equals or exceeds the 
value shown on the x-axis in units of protons per square 
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centimeter per second per steradian.  Note that the y-axis 
value is not a continuous time period.  It was determined by 
summing distinct time periods during the 21 years of solar 
maximum data.  Results were divided by 21 years so the 
normalized data could be compared to solar minimum.  The 
flux range shown in the figure extends 2 orders of magnitude 
down from the maximum flux for each energy bin.  As an 
example suppose one is interested in the > 11.1 MeV energy 
bin.  It is seen that a flux level of 104 p/(cm2-s-sr) is exceeded 
about 2 hours per year on average while a flux level of 103 is 
exceeded about 1 day per year on average during solar 
maximum.  Note that the continuous range of information 
available from this analysis is more complete than that 
obtained from analysis of a single worst case situation.  The 
different perspective of “time exceedance” analysis lends 
itself to evaluation of reliable periods of operation of 
spacecraft instrumentation. 
 

0.01

0.1

1

10

100

0.1 1 10 100 1000 10000 100000

To
ta

l T
im

e 
≥ 

Fl
ux

 (H
ou

rs
 p

er
 Y

ea
r)

Flux (p/cm2-s-sr)

> 11.1 MeV
> 35.2 MeV
> 92.5 MeV
> 230.0 MeV

 
Fig. 1.  Total number of hours per year during solar maximum 
that the proton flux equaled or exceeded the value shown on 
the abscissa for 4 energy groups: > 11.1, > 35.2, > 92.5 and > 
230 MeV.  Results are for surface incident fluxes. 
 
 The results displayed in figure 1 can be compared to those 
shown in figure 2 for solar minimum.  It is generally seen that 
the same time exceedance values occur at lower fluxes during 
solar minimum, as would be expected.  For example, the 
energy bin at > 11.1 MeV shows that for the same time 
exceedances during solar minimum, fluxes are approximately 
an order of magnitude lower.  Although the solar minimum 
results do not represent worst case situations in general they 
may be useful for missions that occur entirely during this 
period of time. 
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Fig. 2.  Total number of hours per year during solar minimum 
that the proton flux equaled or exceeded the value shown on 
the abscissa for 4 energy groups: > 11.1, > 35.2, > 92.5 and > 
230 MeV.  Results are for surface incident fluxes. 
 

Up to this point results shown have been for unshielded 
incident protons.  As discussed before these results would be 
more useful if they were calculated for different levels of 
shielding.  Thus, proton transport calculations were done for 
each 30 minute long energy spectrum in the 36 year data base 
whenever fluxes were above background.  This was done for 
50, 100, 200, 300 and 500 mils of aluminum shielding in solid 
sphere geometry.  This resulted in various time series for flux 
values that span 36 years for each shielding level and energy 
bin considered.  Example results for solar maximum are 
shown in figures 3-5 for > 11.1, > 35.2 and > 92.5 MeV 
protons.  It is seen that in all cases the time exceedance is 
noticeably affected by the amount of shielding present.  For 
example, the > 35.2 MeV flux level at 103 p/(cm2-s-sr) was 
equaled or exceeded for 4.2 hours per year without shielding, 
1.6 hours per year with 200 mils of Al and about 0.1 hour per 
year with 500 mils of Al shielding.  Examination of the 
figures clearly shows that the differences between the 
unshielded and shielded cases are more pronounced for low 
energies than for high energies.  It should also be noted that 
the results obtained do not always yield perfectly smooth 
curves.  As the value of flux increases along the x-axis, the 
time exceedance value can undergo a sudden decrease as 
events are no longer counted within that flux range.  However, 
the data base does contain enough events to smooth out the 
results quite a bit.  
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Fig. 3.  Total number of hours per year during solar maximum 
that the proton flux equaled or exceeded the value shown on 
the abscissa for > 11.1 MeV protons with 0, 50, 100, 200, 300 
and 500 mils of aluminum shielding in solid sphere geometry. 
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Fig. 4.  Total number of hours per year during solar maximum 
that the proton flux equaled or exceeded the value shown on 
the abscissa for > 35.2 MeV protons with 0, 100, 200, 300 and 
500 mils of aluminum shielding in solid sphere geometry. 
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Fig. 5.  Total number of hours per year during solar maximum 
that the proton flux equaled or exceeded the value shown on 
the abscissa for > 92.5 MeV protons with 0, 100, 300 and 500 
mils of aluminum shielding in solid sphere geometry. 
 

Since this methodology has generated a lot of results it is of 
interest to look for a more compact way to view them.  One 
possibility is to calculate a flux vs. energy spectrum for a 
given time exceedance level.  As an example, suppose a 
mission can afford to lose only one hour of data per solar 
maximum year due to high intensity solar proton fluxes.  A 
proton flux vs. energy plot for the one hour per year 
exceedance can be constructed by using results such as those 
shown in figure 1.  The various flux levels corresponding to a 
y-axis value of 1 hour per year are determined for each energy 
group.  A plot of flux vs. energy can then be made as shown 
in figure 6 for the unshielded case.  Each point on this plot 
represents the flux for the corresponding energy bin that will 
be exceeded one hour per year on average.  This 1-hour per 
year exceedance time holds only for individual points on the 
curve.  It is not the case that the entire spectrum is exceeded 1 
hour per year.  As such the results can be viewed as a worst 
case flux vs. energy spectrum that defines the 1-hour total 
time exceedance criterion.  Results for the shielded cases were 
obtained in a similar fashion and are also shown in figure 6.  
This is a particularly attractive representation because of its 
compactness as well as its similarity to measured solar proton 
event spectra. 
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Fig. 6.  Flux vs. proton energy spectra for a 1-hour per year 
time exceedance during solar maximum.  See text for 
interpretation.  Results are shown for 0, 50, 100, 200, 300 and 
500 mils of aluminum shielding. 
 

B.  Continuous Time Exceedances 
If the supposition is accepted that a system or instrument 

does not operate reliably beyond some flux threshold, then 
there are two important considerations in terms of time 
exceedances that need to be evaluated.  The first is the total 
time during the mission that flux threshold is exceeded.  That 
was discussed in the previous section.  The second is the 
longest continuous time during the mission that threshold is 
exceeded.  In the case of an instrument this would represent a 
worst case scenario of how long it could spend in a continuous 
state of unreliable operation.  For example, this might occur 
when an imager is flooded with noise caused by the high 
proton flux. 

Figures 7 and 8 show results for the longest continuous time 
period that the flux value on the x-axis is equaled or exceeded.  
Calculations for figure 7 were done for the 21 years of solar 
maximum data while those for figure 8 were done for the 15 
years of solar minimum data.  Much like the situation shown 
in the previous section it is seen that for a given flux level, the 
time exceedances are noticeably greater during the solar 
maximum period. 
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Fig. 7.  Worst case number of continuous hours during solar 
maximum that the proton flux equaled or exceeded the value 
shown on the abscissa for 4 energy groups: > 11.1, > 35.2, > 
92.5 and > 230 MeV.  Results are for surface incident fluxes. 
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Fig. 8.  Worst case number of continuous hours during solar 
minimum that the proton flux equaled or exceeded the value 
shown on the abscissa for 4 energy groups: > 11.1, > 35.2, > 
92.5 and > 230 MeV.  Results are for surface incident fluxes. 

 
It is also desirable to construct worst case flux vs. energy 

spectra for a given time window.  The results shown in figure 
7 represent the longest continuous time interval that the flux 
equals or exceeds a value.  Thus, it does not necessarily 
represent the worst case fluence for the time window when 
there are successive rises and falls in the flux values during a 
single event.  Worst case spectra must be derived by first 
selecting a shielding thickness and energy bin.  A time 
window with a fixed width is then moved across the entire 
time series, one 30-minute increment at a time, to evaluate the 
maximum fluence seen at any position in the time series 
during that time window.  This subtle distinction from using 
results such as those in figure 7 becomes more important as 
longer time windows are considered.  Results are shown in 
figures 9 and 10 for 1-hour and 24-hour time windows during 
solar maximum, respectively.  Since each data point in the 
figures is calculated independently, this leaves open the 
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possibility that different points could result from different 
solar proton events.  For the results shown in figure 9, 
however, all data turned out to come from the well known 
event of October 1989.  This is consistent with the use of this 
event by the CREME96 suite of codes as worst case.  On the 
other hand, for the worst case 24 hour period shown in figure 
10, the spectra are made up of data from 3 separate events.  
This includes the events of July 2000 and November 2000 
along with the October 1989 event.  As can be seen in the 
figure, the October 1989 event contributes the worst case 
fluxes at energies greater than about 50 MeV while the other 2 
events make up the majority of the spectra at lower energies.  
Thus, while the October 1989 event is often a suitable choice 
as a worst case situation, this may not always be true.  For 
example, some highly scaled technologies are susceptible to 
single event upset by protons close to their end of range [14].  
For this situation one of the events that occurred in the year 
2000 would represent a worst case flux.  The particular choice 
would depend on the level of shielding.  Finally, it is worth 
noting that a comparison of figures 9 and 10 indicate how 
much the worst case flux levels vary when the desired period 
of continuous unreliable operation is reduced from 1 day to 1 
hour.  The increased reliability of the system or instrument 
requires devices and/or mitigation schemes that are more 
robust to single event effects as shown by the increased flux 
levels in the figures. 

 

1

10

100

1000

10000

100000

1000000

0.1 1 10 100 1000

Fl
ux

(p
/c

m
2 -s

-s
r)

Threshold Energy (> MeV)

0 mils
50 mils
100 mils
200 mils
300 mils
500 mils

 
Fig. 9.  Worst case flux vs. proton energy spectra for a 1-hour 
time window during solar maximum.  Results are shown for 0, 
50, 100, 200, 300 and 500 mils of aluminum shielding.  Each 
data point comes from the October 1989 event. 
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Fig. 10.  Worst case flux vs. proton energy spectra for a 24-
hour time window during solar maximum.  Results are shown 
for 0, 50, 100, 200, 300 and 500 mils of aluminum shielding.  
The event that each worst case point comes from is shown in 
the legend. 

 

IV. SUMMARY AND CONCLUSIONS 
This paper has presented a model of high intensity solar 

proton fluxes that is free from many of the assumptions that 
are made for statistical models of solar proton events.   Results 
show the amount of time that high intensity solar proton flux 
levels are expected to be equaled or exceeded during the entire 
mission and during a single continuous period.  Analyses have 
been done on the time series of flux values transported 
through varying shield thicknesses, making the results more 
relevant for spacecraft applications.  From these results, worst 
case flux vs. energy spectra have been derived that can be 
used by designers to bound periods of unreliable operation of 
space systems and instrumentation.  This is a natural way to 
tie the model to design goals of projects, especially those of 
data requirements for instrumentation. 
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