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Abstract. Model evaluation and verification are key in improving the usage and applicability of

simulation models for real-world applications. In this article, the development and capabilities of a

formal system for land surface model evaluation called the Land surface Verification Toolkit (LVT)

is described. LVT is designed to provide an integrated environment for systematic land model evalu-

ation and facilitates a range of verification approaches and analysis capabilities. LVT operates across5

multiple temporal and spatial scales and employs a large suite of in-situ, remotely sensed and other

model and reanalysis datasets in their native formats. In addition to the traditional accuracy-based

measures, LVT also includes uncertainty and ensemble diagnostics, information theory measures,

spatial similarity metrics and scale decomposition techniques that provide novel ways for perform-

ing diagnostic model evaluations. Though LVT was originally designed to support the land surface10

modeling and data assimilation framework known as the Land Information System (LIS), it also

supports hydrological data products from other, non-LIS environments. In addition, the analysis of

diagnostics from various computational subsystems of LIS including data assimilation, optimization

and uncertainty estimation are supported within LVT. Together, LIS and LVT provide a robust end-

to-end environment for enabling the concepts of model data fusion for hydrological applications.15

The evolving capabilities of LVT framework are expected to facilitate rapid model evaluation efforts

and aid the definition and refinement of formal evaluation procedures for the land surface modeling

community.
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1 Introduction

Verification and evaluation are essential processes in the development and application of simulation20

models. Land surface models (LSMs) are one such class of simulation models specifically de-

signed to represent the terrestrial water, energy and biogeochemical processes. LSMs generate esti-

mates of terrestrial biosphere exchanges by solving governing equations of soil-vegetation-snowpack

medium, and can be run in either offline mode or coupled to an atmospheric model. An accurate

representation of land surface processes is therefore critical for improving models of the boundary25

layer and land-atmosphere coupling as well as real world applications such as ecosystem modeling,

agricultural forecasting and water resources prediction and management (NRC (1996)). The process

of systematic evaluation and verification helps in the characterization of accuracy and uncertainty

in the model predictions, which can then be used as a benchmark for future model enhancements.

Further, quantitative measures of the fidelity of model simulations are essential for improving the30

usage and acceptability of LSM forecasts for real-world applications.

The Global Energy and Water Cycle Experiment (GEWEX) Global Land Atmosphere System

Study (GLASS) has identified that a general benchmarking framework capable of capturing use-

ful modes of variability of LSMs through a range of performance metrics is necessary for further

advancing the performance and predictability of the models (van den Hurk et al. (2011)). In their35

recommendation of the priorities for hydrologic research, Entekhabi et al. (1999) emphasize the need

for defining formal evaluation procedures to improve the “observability” of many LSM processes.

For e.g., soil moisture in most LSMs represents an index of the moisture state (Koster et al. (2009))

and the estimates from different models vary significantly even when forced with the same meteo-

rology (Dirmeyer et al. (2006)). Further, the soil profile representations in LSMs and assumptions40

about parameters such as soil hydraulic properties vary significantly across models. As a result,

direct comparison of soil moisture estimates from these models against in-situ and remote sensing

measurements becomes difficult. Given that a large suite of application models require soil mois-

ture estimates as inputs (e.g. weather and climate forecasting (Fennessey and Shukla (1999); Koster

et al. (2004)), agricultural models (Rosenzweig et al. (2002)), ecosystem models (Friend and Kiang45

(2005))), it is important for the LSMs to generate observable estimates of soil moisture to avoid

potential misinterpretations and incorrect usages. The development of a formal, systematic environ-

ment for model evaluation will help in bridging the gaps between the model and observations and in

improving the observability of LSM outputs.

Model performance is typically improved by either enhancing the conceptual representations of50

processes (i.e., model physics) or by employing computational techniques (e.g., data assimilation,

optimization, uncertainty algorithms, fuzzy logic) to augment model simulations. These computa-

tional techniques provide the tools to exploit the information content in the observational data for

improving model predictions. The concept of “model data fusion” (MDF; Raupach et al. (2005);

Williams et al. (2009)) has been used to describe the paradigm of combining the information from55
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models and available datasets. The key aspect of the MDF philosophy consists of using information

from data to help the formulation, characterization and evaluation of models in a structured manner.

The results of the evaluation step are then used to revise and improve model formulation and sub-

sequent development. As part of the new structure formulated in 2009, the GLASS community has

identified Benchmarking and MDF as two of its three core themes for research going forward. Here60

we describe the development of a formal evaluation system for land surface models that addresses

both these themes identified by the GLASS community. The evaluation framework is designed to

supplement an existing modeling system, to enable end-to-end formulations of the MDF paradigm.

As described in Kumar et al. (2006), Peters-Lidard et al. (2007) and Kumar et al. (2008a), the

NASA Land Information System (LIS) is a flexible land surface modeling framework that has been65

developed with the goal of integrating satellite- and ground-based observational data products and

advanced land surface modeling techniques to produce optimal fields of land surface states and

fluxes. The LIS infrastructure is designed as a land surface modeling and hydrological data assim-

ilation system that generates estimates of water and energy states (e.g. soil moisture, snow) and

fluxes (e.g. evaporation, transpiration, runoff) over a range of spatial (as finely resolved as 1km or70

finer) and temporal (up to 1 hour and finer) resolutions. LIS operates several community land sur-

face models and supports their application over global, regional or point domains. LIS is designed

with advanced software engineering principles and provides a flexible, extensible framework for the

inclusion of models, computational tools and datasets.

As a land surface modeling component for earth system models, LIS has also been coupled to75

atmospheric models such as the Weather Research and Forecasting (WRF) model (Kumar et al.

(2007); Santanello et al. (2009)). LIS includes a comprehensive data assimilation subsystem (Kumar

et al. (2008b)) that enables the incorporation of several observational and satellite data sources for

assimilation, in an interoperable manner. Additional computational tools to assist the utilization of

data include parameter estimation and optimization (Santanello et al. (2007); Peters-Lidard et al.80

(2008); Kumar et al. (2011)) and uncertainty modeling (Harrison et al. (2011)) subsystems. The

uncertainty modeling components in LIS enable the explicit characterization of different sources of

uncertainty in modeling using Bayesian inference techniques. In summary, LIS provides several key

components of the MDF paradigm, including a suite of LSMs and computational tools such as data

assimilation, optimization and uncertainty estimation.85

In this article, we describe the development of a formal system for land surface model evaluation

called the Land surface Verification Toolkit (LVT), designed to enable the systematic evaluation and

intercomparison of various terrestrial hydrological datasets. LVT not only supports the diagnostic

evaluation of the land model simulations from LIS and other land surface modeling systems, but

also provides the capabilities for the analysis of outputs from various LIS subsystems such as data90

assimilation, optimization, uncertainty estimation, radiative transfer and emission models, and ap-

plication models. A large suite of in-situ, remotely-sensed and other model and reanalysis datasets

3



are supported in LVT, which captures a wide range of land surface and terrestrial hydrologic regimes

across the globe. In addition, a wide range of analysis metrics and procedures are supported in

LVT to facilitate a comprehensive evaluation of hydrological datasets. Figure 1 presents a schematic95

of the key functions of LVT and its interconnections with LIS and the observational datasets. The

following sections describe the capabilities of LVT in detail.

Together, LIS and LVT encompass a comprehensive set of computational tools for fully enabling

the MDF concept. The capabilities in LIS enable the estimation of model parameters with the use

of the optimization subsystem and state estimation with the use of the data assimilation subsystem.100

The uncertainty estimation tools enable the characterization of various sources of input uncertainty

and their impacts on model prediction uncertainty. By providing the tools for model testing and

diagnostic evaluation, LVT completes the requisite components of the MDF paradigm.

This article is structured as follows: Section 2 provides a review of the land model evaluation and

verification efforts. This is followed by the description of LVT design (Section 3) and features (Sec-105

tion 4). A number of examples are presented in Section 5 that demonstrate how the LVT capabilities

enable end-to-end MDF experiments.

2 Background

There have been a number of efforts to document and standardize land surface model evaluation. The

model process development studies are typically focused on evaluating the model performance at110

point or local scales (e.g., Henderson-Sellers et al. (1995); Chen et al. (1996); Pitman and Henderson-

Sellers (1998); Koren et al. (1999); Blyth et al. (2010); Barlage et al. (2010); Niu et al. (2011)).

Though they are instrumental in benchmarking the improvements to model physics, these reported

enhancements do not necessarily translate to broader spatial scales. Blyth et al. (2011) stresses that

the model evaluations must be performed separately at the scales of interest, to guarantee transfer-115

ability of model processes to different scales.

There have been several community-wide efforts such as the Global Soil Wetness Project (GSWP;

Dirmeyer et al. (2006)), African Monsoon Multidisciplinary Analysis (AMMA) Land surface Model

Intercomparison Project (ALMIP; de Rosnay et al. (2006)) and Carbon-LAnd Model Intercompari-

son Project (C-LAMP; Randerson et al. (2009)) that were focused on evaluating and intercomparing120

a suite of land surface models when forced with a common suite of inputs. These studies docu-

mented the systematic improvements in land surface model development and provided benchmarks

for the simulation of continental scale water and energy budgets. Similar multi-model efforts include

the North american Land Data Assimilation System (NLDAS; Mitchell et al. (2004)) and the Global

Land Data Assimilation System (GLDAS; Rodell et al. (2004b)) projects, which generate land sur-125

face model outputs in near real-time, forced with observation-based meteorology. A detailed evalu-

ation of the NLDAS model products against available observations were conducted during phase-I
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and II of the project (Robock et al. (2003); Sheffield et al. (2003); Pan et al. (2003); Lohmann et al.

(2004); Mo et al. (2011); Xia et al. (2011a,b)). Evaluation of the model simulations from GLDAS

against in-situ and remote sensing measurements are presented in Rodell et al. (2004a) and Kato130

et al. (2007). The LandFlux-EVAL project, a more recent initiative, evaluated evapotranspiration

estimates from a number of LSMs against in-situ data based estimates (Jiminez et al. (2011)). Ap-

proaches to define a minimum acceptable performance benchmark of LSMs by comparing them

to calibrated noncausal (statistical/correlational) models are explored in Abramowitz et al. (2008).

Though these efforts cover a wide spectrum of model evaluation and benchmarking of model pro-135

cess advancements, the evaluation criteria and the performance metrics tend to be specific to each

application. LVT consolidates the requirements identified in these efforts within a single framework.

A number of software environments for conducting model verification has been reported in the

literature. The Ensemble Verification System (EVS; Brown et al. (2010)) developed at the U.S.

National Oceanic and Atmospheric Administration’s (NOAA) Office of Hydrologic Development140

(OHD) provides an environment to verify ensemble forecasts of hydrologic and atmospheric vari-

ables such as precipitation, temperature and streamflow and is used by forecasters at the U.S. River

Forecast Centers (RFCs). Protocol for the Analysis of Land Surface models (PALS) is a web-based

application for evaluating land surface models against observed datasets and calibrated statistical

models (Abramowitz et al. (2008)). LVT and PALS will continue to be developed concurrently145

to address community goals for benchmarking and MDF. Model Evaluation Toolkit (MET; Brown

et al. (2009)) is a system developed by the Developmental Testbed Center (DTC) for the numerical

weather prediction community to evaluate model performance. MET includes several methods for

the diagnostic and spatial verification of NWP model outputs. However, MET requires that the input

datasets (model output and the observational data) be reformatted to certain predefined file formats.150

LVT shares many features with these existing environments, but focuses on the native use of obser-

vational and model data sets since the interpretation of the data formats and reporting procedures is

a critical and time consuming step in the evaluation process. LVT is designed as a framework that

can be directly used and extended by the individual users and also includes a number of advanced

features such as the evaluation of data assimilation diagnostics, standardized land surface diagnos-155

tics and uncertainty and information theory based analysis features. The following sections describe

the design and capabilities of LVT.

3 Design of the LVT framework

LVT is implemented using object oriented framework design principles as a modular, extensible and

reusable system. The software architecture of the system follows a three layer structure, as shown160

in Figure 2. LVT core, the top layer, encompasses generic modeling features such as the manage-

ment of time, I/O, configuration, logging and geospatial transformations. The middle layer, called
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“Abstractions” represents the extensible interfaces defined for incorporating additional functionali-

ties into LVT. These include plugin interfaces for implementing new observational data sources and

analysis metrics. The Abstractions layer provides the entry points for the reuse of existing generic165

capabilities of the LVT core. The top two layers thus represent the classic “semi-complete” nature of

an object oriented framework, which is made fully functional by including specific implementations

of the abstractions. As shown in Figure 2, implementations to read and process observations from

a wide range of terrestrial hydrological observations have been implemented using the “Observa-

tions” abstraction. Similarly, a large suite of analysis metrics has been implemented by extending170

the “Metrics” abstraction.

LVT software is primarily written in Fortran 90 programming language. Though Fortran 90 lacks

the direct support for object oriented programming concepts such as polymorphism and inheritance,

these properties can be simulated in software (Decyk et al. (1997)) through the combined use of

Fortran 90 and C programming languages. The compile-time polymorphism in LVT is simulated175

through the use of virtual function tables, by employing C language to interface with Fortran 90

functions, and by storing them in memory to be invoked at runtime.

A key advantage of this object oriented-based design is interoperability. The top two layers (LVT

core and Abstractions) define the interactions between an Observation or a Metric implementation

with the LVT core in a generic manner. Similarly, the required interconnections between an Ob-180

servation implementation and a Metric implementation are also handled generically. As a result,

the existing functionalities of the system are automatically available to a new addition in LVT, im-

plemented through the extension of an Abstraction. For example, a newly incorporated observation

implementation can take advantage of all available analysis metrics without having to define any

additional interconnections between each bottom layer component.185

Note that many of the model-independent capabilities within the LVT are enabled by the Earth

System Modeling Framework (ESMF; Hill et al. (2004)). ESMF provides a structured collection

of building blocks that can be customized to develop model components for Earth Science applica-

tions. It provides an infrastructure of utilities and a superstructure for coupling different model com-

ponents. LVT employs the ESMF infrastructure utilities to handle the management of clock/time,190

configuration, and logging. Further, LVT also employs the generic ESMF objects (called ESMF

States) for sharing data and information between different components.

4 Capabilities of LVT

A critical part of an evaluation procedure is the processing of datasets, which normally consists of

model outputs and measurements from in-situ, satellite and remote sensing platforms. These datasets195

typically have different file formats, spatial and temporal scales and reporting procedures. Further,

the in-situ and remotely sensed measurements typically require extensive quality control before their
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use. The rectification of such differences between datasets being compared is an essential, but routine

and time consuming step in the evaluation process. The philosophy in LVT is to use the datasets in

their native formats. The “plugin” style design of LVT enables the development of data processors200

corresponding to each dataset. Once developed, these data processors can be subsequently used to

work with an ongoing data collection without additional reprocessing.

4.1 Support for terrestrial hydrological datasets in LVT

The key processes that constitute the terrestrial hydrological cycle include precipitation, radiation,

interception of precipitation by vegetation, infiltration of precipitation into the soil and the vertical205

transfer of soil moisture, evapotranspiration, formation of snow, snow melt, and river runoffs, among

others. In order to quantify the contribution of these individual processes to the overall variability of

the terrestrial hydrological cycle, they must be evaluated against the full suite of available measure-

ments. Motivated by this goal, the processing of a large set of measurements of different processes

from a variety of sources are supported in LVT. As shown in Table 1, these datasets constitute the210

monitoring of different components of the terrestrial hydrological cycle, from different observing

platforms. The spatial and temporal scales of these measurements also vary significantly. By in-

corporating the processing of these datasets under a single, integrated framework, LVT enables an

environment for performing a comprehensive evaluation of the terrestrial hydrological processes.

Note that the support of this large suite of products is enabled by the extensible nature of LVT soft-215

ware design and is expected to further expedite the incorporation of other relevant datasets in the

future.

4.2 Analysis Metrics

The need for having a variety of performance evaluation metrics in the verification process is well

recognized (Stanski et al. (1989)), as the robustness and sensitivity of each metric to measurement220

attribute vary (Entekhabi et al. (2010)). Further, the appropriateness of an analysis metric may also

differ significantly based on the targeted application (Gupta et al. (2009)). Model evaluation stud-

ies quite often use accuracy-based metrics that quantify model performance using residual-based

measures. These metrics, however, may not provide further insights on the robustness of the model

under future or unobserved scenarios (Pachepsky et al. (2006)). They are also inadequate in captur-225

ing estimates of associated uncertainties (Gulden et al. (2008)), relative importance and sensitivity

of model parameters to the overall accuracy and uncertainty, tradeoffs in performance due to spatial

scales and the tradeoffs between actual information content and variabilities introduced by random

noise. Gupta et al. (2008) emphasize the need for sophisticated diagnostic evaluation methods that

help in isolating the limitations of the model representations.230

A number of analysis metric types is supported in LVT including; (1) Statistical accuracy mea-

sures that are conventionally used for model evaluation by comparing the model simulation against
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independent measurements and observations (e.g. RMSE, Bias), (2) Ensemble measures that provide

assessments of the accuracy of probabilistic model outputs against observations, (3) Metrics that help

in quantifying the apportionment of uncertainty and sensitivity of model simulations to model pa-235

rameters, (4) Information theory-based measures that provide estimates of information content and

complexity associated with model simulations and measurements, (5) Spatial similarity and scale de-

composition methods that assist in quantifying the impact of spatial scales in model improvements

and errors and (6) Standard diagnostics to evaluate the efficiency of computational algorithms such

as data assimilation. Table 2 presents a list of supported metric implementations within LVT. The240

details of the metric implementations are discussed in Section 5 through a number of illustrative ex-

amples. The availability of this suite of metrics enables novel ways to quantify and translate model

performance.

4.3 Miscellaneous features

LVT also supports a number of miscellaneous features to assist the verification procedures. To245

provide a measure of the statistical significance and the influence of sampling density on the results,

confidence intervals based on Gaussian distributions are computed for each verification metric. LVT

generates the results of the analyses in ASCII text, binary, GriB and NetCDF output formats. The

capabilities to generate probability density functions (PDFs) of the computed metrics by stratifying

to specified parameters are also included in LVT. Further, LVT also provides methods to impose user-250

defined masking to exclude selected grid points when analysis metrics are computed. These masks

can be static, time-varying or based on a certain variable. For e.g., a downward shortwave radiation

(SW ↓) based mask can be defined that separates the analysis computations when the SW ↓ values

are above and below a specified threshold (say 5 W/m2). This will enable a day-night stratification

of the computed metrics, when SW ↓ values are above and below 5 W/m2, respectively.255

LVT also includes a number of land surface process diagnostics related to the partitioning of

energy across the land atmosphere interface such as evaporative fraction, bowen ratio and overall

energy, water and evaporation budgets at the land-atmosphere interface. These diagnostics are com-

puted for both model and observational datasets. Quantifying these diagnostics are important for

improving the understanding of the feedbacks between the land surface and the atmosphere.260

As mentioned earlier, LVT also supports the analysis of diagnostics generated by the LIS data

assimilation subsystem. These include distribution statistics of data assimilation innovations and

analysis gain, which provide measures of the efficiency of data assimilation configurations. Sim-

ilarly, LVT also handles the outputs of the optimization and uncertainty estimation subsystems of

LIS. For e.g., checks to assess the convergence of these iterative algorithms can be performed by265

analyzing the optimization and uncertainty estimation outputs through LVT.

Though LVT was originally designed to support LIS outputs, it has since been extended to facil-

itate the evaluation of other “non-LIS” model products. LVT contains the features to convert the
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given non-LIS product to a LIS output style and format. It then uses the converted output for eval-

uation. Note that this process does not involve any spatial or temporal transformation of the data,270

rather the conversion to a different data format and convention.

5 Model evaluation examples using LVT

5.1 An end-to-end example of the MDF paradigm

As noted earlier, one of the key motivations behind LVT is to provide a system that can augment LIS’

modeling capabilities with an evaluation framework. The joint use of both these systems enables an275

end-to-end environment for facilitating the steps of the MDF paradigm. In this section, we present

an example of using the modeling and computational tools in LIS to refine the model performance

and the verification features in LVT to quantitatively evaluate the simulations.

Model simulations using the Noah LSM (version 3.2) (Ek et al. (2003); Barlage et al. (2010))

forced with the NLDAS-II datasets are conducted over a 500x500 domain covering the U.S. Southern280

Great Plains (SGP) at 1km spatial resolution during the time period of 1 May, 2006 to 1 September,

2006. This domain is used in a number of prior studies on land-atmosphere feedbacks (Santanello

et al. (2009, 2011)). Using the default values of the soil and vegetation parameters of the Noah LSM,

a model simulation is conducted first to simulate surface latent and sensible heat flux estimates. Us-

ing LVT, these flux estimates are evaluated against the in-situ measurements from 19 Atmospheric285

Radiation Measurement (ARM) stations. The optimization algorithms in LIS are then used to esti-

mate a refined set of model parameters with the objective of minimizing the cumulative error in the

hourly surface flux observations from the ARM stations, over the four month period. Subsequently,

the improved model performance with the calibrated parameters is quantified using LVT.

Figure 3 shows a comparison of the mean diurnal cycles of latent and sensible heat fluxes from290

model simulations compared against that of the measurements from 19 ARM-SGP stations. The

simulations using default model parameters show large errors, with a significant underestimation

in the latent heat fluxes and an overestimation in sensible heat fluxes. The calibration of model

parameters helps in improving the model performance, by correcting both these systematic biases.

This example illustrates an example of the MDF paradigm that includes model characterization,295

reformulation through parameter estimation, and verification using LVT. Similar instances can be

implemented using the extensive evaluation capabilities of LVT.

5.2 Example of model evaluation against satellite data

Model formulation and evaluation are typically conducted over instrumented locations of the world

where independent measurements are available. Though these in-situ observations provide valuable300

information on the spatial and temporal variability of process variables, they are limited in their

spatial coverage. Satellite and remotely-sensed measurements, on the other hand, have improved
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spatial coverages and they enable the extension of model evaluation to uninstrumented locations and

hydrologic regimes. In this section, we present an example of model evaluation against satellite data

over a region where in-situ measurements are sparse.305

A model simulation using Noah LSM (version 2.7.1) is conducted over a 1200km x 1000km

domain, at 1km spatial resolution over Afghanistan from 1 Oct 2007 to 1 May 2010. The LSM

is driven with meteorological data from the Global Data Assimilation System (GDAS); the global

meteorological weather forecast model of the National Centers for Environmental Prediction (Derber

et al. (1991)). The precipitation input for the model simulations is provided from the NOAA Climate310

Prediction Center’s (CPC) operational global 2.5◦ 5-day Merged Analysis of Precipitation (CMAP;

Xie and Arkin (1997)), which is a product that employs blended satellite (IR and microwave) and

gauge observations. The model domain has complex terrain characteristics, with elevation ranges

from 1000 to 6000 m. The fractional snow cover extent global 500m product (MOD10A1 Version

4; Hall et al. (2006)) from the Moderate Resolution Imaging Spectroradiometer (MODIS) optical315

sensor on the Terra spacecraft is used as the reference data for evaluating simulations of snow cover

fields simulated by the LSM. The MOD10A1 product is aggregated to 1km spatial resolution for

enabling the comparisons presented here.

The snow cover fields are evaluated by computing the probability of detection (POD) and false

alarm ratio (FAR) against the MOD10A1 product. POD measures the fraction of snow cover pres-320

ence that were correctly simulated and FAR quantifies the fraction of no-snow events that were

incorrectly simulated. Figure 4 shows the average POD and FAR values during the model simula-

tion period, computed using detection threshold of 0.8 (above which a positive detection of snow

cover simulation is assumed). The POD and FAR fields display the terrain features of the Hindu

Kush mountains, that run northeast to southwest. High values of POD and low values of FAR are325

observed over the Central Highlands region of the domain, suggesting a high degree of accuracy of

model snow cover estimates over these areas. Over the northeast parts of the domain, however, the

model simulations are less accurate, as indicated by the lower POD and higher FAR values.

5.3 Analysis of data assimilation diagnostics

The example in Section 5.1 presents an instance of the MDF paradigm that employs parameter330

estimation for model reformulation. As noted in Williams et al. (2009), similar MDF instances

can be defined that employ data assimilation techniques to improve state estimation. This section

presents an example of using data assimilation diagnostics to assess the performance of the system

within a MDF context.

The difference between the observations being assimilated and the model forecasts, known as335

innovations, are typically computed during data assimilation. The statistics of the innovations are

typically used to diagnose the performance of the assimilation algorithm. For example, when the

Ensemble Kalman Filter (EnKF) is used as the assimilation algorithm, a linear system dynamics is
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assumed with Gaussian, mutually and serially uncorrelated errors in model and observations (Re-

ichle and Koster (2002)). Consequently, the distribution of normalized innovations (normalized340

with their expected covariance) is expected to follow a standard normal distribution N(0,1) (Gelb

(1974)). The deviations from the expected mean and standard deviation of the normalized innovation

distribution is used as a measure of suboptimality of the data assimilation configuration. A number

of studies have confirmed that poor specification of model and observation error parameters can

significantly degrade the quality of assimilation products (Reichle and Crow (2008); Reichle et al.345

(2008)). The assimilation diagnostics can be analyzed using LVT and the model and observation

error specifications can then be continually revised to ensure optimal data assimilation performance.

To demonstrate these capabilities, a synthetic data assimilation experiment is conducted over the

Continental U.S. domain at 1◦ spatial resolution, for a time period of 1 Jan 2000 to 1 Jan 2006. In

this experiment, the observations to be assimilated are synthetically simulated (from an independent350

land model simulation using the Catchment LSM) and as a result, the associated errors are perfectly

known. The observations are assimilated using the Ensemble Kalman Filter (EnKF) algorithm. The

details of the assimilation setup is provided in Kumar et al. (2011). Figure 5 shows the spatial

distribution of mean and variance of normalized innovations over the domain generated by the as-

similation system. In this instance, the mean values are close to zero and the variances are closer355

to 1, indicating the near-optimal performance. Additional analysis metrics such as lag correlation

coefficients to assess the “whiteness” of the innovation distribution are also provided within LVT for

more detailed evaluations of the efficiency of the data assimilation system.

5.4 Characterization of uncertainty diagnostics

It is well acknowledged that model simulations and observations are affected by different sources360

of uncertainties. The errors in model parameters, input forcing and structural deficiencies intro-

duce uncertainties in the model simulations. The measurements from satellite and remote sensing

platforms are subject to measurement noise and errors in retrieval models. Similarly, the in-situ

measurements also have associated uncertainties due to environmental factors, data processing and

instrument errors. Therefore, it is important to quantify the impact of these uncertainty sources365

in modeled estimates. LVT includes a number of measures to quantify the propagation of model

parameter uncertainty in predictions.

To demonstrate the use of uncertainty analysis metrics, a model simulation using Noah LSM

(version 3.2) is conducted during the summer months (May to September) of 2010 over a region

encompassing the Walnut Gulch watershed in southeastern Arizona. The meteorological boundary370

conditions from the Agricultural Meteorology Model (AGRMET; Moore et al. (1990)) are used to

force the models at 0.25◦ spatial resolutions. The in-situ measurements of soil moisture values are

used to evaluate the model simulations. To investigate the impact of parameter uncertainty in sim-

ulated soil moisture estimates, a Monte Carlo (MC) simulation is conducted by sampling four soil

11



hydraulic properties (SHPs) (θs - porosity, ψs - saturated matric potential, Ks - saturated hydraulic375

conductivity and b - pore size distribution index) from assumed uniform distributions. The simulation

uses an ensemble size of 100. Figure 6(a) shows a time series comparison of the model simulation of

surface soil moisture against the in-situ measurements. Note that the vertical profile of observations

are suitably weighted to provide an equivalent comparison against the model simulation which rep-

resents a surface layer of 10 cm depth. The comparison indicates significant differences between the380

ensemble mean and the observations. Further, the consideration of uncertainty in SHPs translates to

significant uncertainty in simulated soil moisture. The shaded region (shown as ± 2× the ensemble

standard deviation) around the ensemble mean represents the uncertainty in simulated soil moisture.

The soil moisture uncertainty is small during the dry period, but grows significantly during the late

summer months when both the magnitude and variability of soil moisture increase. Though the385

spread of the ensemble encompasses the observations, the observations tend to fall towards the tail

end of the ensemble distribution. This emphasizes the need to refine the model parameters and their

sampling strategies for a better characterization of modeling uncertainty.

Figure 6(b) also provides an uncertainty importance measure which is an assessment of the relative

contribution of each parameter to the ensemble spread. This metric is computed as the correlation390

between the simulated variable (surface soil moisture) and the parameter across the ensemble. Fig-

ure 6(b) suggests that among the four SHPs considered, model simulations are most sensitive to θs,

followed by Ks. The variability in ψs and the b parameters contribute less to the uncertainty in soil

moisture in this instance. The figure also illustrates that the relative importance of the parameter is

sensitive to the soil moisture magnitude and variability. During the late summer months, the uncer-395

tainty importance of θs also increases with the magnitude of simulated soil moisture. Knowledge

of the relative importance of the model parameters is significant when choosing the set of model

parameters for calibration and sampling, and LVT facilitates the quantification such sensitivities.

Similar to the examples described in Sections 5.1 and 5.3, this example provides another instance of

using LVT to enable the MDF concept, in the context of uncertainty estimation.400

5.5 Information Theory metrics

A number of studies (Wackerbauer et al. (1994); Lange (1999); Selle and Huwe (2004)) describe the

use of information theory-based metrics to discriminate time series data based on their information

content (or randomness) and their complexity. Pachepsky et al. (2006) and Pan et al. (2011) describe

the use of these measures for discriminating soil water models. LVT includes a number of infor-405

mation theory-based measures such as metric entropy, mean information gain, effective complexity

and fluctuation complexity. These measures are computed by converting the time series of a given

dataset into a binary symbol string (Lange (1999)). Within the symbol string, patterns of words

(defined as a group of consecutive symbols of a certain length) are identified, representing a state of

the system of interest. For e.g., a word consisting of L consecutive symbols has 2L possible states.410
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The information theory metrics are then defined by computing the probabilities associated with the

patterns of words in the converted time series of the data. For example, the metric entropy (ME)

and information gain (IG) metrics are defined as follows:

ME=− 1
L

2L∑
i=1

pilog2pi (1)

IG=−
2L∑

i,j=1

pL,ij log2pL,i→j (2)415

where pi is the probability of occurrence of the ith word, pL,ij is the probability of transition from

the ith to the jth word, and pL,i→j is the conditional probability of the occurrence of the jth word

given that the ith word has already occurred in the symbol sequence. A more detailed description of

these measures are provided in Pachepsky et al. (2006).

The information theory-based metrics are typically applied to discriminate model simulations, es-420

pecially when they yield similar accuracy measures. Here we demonstrate their use for comparing

soil moisture simulations from Noah LSM (version 3.2) when two different retrievals from the Ad-

vanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) sensor aboard

the Aqua satellite are assimilated. The NASA Level-3, “AE−Land3” product (version 6,Njoku et al.

(2003)) and the AMSR-E Land Parameter Retrieval Model (LPRM) product developed at NASA425

GSFC and VU Amsterdam (Owe et al. (2008)) are used in the data assimilation (DA) integrations.

The experiments are carried out over the Continental United States for a period of 2002 to 2008,

using the same configuration used in the NLDAS project (Mitchell et al. (2004)) (from 25-53◦N

and 125-67◦W at 1/8 degree spatial resolution). The details of the assimilation methodology are

described in Peters-Lidard et al. (2011).430

Figure 7 presents a comparison of the change in metric entropy (∆ME) and the information gain

(∆IG) metric as a result of data assimilation. These metric values are computed using a word length

of 3. The ∆ME and ∆IG values are calculated by subtracting the metric values for the simulation

without data assimilation from the corresponding data assimilation integration. Figure 7 indicates

that DA introduces more entropy (randomness) in the simulations, over most parts of the domain,435

with higher values of ∆ME for the NASA DA compared to the LPRM DA. The information gain

metric indicates how much the sequence of patterns in the data contributes to the overall informa-

tion. The ∆IG values when assimilating NASA retrievals are larger compared to that of LPRM

assimilation. The changes in soil moisture introduced by the NASA DA also result in more ran-

domness in the consecutive patterns in the time series. This leads to higher IG values for NASA440

DA relative to LPRM DA, suggesting that the changes in soil moisture time series introduced by

LPRM DA may be less spurious (random). In prior MDF studies (Reichle et al. (2007); Liu et al.

(2011a); Peters-Lidard et al. (2011)) accuracy-based measures were used to characterize the value

of assimilating these retrievals in to LSMs. The results in this article present an alternate evaluation
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using information theory metrics within LVT.445

5.6 Scale decomposition features

Study of the effects of spatial scale has been an active area of hydrological research (Gupta et al.

(1986); Wood et al. (1990); Sivapalan and Kalma (1995); Seyfried and Wilcox (1995); Bloschl and

Sivapalan (1995); Wood et al. (1988); Bloschl (1999); Erickson et al. (2005); Trujillo et al. (2009)).

Characterization of the nature of spatial variability of different component processes over a range450

of scales are important for improving the utility of terrestrial hydrological models. LVT includes

approaches such as discrete wavelet transforms to enable scale based decomposition analyses. Here

we present an example of scale-decomposition evaluation of snow cover simulations from the LSMs

using LVT.

The intensity-scale approach of Casati et al. (2004), originally developed for the spatial verifi-455

cation of precipitation forecasts, is used to perform a scale decomposition analysis. The technique

employs a two dimensional discrete Haar wavelet transform that decomposes a given field into sum

of orthogonal components at different spatial scales. The mean squared error (MSE) of the decom-

posed components at each spatial scale is used to quantify the scale decomposition effects.

Using the domain configuration at 1km spatial resolution over Afghanistan used in Section 5.1,460

two model simulations are conducted using Noah LSM (version 2.7.1); one that employs a terrain

based correction of shortwave radiation input to the LSM and one that does not include such adjust-

ments. The terrain-based corrections adjust the incoming shortwave radiation based on terrain slope

and aspect and these changes in turn impact the evolution of snow over these terrain. The improve-

ments in the snow cover simulation as a result of the terrain-based correction is computed as the465

difference in POD fields from the two simulations, generated by comparing against the MOD10A1

(version 4) fractional snow cover product. The scale-decomposition approach is then applied to this

difference field to quantify how the improvements in snow cover estimates at 1km spatial resolution

translate to coarser spatial scales.

Figure 8 shows the result of scale decomposition of the total improvement field for POD using the470

two dimensional discrete Haar wavelet transform. The algorithm computes successive decomposi-

tions of the original field by powers of 2. The percentage contribution to the total improvement at

each coarse spatial scale is shown in Figure 8. The results indicate that most of the improvements

in POD are obtained at fine spatial scales and the contribution of the scale decreases with increase

in spatial resolution. At scales coarser than 16km, the percentage contribution drops below 10%.475

Similar analysis of scale effects can be performed on other metrics and variables of interest. This

example demonstrates the use of LVT for another MDF experiment where the MODIS fractional

snow cover data is used to assess the applicability of model formulations at different spatial scales.
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5.7 Spatial similarity measures

With the increased availability of spatially distributed datasets from satellites and remote-sensing480

platforms, there is a need for techniques and metrics that evaluate models and observations based on

the their spatial patterns, in addition to the one-to-one correspondence comparisons that are typically

used. The incorporation of spatial pattern comparisons will aid in further improving the reliability

of LSMs for hydrological applications (Bloschl and Sivapalan (1995); Grayson and Bloschl (2000)).

A review of spatial similarity methods in hydrology is provided in Wealands et al. (2005), which485

includes techniques based on statistical identification as well as image processing techniques. In this

section, an example of using a similarity metric through LVT to compare snow cover patterns from

two different LSMs is presented.

Snow cover estimates using two LSMs, Noah (version 3.2) and CLM (version 2 ; Dai et al. (2003)),

forced with GDAS and CMAP datasets, are generated over a 100x100 region near the Southern Great490

Plains in the US at 1km spatial resolution for a time period of November 1, 2008 to 1 June 2009.

The LSMs have different representation of snow processes, with Noah employing a simple single

snow layer scheme. CLM includes a more complex five layer snow scheme with parameterizations

for temporally varying snow albedo, as a function of snow cover and snow age. Both LSMs simulate

temporally varying snow density with evolution of patchy snow cover. The model simulations are495

evaluated against the fractional snow cover observations from MODIS (MOD10A1 version 4) using

the “Hausdorff distance” similarity metric.

Hausdorff distance (HD) measures the similarity of points in two finite sets and is not designed to

find one-to-one correspondence between points in each set. It is expressed as the maximum distance

of a set to the nearest point in the other set.500

h(M,O) = max
m∈M

{min
o∈O

{||m−o||}} (3)

where h(M,O) is the HD value, m and o are points of sets M (representing model) and O (repre-

senting observations), respectively. ||m−o|| is the norm of the points in the model and observation

spaces and can be computed as the Euclidean distance between m and o.

Figure 9 shows a time series comparison of the cumulative HD measure from Noah and CLM505

snow cover simulations for the winter season of 1 November, 2008 to 1 June, 2009. More temporal

variability in HD values is observed during the snow evolution and ablation periods and it drops

during the peak snow season, suggested by the flattening of the cumulative HD curves. This indicates

that there is more consistent agreement in the observational and model simulated patterns during the

peak snow season. During the snow melt period, Noah produces lower HD values compared to CLM.510

This suggests that the spatial patterns in the Noah snow cover simulations capture the observational

patterns more accurately relative to CLM’s simulations, though CLM’s snow physics formulations

are more complex. Note that newer versions of both these models (Noah-MP (Niu et al. (2011)) and

CLM version 4.0 (Lawrence et al. (2011))) with updated snow physics formulations are currently
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being incorporatd into LIS and similar comparisons can be performed through LVT to evaluate the515

updated snow physics in these LSMs. This experiment demonstrates the use of spatial similarity

metrics for comparing the performance of two different LSMs within a MDF framework.

6 Summary and Future Directions

This article describes the development and capabilities of a verification system for terrestrial hydrol-

ogy known as the Land surface Verification Toolkit. LVT enables an environment for conducting520

the systematic evaluation of land model outputs by providing a variety of analysis metrics and pro-

cedures. LVT functions primarily as an analysis back-end system for the NASA Land Information

System (LIS), but also supports the analysis of data products from other modeling environments.

LIS is a comprehensive land surface modeling framework and includes data assimilation and poste-

rior inference tools such as optimization and uncertainty estimation to facilitate the exploitation of525

information content from observational datasets to augment model predictions. LVT not only sup-

ports the verification of LSM outputs, but also provides the tools to analyze the performance of these

computational algorithms within LIS. LVT is designed using object oriented software principles,

with abstractions defined for the customization and extension of the system for different applica-

tions. These extensible interfaces allow the incorporation of new observational datasets and analysis530

metrics in an interoperable manner. The combination of the modeling capabilities of LIS and the

analysis capabilities of LVT provide a robust environment for conducting end-to-end model data

fusion experiments that has been identified in the community as a key paradigm for improving the

applicability of LSMs.

LVT currently supports a large suite of in-situ, satellite and remotely-sensed, and model and re-535

analysis products to enable comprehensive evaluations of various hydrological processes. These

datasets are supported in their native format and LVT handles the temporal and spatial transforma-

tions required in the analysis. Diagnostic model verification and intercomparisons are supported

through a variety of analysis metrics and procedures. In addition to the standard accuracy-based

measures, LVT supports ensemble and uncertainty measures, metrics based on information theory,540

similarity metrics and methods to quantify the impact of spatial scales on model performance. This

variety of techniques provide novel ways to characterize model performance and to investigate as-

sociated tradeoffs.

The article presents a number of illustrative examples that demonstrate the capabilities of LVT

and provide several instances of end-to-end MDF experiments. The optimization algorithms in LIS545

are used to refine the model parameters of the LSM to improve its estimation of surface fluxes. LVT

is used to quantify the systematic improvements resulting from the refined model parameters. The

impact of data fusion for model state and uncertainty estimation is assessed through data assim-

ilation and uncertainty quantification metrics, respectively. The information theory-based metrics
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provide measures such as metric entropy, information gain and complexity to identify tradeoffs in550

datasets based on their information content and complexity. Acknowledging the need to perform

model evaluations in a spatially distributed manner, spatial similarity metrics and scale decomposi-

tion techniques that provide spatial pattern comparisons against remotely-sensed distributed datasets

are also incorporated in LVT.

LVT is an evolving framework and continues to be enhanced with the addition of new analysis555

capabilities and the incorporation of terrestrial hydrological datasets. In addition to the handling of

LSM outputs, the support for outputs from various application models coupled to LIS (e.g. crop,

drought, flood, landslide models) is also being developed. Ensemble measures such as reliability,

resolution and discrimination (Murphy and Winkler (1992)) and timing error measures (Liu et al.

(2011b)) will also be incorporated into the current suite of analysis metrics. The use of a common560

environment for diagnostic evaluation will also help in quantifying the tradeoffs between different

metrics and skill scores. For e.g., different organizations use different indices for quantifying the

severity of drought (Heim (2002)). The availability of these drought indices through LVT will en-

able cross-comparisons of these measures and the assessment of their suitability for the intended

application. In summary, the growing capabilities of LVT are expected to help in the definition and565

refinement of a formal benchmarking and evaluation process for the LSMs and assist in improving

their use for real-world applications.
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Fig. 1. Schematic of the Land surface Verification Toolkit and the association with the Land Information

System (LIS). LVT supports the analysis of outputs from various LIS subsystems. LIS-DA represents the data

assimilation subsystem, LIS-RTM represents the radiative transfer models within LIS, LIS-OPT represents the

optimization subsystem, LIS-UE represents the uncertainty estimation subsystem, LIS-LSM represents the land

surface models, and LIS-APP represents the various application models within LIS.
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Fig. 3. Comparison of average diurnal cycles of latent (left column) and sensible heat (right column) fluxes

from the uncoupled Noah (version 3.2) LSM simulations using the default model parameters (DEFAULT) and

calibrated parameters (CALIBRATED) against the in-situ measurements (OBS) from 19 ARM-SGP stations.
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Fig. 4. Probability of Detection (left column) and False Alarm Ratio (right column) of the model simulated

snow cover fields compared against the fractional MODIS snow cover product (MOD10A1).
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Fig. 5. Mean (left column) and variance (right column) of normalized innovations (dimensionless) of data

assimilation diagnostics. The gray color represents grid cells excluded from the computations.
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Fig. 6. (a) Comparison of ensemble soil moisture simulations against observations. The cyan shading indicates

the ensemble spread, shown as ± 2 × ensemble standard deviation (b) The uncertainty importance of model

parameters towards soil moisture uncertainty.
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Fig. 7. Changes in Metric Entropy (top row) and Information gain (bottom row) from the assimilation of NASA

AMSR-E (left column) and LPRM AMSR-E (right column) retrievals
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Fig. 8. Percentage contribution to the total improvement in snow covered area POD at different spatial scales,

generated by a two dimensional discrete Haar wavelet analysis.
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Table 1: List of datasets supported in LVT

Model/reanalysis outputs

Agricultural Meteorology Water and energy fluxes,

Model (AGRMET) from the Soil moisture, Soil temperature,

Air Force Weather Agency (AFWA) Snow conditions, Meteorology

NLDAS model outputs Water and energy fluxes

(Mitchell et al. (2004)) Soil moisture, Soil temperature,

Snow conditions, Meteorology

GLDAS model outputs Water and energy fluxes,

(Rodell et al. (2004b)) Soil moisture, Soil temperature,

Snow conditions, Meteorology

Canadian Meteorological Center Snow depth

(CMC) snow depth analysis

(Brown and Brasnett (2010))

Snow Data Assimilation System Snow depth, Snow water

(SNODAS; Barrett (2003)) equivalent

In-situ measurements

AMMA Water and energy fluxes,

(database.amma-international.org/) soil moisture, soil temperature

Atmospheric Radiation Water and energy fluxes,

Measurement (ARM) Soil moisture, soil temperature,

(www.arm.gov) Meteorology

Ameriflux Water and energy fluxes

(public.ornl.gov/ameriflux/)

Coordinated Energy and water cycle Water and energy fluxes,

Observations Project (CEOP) Soil moisture, soil temperature,

(www.ceop.net/) Meteorology

National Weather Service Snow depth, Precipitation,
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Dataset Measurement

variables

Cooperative Observer Program (COOP) Land surface temperature

(www.nws.noaa.gov/om/coop/)

NOAA CPC unified Precipitation

(Higgins et al. (1996))

Gridded FLUXNET Water and energy fluxes

(Jung et al. (2009))

Finnish Meteorological Institute Snow water equivalent

(FMI/SYKE; www.environment.fi/syke)

Global Summary of the Day (GSOD) Snow depth

International Soil Moisture Network Soil moisture

(www.ipf.tuwien.ac.at/insitu/)

Soil Climate Analysis Network Soil moisture

(SCAN; www.wcc.nrcs.usda.gov/scan/) Soil temperature

WMO synoptic observations Snow depth

NRCS SNOwpack TELemetry network Snow water equivalent

(SNOTEL;www.wcc.nrcs.usda.gov/snow/)

Surface Radiation Network (SURFRAD) Downwelling shortwave,

(www.srrb.noaa.gov/surfrad/) Downwelling longwave

Southwest Watershed Research Center Soil moisture,

(SWRC; www.tucson.ars.ag.gov/dap/) Soil temperature

USGS water data Streamflow

(waterdata.usgs.gov/nwis)
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Dataset Measurement

variables

AMSR-E radiances Brightness temperature for

(mrain.atmos.colostate.edu/LEVEL1C/) different channels

Satellite and remote sensing data

AFWA NASA Snow Algorithm Snow cover, Snow depth,

(ANSA; Foster et al. (2011)) Snow water equivalent

GlobSnow (Pulliainen (2006)) Snow cover,

(www.globsnow.info/) Snow water equivalent

International Satellite Cloud Climatology Land surface temperature

Project (ISCCP; Rossow and Schiffer (1991))

(isccp.nasa.gov)

MODIS/Terra Snow cover 500m Snow cover

(MOD10A1; Hall et al. (2006))

MODIS Evapotranspiration product Evapotranspiration

(MOD16; Mu et al. (2007))

NASA Level-3, soil moisture Soil moisture

retrieval from AMSR-E (AE−Land3)

Njoku et al. (2003)

Land Parameter Retrieval Model (LPRM) Soil moisture

from NASA GSFC and VU Amsterdam

(Owe et al. (2008))
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Table 2. The range of analysis metric types and implementations supported in LVT

Metric class Supported

Implementations

Standard measures RMSE, Anomaly RMSE, unbiased RMSE (ubRMSE), Correlation, Anomaly correlation,

Mean absolute error (MAE), Bias, Probability of “yes” detection (PODy), False alarm ratio (FAR)

Probability of “no” detection (PODn), Accuracy measure (ACC), Probability of false detection (POFD),

Critical success index (CSI), Equitable threat score (ETS), Frequency bias (FBIAS),

Nash sutcliffe efficiency (NSE)

Ensemble metrics Mean, Standard deviation, Likelihood

Uncertainty metrics Uncertainty importance

Information theoretic Metric entropy, Information gain, Effective complexity, Fluctuation complexity

Data assimilation metrics Mean, variance, lag correlation of innovation distributions

Spatial similarity metrics Spatial area, Hausdorff distance

Scale decomposition Discrete wavelet transforms
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