Use of GRACE terrestrial water storage retrievals to evaluate model estimates by the Australian water resources assessment system

A.I.J.M. van Dijk1, L.J. Renzullo1, M. Rodell2

1 CSIRO Land and Water, Black Mountain, ACT, Australia

2 Hydrological Sciences Branch, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
Abstract

Terrestrial water storage (TWS) estimates retrievals from the Gravity Recovery and Climate Experiment (GRACE) satellite mission were compared to TWS modeled by the Australian Water Resources Assessment (AWRA) system. The aim was to test whether differences could be attributed and used to identify model deficiencies. Data for 2003–2010 were decomposed into the seasonal cycle, linear trends and the remaining de-trended anomalies before comparing. AWRA tended to have smaller seasonal amplitude than GRACE. GRACE showed a strong (>15 mm year$^{-1}$) drying trend in northwest Australia that was associated with a preceding period of unusually wet conditions, whereas weaker drying trends in the southern Murray Basin and southwest Western Australia were associated with relatively dry conditions. AWRA estimated trends were less negative for these regions, while a more positive trend was estimated for areas affected by cyclone Charlotte in 2009. For 2003–2009, a decrease of 7–8 mm year$^{-1}$ (50–60 km3 year$^{-1}$) was estimated from GRACE, enough to explain 6–7% of the contemporary rate of global sea level rise. This trend was not reproduced by the model. Agreement between model and data suggested that the GRACE retrieval error estimates are biased high. A scaling coefficient applied to GRACE TWS to reduce the effect of signal leakage appeared to degrade quantitative agreement for some regions. Model aspects identified for improvement included a need for better estimation of rainfall in northwest Australia, and more sophisticated treatment of diffuse groundwater discharge processes and surface-groundwater connectivity for some regions.
1. Introduction

The Gravity Recovery and Climate Experiment satellite mission [GRACE; Tapley et al., 2004] provides integrated estimates of variations in total terrestrial water storage (TWS) based on precise observations of Earth's time-variable gravity field. Although the effective ‘footprint’ is large (>300 km) for hydrological applications, GRACE is unique in its ability to monitor integrated changes in surface, soil, and ground water [e.g. Leblanc et al., 2009; Rodell et al., 2009; Swenson et al., 2008].

Studies to date have tended to averaged GRACE observations over large basins to minimize error from the large footprint. Alternatively, one can spatially compare GRACE and model TWS over large areas. There is considerable uncertainty in the retrieval of water storage estimates from GRACE and its errors are not spatially and temporally uniform. However, when used with caution GRACE data have proven valuable for evaluation of large scale hydrological models [see reviews by Günther, 2008; Ramillien et al., 2008; Syed et al., 2008]. Provided the model produces ‘GRACE-like’ TWS estimates, such a comparison should help to identify any model deficiencies and suggest ways to improve the model structure or parameterization, although Günther [2008] concluded that few studies have actually done so. If there is sufficient agreement and errors in GRACE TWS can be estimated, the data can also be used in data assimilation [Zaitchik et al., 2008].

In this paper, we aim to test whether a statistical comparison of GRACE and model TWS estimates provides sufficient information to spatially assess the performance of a continental water balance model for Australia. In particular, we wanted to test whether any divergence between GRACE and model estimates could be attributed with confidence and used to identify concrete opportunities for model improvement. We did this by spatially comparing GRACE TWS with model estimates, for the
period 2003–2010. To evaluate different aspects of model behavior, we decomposed the TWS data into their seasonal cycle, eight-year linear trends, and de-trended anomalies.

2. Data

Modeled terrestrial water storage

The Australian Water Resources Assessment (AWRA) system [Van Dijk and Renzullo, 2011; Van Dijk, 2010a] is a water balance monitoring system used by the Australian Bureau of Meteorology (BoM) to support the production of water accounts and water resource assessments. The system combines a comprehensive spatial hydrological model with meteorological forcing data and remotely-sensed land surface properties to produce estimates of water stored in the soil, surface water and groundwater. The AWRA system includes a grid-based spatial landscape water balance model, AWRA-L (version 0.5). Conceptual aspects of AWRA-L relevant here include: (i) shallow and deep soil layers are assumed to be explored by all vegetation and deep-rooted vegetation only, respectively; (ii) a linear reservoir groundwater model has a drainage characteristic estimated from analysis of streamflow from several hundred small upland catchments [Van Dijk, 2009]; and (iii) the only surface water storage considered is the stream network, which drains rapidly in response to reduced inflows. Meteorological forcing is derived by interpolation of station data on a regular 0.05° (ca. 5 km) grid; model outputs have the same resolution. Full technical detail on AWRA-L (version 0.5) can be found in Van Dijk [2010a] whereas the specific AWRA-L model parameterization used in this analysis is detailed in Van Dijk and Warren [2010]. AWRA-L ignores diffuse lateral water transport between grid cells. Additional AWRA system components describing deep groundwater systems and the lateral redistribution and subsequent evapotranspiration of surface water are being developed [Van Dijk and Renzullo, 2011] but were not yet implemented at the time of writing. The potential role of these processes therefore needs to be considered when interpreting the data.
AWRA water balance estimates have received fairly extensive evaluation for Australian conditions, using streamflow and deep drainage observations from several hundred catchments and sites, respectively; evapotranspiration measurements at seven flux tower sites; radar and microwave remote sensing estimates of surface soil moisture content; and vegetation canopy cover and density estimated from optical remote sensing [Liu et al., 2010; Van Dijk and Warren, 2010; King et al., in review.; Viney et al., in prep.; Peeters et al., in prep.]. AWRA simulated TWS were also compared against GRACE-derived TWS aggregated for a few large Australian basins [Van Dijk and Renzullo, 2009]. Although only a preliminary analysis, this showed generally good agreement between the dynamic range and temporal patterns.

GRACE estimated terrestrial water storage

Several TWS products derived from GRACE observations currently exist. For this study, we used the 1° resolution gridded estimates based on gravity solutions from the University of Texas Centre for Space Research (CSR), which were downloaded from the GRACE Tellus website (http://grace.jpl.nasa.gov/data/; data source version ‘sv201008’) [Swenson and Wahr, 2006]. Data for January 2003 through to December 2010 were downloaded; one month was missing. The raw solutions have been de-striped and smoothed; atmospheric mass variations estimated by weather models and mass effects of post-glacial rebound (PGR) removed (see web site for details). In addition, to correct for the smoothing due to filtering, it is recommended that the retrieved anomalies be multiplied with a spatially varying scaling coefficient also available from the GRACE Tellus web site. This scaling grid was derived by applying the GRACE filtering process to output from the Community Land Surface model and, on a pixel basis, determining the multiplier that minimizes the root mean square difference (RMSD) between the filtered and scaled data and the original data, respectively. Because of the various ancillary measured and modeled data used in the retrieval the term ‘observation’ is perhaps somewhat liberally applied, but we will use it here for textual clarity. The error in the GRACE TWS product is spatially correlated and will vary by location and month. A
spatial grid of the estimated average error due to measurement and leakage (including scaling) are also available from the GRACE Tellus web site. From these, prior estimates of total error were calculated. A mean monthly error of 62 mm can be calculated for Australia, of which 79% is contributed by leakage and concentrated around the coastlines. The PGR signal over Australia is comparatively small (<0.5 mm y⁻¹) [Paulson et al., 2007; Peltier, 2004] and therefore can be ignored as a source of uncertainty in interpretation.

3. Methods

Processing of model estimates

To generate model-based TWS estimates that could be directly compared with the GRACE data, for each grid cell the following computations were made: (1) TWS was estimated by summing water in all stores (in mm equivalent height of water), i.e. vegetation biomass water, soil layers, groundwater store and surface water store; (2) the 0.05° TWS estimates were averaged to the same geographic area and 1° resolution as the GRACE product; and (3) average TWS was calculated for each month. Due to the orbit of the satellite overpasses, GRACE TWS estimates do not represent all days of the month (see GRACE Tellus website for details).

Statistical comparison

The statistical comparison was performed by grid cell. The GRACE Tellus product has 1° grid cells but the actual signal originates from a larger area; therefore interpretation for individual cells needs to be made with caution. Because GRACE TWS values are anomalies with respect to a reference period, a difference in mean temporal values has no useful meaning. Therefore the bias between model and observations was removed, by subtracting the mean for those months the two data sets had in common. To help interpretation, the resulting data were decomposed into the seasonal cycle, the eight-year (2003–2010) linear trend, and the remaining de-trended anomalies. The seasonal cycle was calculated as the average anomaly pattern for all years. The linear trend was calculated by removing
the seasonal cycle and then fitting a straight line to the de-trended values. Finally, the de-trended anomalies were calculated by subtracting both the seasonal cycle and linear trend from the original TWS anomaly time series. For each of the three components, the root mean squared difference (RMSD) between AWRA and GRACE TWS was calculated, as well as the linear correlation coefficient \(r \) and, to allow comparison of the dynamic range, the amplitude of the seasonal cycle and the mean standard (i.e. root mean square) de-trended anomaly. Finally, the relative importance of the three components of variability was calculated by dividing the sum of squared differences (SSD) for each component by the combined sum of SSD for all three components. To investigate the extent to which the relatively recently implemented GRACE TWS scaling coefficient affected the comparison, we also repeated the entire analysis without applying the scaling coefficient.

Average net water balance estimates produced by Guerschman et al. [2009] were used in interpretation (Error! Reference source not found.). These estimates were based on a combination of MODIS greenness and surface wetness indices and interpolated station-level climate data. Notwithstanding inevitable estimation errors, the resulting map clearly shows regions where rainfall exceeds evapotranspiration (blue colors in Error! Reference source not found.) and areas where evapotranspiration exceeds rainfall, such as irrigation areas, floodplains and (salt) lakes (red colors). Region and state names are also shown for reference.

4. Results

Seasonal cycle

Maps comparing the seasonal cycle in observed and modeled TWS are shown in Error! Reference source not found. and the seasonal cycle for indicated grid cells are shown in Error! Reference source not found.; selected statistics of the agreement are listed in Table 1. For most of the continent there is reasonable agreement in seasonal patterns, with median RMSD values of 16 mm and a median correlation coefficient \(r \) of 0.71 (Figures 2a and b, respectively). Some of the best agreement was
found in northern Australia (e.g. area A; Error! Reference source not found. and Error! Reference source not found.a). Large absolute disagreement between seasonal cycles (RMSD>50 mm) occurs along the Gulf of Carpentaria (area B, Error! Reference source not found.). Tregoning et al. [2008] concluded that this is due to the influence of the large barotropic seasonal sea level variations of around 400 mm that occur in the nearby Gulf of Carpentaria, and which are not adequately accounted for in the GRACE retrievals. Differences of up to 50 mm occur in the wetter regions along the east coast and southwest WA, whereas differences were <30 mm for 57% of the continent. For 79% the amplitude in the seasonal cycle (ASC) in modeled TWS was smaller than in the observed values. Indicators of the influence of the scaling coefficient are listed in Table 1. The scaling is temporally uniform and so does not affect the correlation coefficient. Not applying the scaling coefficient did reduce the difference between the median ASC of GRACE and AWRA and slightly reduced the RMSD and the number of cells where the ASC for GRACE was greater than for AWRA, or where the two differed by at least 30 mm, respectively.

Linear trends

Maps comparing the linear eight-year trend in observed and modeled TWS are shown in Error! Reference source not found. and time series for indicated grid cells are shown in Error! Reference source not found.. The model did not reproduce negative TWS trends of >15 mm y⁻¹ in the Great Sandy Desert (Error! Reference source not found.a; area A in Error! Reference source not found.a) and the southern Murray Basin (Error! Reference source not found.d, area D), particularly for 2008-2009. The modeled positive trend along the central and north eastern coast was stronger than observed (Error! Reference source not found.c, area C). In the Top End modeled trends varied regionally and more strongly than those observed (e.g. Error! Reference source not found.b, area B). For the remaining areas neither GRACE nor AWRA suggested any strong trend (Error! Reference source not found.c) and trends agreed within 10 mm y⁻¹ for 67% of the continent. The mean continental observed trend over this period was -5.6 mm y⁻¹, compared with a modeled trend of
+0.8 mm y\(^{-1}\). The scaling coefficient accounted for a small part of the disagreement between GRACE and AWRA trends: not applying the scaling coefficient reduced the continental trend to –4.5 mm y\(^{-1}\) and reduced the area with strong trends and area with large differences between GRACE and AWRA trends (Table 1).

Temporal patterns in the average observed and modeled continental water storage are shown in

Error! Reference source not found.a, along with values for the Nino3.4 index as an indicator of the phase of the El Niño Southern Oscillation (ENSO). Most of the divergence in trends appears to occur between 2006 and 2009 (**Error! Reference source not found.**b). The monthly and seasonal variability superimposed on this longer-term drying trend shows qualitative agreement with the temporal pattern in ENSO.

De-trended anomalies

Maps comparing the agreement in de-trended anomalies are shown in **Error! Reference source not found.**, and trends for indicated grid cells are shown in **Error! Reference source not found.**. The RMSD in de-trended monthly anomalies showed the same pattern spatial pattern as the observed de-trended anomalies; RMSD was greatest in the wetter coastal regions (>80 mm, **Error! Reference source not found.abc**), decreasing to <15 mm in the arid interior (**Error! Reference source not found.d**). The correlation between anomalies was greatest in northern and eastern Australia (0.40–0.85), and lowest (<0.10) in the arid interior. Correlation was also lower in southwest WA and along the Queensland coast. The model estimated lesser TWS anomalies than retrieved from GRACE along the southeast coast and in southwest WA, but higher anomalies in parts of northern Queensland; differing by >50 mm in some cases. Not applying the scaling coefficient improved indicators of absolute agreement between GRACE and AWRA (Table 1). In particular, the area where the RMSD of anomalies exceeds 50 mm is reduced from 25% to 16% of grid cells.

Overall agreement
Maps comparing the overall agreement in total (i.e. not de-trended) observed and modeled TWS are shown in Error! Reference source not found.ac; Error! Reference source not found.b shows the prior error estimates based on the analysis of the retrieval process as available from the GRACE Tellus web site; and Error! Reference source not found.d shows the fraction in total differences explained by the three components. Large differences (RMSD>100 mm) occur in north Queensland and along the southeast coast and are mostly because of diverging linear trends (Error! Reference source not found.a and d). Large differences were also found along the Gulf of Carpentaria (attributed to unaccounted oceanic influences) and southwestern Australia (not associated with any eight-year trend). Smaller differences (50–90 mm) occur in the Great Sandy Desert and are primarily due to different linear trends. The remaining areas show better agreement between observed and modeled TWS (difference <50 mm); in the areas with the best agreement (<15 mm), differences in de-trended anomalies generally dominate the other two components. Correlations are highest in southern and northern Australia and lowest in the arid interior, reflecting differences in variability rather than being a measure of absolute agreement (Error! Reference source not found.c). The spatial pattern in prior GRACE retrieval error estimates agrees rather well with the calculated pattern in RMSD between AWRA and GRACE (Error! Reference source not found.a). A direct comparison of pixel values suggests (Error! Reference source not found.) suggests that the prior GRACE error estimates may be conservative estimates, considering that there must also be error in the model (see discussion). The GRACE data providers caution against the possible degradation in trend information due the scaling applied. Table 1 provides some evidence for this; indeed all metrics of agreement are improved if the scaling coefficients are not applied. It is reiterated that a marked difference in continental mean trend remains when scaling is not applied (Error! Reference source not found.b).

5. Discussion

Uncertainties in GRACE terrestrial water storage estimates
The scaling applied to the GRACE TWS retrievals [Swenson and Wahr, 2006] appeared to contribute to differences between GRACE and AWRA. Without this scaling the absolute agreement is improved, particularly in terms of the unexplained trend and the RMSD of de-trended anomalies (Table 1). Geographically, the greatest improvements are not in coastal areas per se (where signal leakage to the ocean would be expected), but apparently mainly in areas with high rainfall gradients, such as southwestern Australia, Top End and the Murray uplands (Error! Reference source not found., cf. Figure 1). These are also regions were the scaling factors are largest (>2) and therefore it seems plausible that the retrievals have been ‘over-corrected’. This limits the confidence with which absolute differences in the amplitude of the seasonal cycle, the magnitude of eight-year trends, and the RMSD in (de-trended or total) anomalies between GRACE and AWRA can be attributed. The calculated correlation coefficients are not affected, however.

There was encouraging spatial agreement between the prior GRACE TWS error estimates and estimates obtained through the model-data comparison. The median prior estimate of 47 mm (mean 58 mm) was close to the calculated standard difference of 48 mm when scaling applied and 38 mm when it was not. Since the model estimates must also have error, these numbers suggest that the actual error in GRACE is considerably less than estimated from the retrieval. For example, part of total disagreement between model and data is because of the divergence in trends which presumably is mainly attributable to model error (Error! Reference source not found.d).

In addition to uncertainty about the scaling, the coarse resolution of the GRACE hydrology products also makes them more challenging to use in spatial parameter calibration and assimilation, although some early progress towards such formal model-data fusion approaches has been made [Zaitchik et al., 2008]. The dominance of systematic trend-related differences between observation and model also suggest that model structure and parameter improvements (i.e. calibration) should be made before attempting assimilation of GRACE TWS retrievals. Combined with the expected two year or longer
observation gap between the current set of GRACE satellites and their successors, the observations are currently not considered for assimilation in the operational AWRA system.

Limitations of the model

Despite uncertainties in the accuracy of the GRACE TWS estimates, several valuable inferences could be made. The model appeared to underestimate the seasonal TWS amplitude, suggesting a tendency of the modeled soil, groundwater and/or surface water systems to drain too fast. The AWRA model structure and parameterization were developed using concepts and streamflow observations that were probably biased towards small, well-defined upland catchments, often with medium to high rainfall [cf. Van Dijk, 2009; Van Dijk, 2010b]. By contrast, most of Australia is covered by extensive plains with often poorly developed drainage networks that drain internally into aquifers, wetlands and (salt) lakes (several are visible in Error! Reference source not found.).

Across most of Australia, AWRA showed lesser decreases – or greater increases – in TWS than GRACE over the eight year period. This divergence was not explained by the scaling of GRACE TWS estimates (Error! Reference source not found.ab). Unaccounted changes in water stored in public reservoirs are unlikely to explain the difference either: total storage in public reservoirs across Australia at the start of 2003 (http://www.water.gov.au/WaterAvailability/) and the end of 2009 (http://water.bom.gov.au/waterstorage/awris/) were almost identical (39 km3, equivalent to 5 mm) and increased to ca. 60 km3 by the end of 2010. They may account for a small part of unexplained trends in southwest and southeast Australia; for example, using the same data sources, the average contribution to the linear trend for the state of Victoria was estimated at –1.6 mm y$^{-1}$ during 2003–2009. In the other regions with unexplained GRACE trends there are much fewer or no public storages, while the volume of private storages is negligible.

Alternative explanations include errors in model forcing and model physics. The greatest trend deviations (>15 mm y$^{-1}$; with or without scaling) occurred in North Queensland, the Great Sandy
Desert, and the southern Murray Basin (Error! Reference source not found.a). The difference in trends for North Queensland appeared mainly associated with cyclone Charlotte in 2009 (Error! Reference source not found.c). The rainfall gauge interpolation procedure for this event may have led to rainfall overestimation, but probably more likely is that runoff to the ocean occurred faster and more effectively than estimated by the model. Rainfall in the Great Sandy Desert is basically ungauged (Error! Reference source not found.a). Satellite rainfall estimates derived from the TRMM (Tropical Rainfall Measuring Mission) Multi-satellite Precipitation Analysis (TMPA) product [Huffman et al., 2007] show a stronger negative rainfall trend for 2003–2010 (-38 mm y\(^{-1}\); Error! Reference source not found.b) than the interpolated gauge data (-25 mm y\(^{-1}\)). It follows that errors in the gauge interpolation may explain some of the difference in GRACE and AWRA TWS trends for this area (cf. Error! Reference source not found.a), although ‘true’ rainfall remains unknown. A longer record from a station nearby shows that the observed rainfall decrease is part of a return to drier conditions after a sequence of unusually wet years (Error! Reference source not found.b). In addition to possible rainfall forcing errors, Error! Reference source not found.a shows that the model stores are effectively depleted after 2007, whereas the observations shows continuing water loss.

The disagreement found for the Great Sandy Desert and also for the Murray Basin suggests a model deficiency that leads to underestimation of the rate of groundwater discharge, recharge, or both. Leblanc et al. [2009] compared GRACE TWS estimates over the Murray-Darling Basin with soil moisture estimates produced by the Global Land Data Assimilation System (GLDAS) driving the Noah land surface model [Rodell et al., 2004] and found a similar negative trend in GRACE TWS that was only partially explained by modeled soil moisture, and could attribute the remaining trend to widespread groundwater lowering as observed in monitoring wells. Greater than estimated groundwater discharge to the surface water network is unlikely to explain the slow trends observed. Diffuse groundwater discharge may well have been underestimated, however. This process is described in the model, but is assumed negligible once groundwater level reaches the base of the
surface drainage network. In reality, groundwater discharge can continue after connectivity with the
surface water network has been lost, through deep root water uptake [e.g. Petrone et al., 2010] and
capillary rise [Costelloe et al., 2008]. Even capillary rise can occur at sufficiently high rates (e.g. up to
30 mm y⁻¹, [Costelloe et al., 2008]) to explain the modest observed eight-year trends as a delayed
response to a sequence of below-average rainfall years. In the Great Sandy Desert, permeable sand
deposits overlay and obstruct the surface drainage network. This would be expected to enhance
groundwater recharge and reduce fast groundwater discharge, leaving the stored water available for
slower discharge through diffuse processes.

Australia’s contribution to sea level change and oceanic influences on water storage

Although not part of our main objective, it is of interest to consider the contribution of the continental
TWS trend to global sea level rise between 2003 and 2009 (we did not have access to more recent
updates). The surface area of Australia and the world’s oceans is 7.7 and 335 million of km²,
respectively. Therefore, the observed continental loss of water for 2003–2009 (6.7–8.0 mm y⁻¹
without and with scaling, respectively) equals 50–60 km³ y⁻¹ or an equivalent +0.15–0.18 mm y⁻¹ sea
mass change. This is of the same magnitude as the net sea level lowering of 0.22±0.05 mm y⁻¹ (2002–
2009) estimated from GRACE for 33 of the world’s largest rivers basins combined [Llovel et al.,
2010a]. This depletion was not reproduced by the hydrological model. For the period considered, the
average rate of sea level rise estimated from satellite altimetry was 2.6 mm y⁻¹ [Ablain et al., 2009].
GRACE based estimates of ocean mass increase (i.e., not including thermal and salinity influences on
sea level) show a large range of 0.3–2.1 mm y⁻¹ [Cazenave et al., 2009; Leuliette and Miller, 2009;
Llovel et al., 2010b]. It follows that Australia’s TWS changes account for anywhere between 7–60%
of global sea mass increase and 6–7% of sea level rise over this period. Understanding Australia’s
groundwater dynamics therefore appears relevant to understanding sea level change.

Conversely, both model and GRACE data suggest that total water storage across the Australian
continent is strongly influenced by ENSO conditions (*Error! Reference source not found.a*). The
influence of ENSO and other ocean phenomena (e.g. the Indian Ocean Dipole) on Australian rainfall
are well understood. Following the strong influence detected in remotely sensed shallow soil moisture
[Liu et al., 2007], our analysis shows that a similarly strong signal is propagated into total water
storage but with stronger and lingering accumulative effects.

6. Conclusions

Our objective was to test whether a comparison between GRACE and AWRA TWS would allow us to
identify concrete needs for model improvement. The comparison benefited from decomposition of the
data into their seasonal cycle, linear trends, and de-trended anomalies. We found evidence that the
scaling applied to GRACE artificially degraded the comparison for some regions. The generally good
agreement between GRACE and model TWS estimates suggests that the GRACE TWS are likely to
be more accurate than estimated as part of the retrieval process.

AWRA tended to have smaller seasonal amplitude than GRACE. GRACE showed a strong (>15 mm
y⁻¹) drying trend in northwest Australia that was associated with a preceding period of unusually wet
conditions, whereas weaker drying trends in the southern Murray Basin and southwest Western
Australia were associated with relatively dry conditions. AWRA estimated trends were less negative
for these regions, while a more positive trend was estimated for areas affected by cyclone Charlotte in
2009. For 2003–2009, a decrease of 7–8 mm y⁻¹ (50–60 km³ y⁻¹) was estimated from GRACE, enough
to explain 6–7% of the contemporary rate of global sea level rise. This trend was not reproduced by
the model.

The analysis provided several insights into model performance that could not have been obtained with
any other source of observations, and indicated two priorities to improve the AWRA system. Firstly,
precipitation forcing in poorly gauged areas was one such opportunity and is being addressed through
blending of gauged and remotely-sensed precipitation [Renzullo et al., in review; Van Dijk and
Renzullo, 2011]. Secondly, a tendency for water storage to decline for longer and more gradually than
estimated by AWRA was observed and indicates that greater sophistication in the model assumptions about diffuse groundwater discharge and surface-groundwater connectivity is needed.

Acknowledgements

This work is part of the water information research and development alliance between the Bureau of Meteorology and CSIRO’s Water for a Healthy Country Flagship. GRACE land data were processed by Sean Swenson, supported by the NASA MEASURES Program, and are available at http://grace.jpl.nasa.gov. Helpful suggestions from Paul Tregoning, Sean Swenson, Richard Cresswell, Glenn Harrington, Brian Smerdon, Don McFarlane, Tom van Niel and John Church are gratefully acknowledged.
References

Figure captions

Figure 1. Map of the mean net water balance (2000–2006) estimated as the difference between precipitation and actual evapotranspiration [Guerschman et al., 2009]. Lines represent state boundaries (WA=Western Australia, NT=Northern Territory, SA= South Australia, Qld=Queensland, NSW=New South Wales, Vic=Victoria, Tas=Tasmania). Also indicated are specific regions referred to in the text.

Figure 2. Comparison of seasonal cycle in GRACE TWS and AWRA TWS. Letters A–D indicate location of data shown in Figure 3 and discussed in the text.

Figure 3. Seasonal cycle in GRACE TWS (black) and AWRA TWS (shaded) for selected grid cells (refer to Figure 2 for locations).

Figure 4. Comparison of linear trends in GRACE TWS and AWRA TWS. Letters A–D indicate location of data shown in Figure 5 and discussed in the text (unexplained trend was calculated as observed minus modeled trend).

Figure 5. Time series of GRACE TWS (black) and AWRA TWS (shaded) along with 12-month running averages of the difference between the two (red) (refer to Figure 4 for locations).

Figure 6. (a) Time series of average Australian GRACE (black line) and AWRA (shaded) TWS anomalies, (b) difference between mean annual AWRA TWS and GRACE TWS for Australia.
Figure 7 (a-b) Comparison of the mean GRACE and AWRA TWS de-trended anomaly (calculated as the root mean square of anomalies), and (b-c) indicators of agreement between de-trended anomalies. Letters A–D indicate location of data shown in Figure 8 and discussed in the text.

Figure 8. Time series of de-trended anomalies in GRACE TWS (black) and AWRA TWS (shaded) for selected grid cells (refer to Figure 7 for locations). Note the different vertical scale of (d).

Figure 9. (a-b) Indicators of overall agreement between original GRACE and AWRA TWS anomalies. (c) colour composite showing the relative contribution of the three signal components (seasonal cycle, eight-year trends, de-trended anomalies) to the overall disagreement between GRACE and AWRA TWS.

Figure 10. Relationship between GRACE retrieval error estimates and standard difference estimates derived from this analysis. Shown are the 1:1 line (dashed) and a linear regression equation passing through the origin (solid line).

Figure 11. Effect of the GRACE scaling on agreement with AWRA TWS: (a) unexplained trend (mm y\(^{-1}\)); (b) RMSD in detrended anomalies (mm).

Figure 12. (a) Distribution of rain gauges (points) used in generating AWRA rainfall forcing data. Also shown are the location of the Telfer aerodrome gauge (21.71\(^{\circ}\) S, 122.23\(^{\circ}\) E, shaded dot) and region of interest (rectangle), (b) Annual rainfall at Telfer aerodrome (shaded bars) and region average rainfall derived from AWRA model forcing (open diamonds) and the TMPA satellite product [Huffman et al., 2007] (solid dots).

Table caption

Table 1. Statistics of the absolute agreement between AWRA and GRACE TWS, showing the effect of not applying the scaling coefficient to the GRACE product (ASC=amplitude of seasonal cycle; LT=linear trend; SDA=standard de-trended anomaly, TA= total anomaly).
Table 1. Statistics of the absolute agreement between AWRA and GRACE TWS, showing the effect of not applying the scaling coefficient to the GRACE product (ASC=amplitude of seasonal cycle; LT=linear trend; SDA=standard de-trended anomaly, TA= total anomaly).

<table>
<thead>
<tr>
<th></th>
<th>GRACE (original)</th>
<th>GRACE (scaling removed)</th>
<th>AWRA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seasonal cycle (SC)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median RMSD<sub>SC</sub> (mm)</td>
<td>15.9</td>
<td>14.3</td>
<td>n/a</td>
</tr>
<tr>
<td>Median ASC (mm)</td>
<td>58.8</td>
<td>49.5</td>
<td>38.7</td>
</tr>
<tr>
<td>ASC<sub>GRACE</sub> - ASC<sub>AWRA</sub> (% cells)</td>
<td>79%</td>
<td>66%</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linear trends (LT)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean LT (mm y<sup>-1</sup>)</td>
<td>-5.6</td>
<td>-4.5</td>
<td>0.8</td>
</tr>
<tr>
<td>LT < -15 mm y<sup>-1</sup> (% cells)</td>
<td>19%</td>
<td>10%</td>
<td>4%</td>
</tr>
<tr>
<td>(LT<sub>GRACE</sub> - LT<sub>AWRA</sub>) < -10 mm y<sup>-1</sup> (% cells)</td>
<td>29%</td>
<td>19%</td>
<td>n/a</td>
</tr>
<tr>
<td>De-trended anomalies (DA)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>median SDA (mm)</td>
<td>36.1</td>
<td>31.3</td>
<td>19.7</td>
</tr>
<tr>
<td>median RMSD<sub>DA</sub> (mm)</td>
<td>33.7</td>
<td>28.0</td>
<td>n/a</td>
</tr>
<tr>
<td>RMSD<sub>DA</sub> > 50 mm (% cells)</td>
<td>25%</td>
<td>16%</td>
<td>n/a</td>
</tr>
<tr>
<td>SDA<sub>GRACE</sub> > SDA<sub>AWRA</sub> (% cells)</td>
<td>75%</td>
<td>68%</td>
<td>n/a</td>
</tr>
<tr>
<td>Total anomalies (TA)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>median RMSD<sub>TA</sub> (mm)</td>
<td>48.3</td>
<td>37.7</td>
<td>n/a</td>
</tr>
<tr>
<td>RMSD<sub>TA</sub> > 50 mm (% cells)</td>
<td>48%</td>
<td>28%</td>
<td>n/a</td>
</tr>
</tbody>
</table>
$y = 0.848x$

$R^2 = 0.362$