NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Initial Observations of Lunar Impact Melts and Ejecta Flows with the Mini-RF RadarThe Mini-RF radar on the Lunar Reconnaissance Orbiter's spacecraft has revealed a great variety of crater ejecta flow and impact melt deposits, some of which were not observed in prior radar imaging. The craters Tycho and Glushko have long melt flows that exhibit variations in radar backscatter and circular polarization ratio along the flow. Comparison with optical imaging reveals that these changes are caused by features commonly seen in terrestrial lava flows, such as rafted plates, pressure ridges, and ponding. Small (less than 20 km) sized craters also show a large variety of features, including melt flows and ponds. Two craters have flow features that may be ejecta flows caused by entrained debris flowing across the surface rather than by melted rock. The circular polarization ratios (CPRs) of the impact melt flows are typically very high; even ponded areas have CPR values between 0.7-1.0. This high CPR suggests that deposits that appear smooth in optical imagery may be rough at centimeter- and decimeter- scales. In some places, ponds and flows are visible with no easily discernable source crater. These melt deposits may have come from oblique impacts that are capable of ejecting melted material farther downrange. They may also be associated with older, nearby craters that no longer have a radar-bright proximal ejecta blanket. The observed morphology of the lunar crater flows has implications for similar features observed on Venus. In particular, changes in backscatter along many of the ejecta flows are probably caused by features typical of lava flows.
Document ID
20120003913
Acquisition Source
Goddard Space Flight Center
Document Type
Preprint (Draft being sent to journal)
Authors
Carter, Lynn M.
(NASA Goddard Space Flight Center Greenbelt, MD, United States)
Neish, Catherine D.
(Johns Hopkins Univ. Laurel, MD, United States)
Bussey, D. B. J.
(Johns Hopkins Univ. Laurel, MD, United States)
Spudis, Paul D.
(Lunar and Planetary Inst. Houston, TX, United States)
Patterson, G. Wesley
(Johns Hopkins Univ. Laurel, MD, United States)
Cahill, Joshua T.
(Johns Hopkins Univ. Laurel, MD, United States)
Raney, R. Keith
(Johns Hopkins Univ. Laurel, MD, United States)
Date Acquired
August 25, 2013
Publication Date
January 1, 2011
Subject Category
Lunar And Planetary Science And Exploration
Report/Patent Number
GSFC.JA.5788.2011
Funding Number(s)
CONTRACT_GRANT: NNX08AM80G
Distribution Limits
Public
Copyright
Public Use Permitted.
No Preview Available