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Abstract  8 
A new empirical algorithm is proposed to estimate surface chlorophyll-a concentrations (Chl) in 9 

the global ocean for Chl ≤ 0.25 mg m-3 (~ 77% of the global ocean area). The algorithm is based 10 

on a color index (CI), defined as the difference between remote sensing reflectance (Rrs, sr-1) in 11 

the green and a reference formed linearly between Rrs in the blue and red. For low Chl waters, in 12 

situ data showed a tighter (and therefore better) relationship between CI and Chl than between 13 

traditional band-ratios and Chl, which was further validated using global data collected 14 

concurrently by ship-borne and SeaWiFS satellite instruments. Model simulations showed that 15 

for low Chl waters, compared with the band-ratio algorithm, the CI-based algorithm (CIA) was 16 

more tolerant to changes in chlorophyll-specific backscattering coefficient, and performed 17 

similarly for different relative contributions of non-phytoplankton absorption. Simulations using 18 

existing atmospheric correction approaches further demonstrated that the CIA was much less 19 

sensitive than band-ratio algorithms to various errors induced by instrument noise and imperfect 20 

atmospheric correction (including sun glint and whitecap corrections). Image and time-series 21 

analyses of SeaWiFS and MODIS/Aqua data also showed improved performance in terms of 22 

reduced image noise, more coherent spatial and temporal patterns, and consistency between the 23 

two sensors. The reduction in noise and other errors is particularly useful to improve the 24 

detection of various ocean features such as eddies. Preliminary tests over MERIS and CZCS data 25 

indicate that the new approach should be generally applicable to all existing and future ocean 26 

color instruments.  27 

Keywords: Remote sensing, ocean color, SeaWiFS, MODIS, MERIS, CZCS, bio-optical 28 

inversion, atmospheric correction, chlorophyll-a, calibration, validation, climate data record. 29 
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1. Introduction 32 
Over the past half century, algorithms to invert ocean color (i.e., spectral radiance or reflectance 33 

of the surface ocean) to phytoplankton chlorophyll-a concentrations (Chl in mg m-3) have 34 

evolved from simple empirical regressions [Gordon and Morel, 1983] to semi-analytical 35 

inversions based on radiative transfer theory [Sathyendranath et al., 1989; Carder et al., 1999; 36 

Maritorena et al., 2002; others]. While each of these has its own advantages and disadvantages 37 

(and thus, applicability range), an algorithm based on a spectral ratio of remote-sensing 38 

reflectance (Rrs, sr-1) has historically been used as the default algorithm formulation to produce 39 

global chlorophyll-a products from measurements made by satellite instruments. These include 40 

the Coastal Zone Color Scanner (CZCS, 1978-1986), the Sea-viewing Wide Field-of-view 41 

Sensor (SeaWiFS, 1997-2010) and the Moderate Resolution Imaging Spectroradiometer 42 

(MODIS, 1999 – present for Terra satellite and 2002 – present for Aqua satellite). The current 43 

default Chl algorithm for SeaWiFS and MODIS is based on the OCx form of O’Reilly et al. 44 

(2000), with coefficients derived using in situ data from the NASA bio-Optical Marine 45 

Algorithm Dataset (NOMAD) version 2 46 

[http://oceancolor.gsfc.nasa.gov/REPROCESSING/R2009/ocv6/]. The default SeaWiFS 47 

algorithm is referred to as OC4 in this paper. Correspondingly, many large-scale studies of ocean 48 

carbon cycles and biogeochemistry that utilized satellite ocean color data, from regional-, basin-, 49 

to global-scale, have used the OC4 data products [e.g., Gregg et al., 2005; Behrenfeld et al., 2006; 50 

Yoder and Kennelly, 2006; Polovina et al., 2008], leading to documented changes in ChlOC4 and 51 

primary productivity at various spatial/temporal scales and connections to climate variability.  52 

An early review on the history of the band-ratio empirical algorithms as well as their advantages 53 

and disadvantages was provided in Gordon and Morel [1983], and recently re-visited by Dierssen 54 

[2010]. Briefly, the most recent OC4v6 algorithm evolved from its predecessors in the 1970s and 55 

1980s [Clarke et al., 1970; Arvesen et al., 1973; Hovis and Leung, 1977, Clark et al., 1980; 56 

Gordon and Clark, 1980; Morel, 1980], when the radiance ratio of blue and green wavelengths 57 

was recognized to correlate well with surface Chl. The underlying assumption is that the relative 58 

changes between the blue and green bands are primarily driven by changes in phytoplankton and 59 

their direct degradation products (i.e., the traditional Case-I scenario, see Morel and Prieur, 60 

1977), and the latter can therefore be inferred from the former. Indeed, despite the various 61 

studies showing the algorithm artifacts in non-Case-I (i.e., Case-II) waters [e.g., Dierssen et al., 62 
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2002; Hu et al., 2003; Odriozola et al., 2007; others], global validation efforts of the SeaWiFS 63 

ChlOC4 data products proved that for most open ocean waters, the algorithm performed well, with 64 

RMS differences from ship-based Chl (after logarithmic transformation) of 0.2 – 0.3 without 65 

significant bias [Gregg and Casey, 2004; McClain et al., 2004; McClain, 2009]. 66 

Agreement/disagreement varied among different ocean basins because the same regression 67 

coefficients, determined from the global dataset optimization, were applied universally [Gregg 68 

and Casey, 2004]. To address these regional differences, various band combinations and 69 

regression coefficients were developed for different water types [e.g., Kahru and Mitchell, 1999; 70 

McKee et al., 2007; Mitchell and Kahru, 2009], with similar band-ratio forms.  71 

All previous global-scale studies used spatially and temporally composited data (e.g., monthly 72 

composites at reduced resolution) to reduce data volume and fill in data gaps due to cloud cover 73 

and other measurement/algorithm artifacts. Chl data product errors at original spatial and 74 

temporal resolutions are smoothed and smeared in these higher-level data products, thus 75 

complicating the propagation of errors to trend/variability analyses at global or regional scales. 76 

These errors are particularly evident at low concentrations (Chl < 0.1 mg m3). Fig. 1a shows a 77 

typical example of SeaWiFS Global Area Coverage (GAC) Level-2 Chl data product for the 78 

Sargasso Sea, an oligotrophic ocean gyre in the North Atlantic. Due to a variety of reasons (see 79 

details below), the image shows patchiness, speckle noise (pixelization), and is not spatially 80 

coherent. Note that all non-zero Chl values in this image are regarded as acceptable-quality and 81 

used in composing the higher-level (i.e., lower spatial and temporal resolution) products, because 82 

all “low-quality” data, as defined by the various quality flags, are already discarded. The image 83 

was selected rather arbitrarily for demonstration purpose, and similar problems could be 84 

visualized in almost every Level-2 GAC image. Clearly, these issues need to be addressed in 85 

order to understand how they may propagate to higher-level products to affect the large-scale 86 

trend/variability analyses. 87 

Recently, to derive spatially coherent and temporally consistent ocean color patterns from 88 

satellite images contaminated by severe sun glint, a new color index (CI) was developed for 89 

satellite ocean color observations ([Hu, 2011]. Instead of using a blue-green band-ratio as the 90 

independent variable, the CI is calculated as the difference between the green-band reflectance 91 

and a reference formed linearly by the blue and red bands. This is similar to the design of the 92 

MODIS fluorescence line height (FLH, Letelier and Abott, 1996) and MERIS maximal 93 
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chlorophyll index (MCI, Gower et al., 2005), except that the bands are shifted to blue-green-red. 94 

Hu [2009] used a similar form to detect and quantify the reflectance peak in the MODIS 859-nm 95 

band, and proved that the floating algae index (FAI), derived using the 645-859-1240 band 96 

combination, was much less sensitive to variable observing conditions (aerosols, sun glint, thin 97 

clouds, solar/viewing geometry) than band-ratio algorithms. The MODIS CI appears to be 98 

relatively insensitive to residual errors due to imperfect empirical glint correction, and in glint-99 

free areas it is also well correlated with MODIS band-ratio Chl [Hu, 2011], suggesting that a new 100 

Chl algorithm might be developed to remove residual atmosphere-correction related errors and 101 

image noise.  102 

Inspired by these recent works, a new empirical algorithm to retrieve Chl using the CI as the 103 

independent variable is developed and validated in this paper. Using data collected primarily by 104 

SeaWiFS but also by MODIS/Aqua and other satellite instruments, we evaluate the performance 105 

of such a band-difference algorithm (i.e., the CI algorithm or CIA) in comparison with the OC4 106 

band-ratio algorithm. We demonstrate and argue that because the CI is much more tolerant than 107 

the band ratio to various perturbations in sensor hardware and data processing (e.g., instrument 108 

noise, residual errors in atmospheric correction, whitecap and sun glint corrections, stray light 109 

contamination), and also more tolerant to perturbations of Chl-independent particle 110 

backscattering from the water column, the CIA appears superior to band-ratio algorithms in 111 

deriving a more consistent and accurate Chl climate data record for most oligotrophic oceans. 112 

The paper is arranged as follows. The principles to “measure” Chl from space, although found in 113 

the refereed literature, are briefly introduced for the reader’s convenience. The in situ and 114 

satellite data used to develop and validate the new algorithm are then described. Following that, 115 

the new Chl algorithm (CIA) is described and validated for SeaWiFS. Its sensitivity to errors and 116 

perturbations, in comparison with the OC4 algorithm, is analyzed in detail, and further 117 

demonstrated using satellite measurements. Sample time-series at several arbitrarily selected 118 

oligotrohpic ocean sites as well as from global-scale data are used to evaluate the performance of 119 

the new algorithm. Finally, we discuss the new algorithm’s applicability to other satellite 120 

instruments such as MODIS, MERIS, and CZCS, and discuss its potential to improve data 121 

quality, time-series and cross-sensor consistency, and to improve image quality in feature 122 

detection.  123 

 124 
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2. Principles to “measure” Chl from space 125 
A multi-band ocean-color satellite instrument measures the top-of-atmosphere (TOA) radiance or 126 

reflectance in several spectral bands coving the visible to the near-infrared domain. On SeaWiFS, 127 

the spectral bands are centered at λ=412, 443, 490, 510, 555, 670, 765, and 865 nm, respectively. 128 

After radiometric calibration (including in-orbit vicarious calibration, Franz et al., 2007) the 129 

calibrated at-sensor reflectance (ρt(λ)) is used to derive the at-sea remote sensing reflectance (Rrs) 130 

[Gordon, 1997]. With some simplifications, this can be expressed as: 131 

 ρt(λ) = ρr(λ) + ρar(λ) + t(λ)ρwc(λ)+T(λ)ρg(λ) + πt(λ)t0(λ)Rrs(λ),   (1) 132 

where ρr is that due to Rayleigh scattering, ρar is that due to aerosol scattering and aerosol-133 

Rayleigh interactions, ρwc is the whitecap reflectance, ρg is the sun glint reflectance, T and t are 134 

the direct and diffuse transmittance from the target (pixel of the imagery) to the sensor (satellite), 135 

and t0 is the diffuse transmittance from the sun to the target. 136 

Deriving Rrs(λ) from ρt(λ) is through a sophisticated atmospheric correction, which uses lookup 137 

tables for aerosol and molecular properties [Gordon and Wang, 1994a&b, Ahmad et al., 2010, 138 

Bailey et al., 2010] after removing contributions from whitecaps [Frouin et al. 1996] and sun 139 

glint [Wang and Bailey, 2001]. The retrieved Rrs(λ) is then used as the input to an established 140 

bio-optical inversion model to derive Chl. For the OC4 algorithm, Chl is derived as [O’Reilly et 141 

al., 2000]: 142 

 ChlOC4  =10a0 + a1*χ + a2*χ*χ + a3*χ*χ*χ + a4*χ*χ*χ*χ   143 

 χ = log10(R) and R = max(Rrs(443, 490, 510))/Rrs(555),    (2) 144 

where a0 – a4 are the empirical regression coefficients, for which the current values (version 6) 145 

are  0.3272, -2.9940, 2.7218, -1.2259, -0.5683, respectively.  146 

The algorithm details and their performance at global and regional scales can be found in the 147 

published literature as well as in online documents 148 

(http://oceancolor.gsfc.nasa.gov/REPROCESSING/R2009/ocv6/).    149 

 150 
3. Data sources used in this study 151 
In situ data were obtained from the NASA SeaBASS archive (SeaWiFS Bio-optical Archive and 152 

Storage System), which is a database of measurements collected by many research groups in 153 
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order to develop and validate satellite ocean color algorithms. The NOMAD dataset, described 154 

by Werdell and Bailey [2005], is a subset of SeaBASS specifically compiled for bio-optical 155 

algorithm development, as it contains coincident measurements of Chl, Rrs(λ), and other data 156 

collected simultaneously in the global oceans. 157 

Like the current OC4 algorithm, the dataset used to develop the CIA was taken from NOMAD 158 

version 2, covering a period of 1991-2007 and containing 4459 data records. Similar to Morel et 159 

al. [2007a], the NOMAD data used in the present study for algorithm development are those with 160 

Chl determined via HPLC, since Chl determined from traditional fluorometric methods often 161 

suffer from contaminations by chlorophyll-b and chlorophyll-c, as demonstrated from data 162 

collected in the southern ocean [Marrari et al., 2006; Dierssen, 2010]. Further, we applied the 163 

following criteria to select data for the oligotrophic oceans: Rrs(λ) > 0.0 sr-1, Chl > 0.0 mg m-3, 164 

bottom depth > 30.0 m, and latitude between 60oN and  60oW. A total of 136 data records were 165 

obtained. 166 

To evaluate the algorithm performance when applied to satellite data, in situ data were also 167 

obtained from the SeaBASS archive through online query. The following criteria were used to 168 

search for the in situ – satellite matching pairs: bottom depth > 30 m; solar zenith angle < 70o; 169 

satellite zenith angle < 56o, time difference between satellite and in situ measurements < 3 hours; 170 

satellite Chl variance (standard deviation divided by mean) from the 3x3 pixels centered at the in 171 

situ stations < 15%; difference between modeled and measured surface irradiance < 100%; wind 172 

speed < 35 m s-1. For SeaWiFS, a total of 1424 matching pairs were obtained for 1998-2010.  173 

The online query also resulted in the satellite Level-2 computer filenames corresponding to the 174 

matching pairs. These Level-2 data products were derived by the NASA Ocean Biology 175 

Processing Group (OBPG) using the most recent updates in algorithms and instrument 176 

calibration (Reprocessing 2010.0, SeaDAS6.1). The data products include ChlOC4, aerosol optical 177 

thickness at 865 nm (τ_865), and Rrs(λ). Rrs(λ) data extracted from the Level-2 files were used as 178 

the input to derive ChlCI (Chl from the CI algorithm) and compared with those determined from 179 

the in situ measurements. 180 

To evaluate algorithm performance in constructing time series, SeaWiFS Level-2 data between 181 

1998 and 2010 covering two oligotrophic gyres, namely in the Sargasso Sea (15 to 35oN, 60 – 182 

40oW) and in the eastern South Pacific Gyre (20 to 40oS, 120 to 100oW), were obtained from the 183 
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NASA GSFC. For cross-sensor consistency evaluations, SeaWiFS and MODIS/Aqua Level-2 184 

global daily data for 2006 were used. Some Level-2 data files from MODIS/Aqua, MERIS, and 185 

CZCS covering the western North Atlantic Sea were also used for algorithm evaluation.  186 

4. The new empirical Chl algorithm 187 
Similar to the MODIS CI from the Rayleigh-corrected reflectance [Hu, 2011], the Rrs-based 188 

SeaWiFS CI is defined as the relative height of Rrs(555) from a background, i.e., difference 189 

between Rrs(555) and a baseline formed linearly between Rrs(443) and Rrs(670) (Fig. 2): 190 

 CI = Rrs(555) – [Rrs(443) + (555-443)/(670-443)*(Rrs(670)-Rrs(443))],  (3) 191 

which is approximately CI ≈ Rrs(555) – 0.5(Rrs(443) + Rrs(670)). 192 

By this definition, for most clear ocean waters CI is negative. Because for most clear waters 193 

Rrs(670) is negligible (see the “clear water” concept in Gordon and Clark, 1981 and revisited in 194 

Morel and Maritorena, 2001), CI is basically a weighted relative difference between Rrs(443) and 195 

Rrs(555). Just as a ratio between the two is related to Chl, since Rrs(555) is relatively stable but 196 

Rrs(443) is sensitive to Chl changes for clear waters [Gordon and Morel, 1983],  a difference 197 

between the two should also be related to Chl, and this forms the basis of the new Chl algorithm 198 

(the theoretical basis of this algorithm is provided in Section 6.1 below). Indeed, Fig. 2 shows 199 

that with increasing Chl, the magnitude of CI decreases monotonically. The added band at 670-200 

nm has a great advantage in compensating various errors in atmospheric correction and other 201 

corrections when the algorithm is applied to satellite data (see below).  202 

Using the NOMAD dataset, the relationships between band-ratio R and Chl (Eq. 2) and between 203 

CI and Chl are shown in Figs. 3a and 3b, respectively, for data collected from the 136 qualified 204 

stations. Also overlaid on Fig. 3a is the OC4v6 prediction (solid line), which shows that the 205 

globally optimized regression relationship fits well with the low Chl values. If a similar band-206 

ratio form is developed using the low-concentration stations only (green dots), slightly better 207 

performance can be achieved as measured by the statistics (Table 1), but at the price of 208 

sacrificing the intermediate values (red line in Fig. 3a) because the numerical fit tends to plateau 209 

for Chl around 0.2 and 0.3 mg m-3. 210 

The statistical measure of the algorithm performance is listed in Table 1. Note that when 211 

evaluating the relative difference between the two datasets x and y (in this case, one is the in situ 212 
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measurement (x) and the other is the algorithm prediction (y)), RMS difference (or error) is 213 

typically evaluated using the form of (y-x)/x. However, when one dataset contains substantial 214 

errors, the (y-x)/x ratio may be extremely large and therefore create biased estimates for the 215 

relative difference. For this reason, an “unbiased” RMS was also estimated using the form of (y-216 

x)/(0.5x + 0.5y). And this evaluation was also used for comparison between satellite and in situ 217 

Chl data below. When the Chl data cover a large dynamic range they tend to be log-normal 218 

[Campbell, 1995]. Thus, R2 between the log-transformed data was also estimated and presented 219 

in Table 1. 220 

Fig. 3b shows that for low Chl values there is a strong relationship between CI and Chl, 221 

confirming the visual interpretation of Fig. 2. Non-linear regression for CI  -0.0005 resulted in a 222 

coefficient of determination (R2) of 0.95 (N=50) and a RMS difference of 16.52% between the 223 

CI-predicted Chl (ChlCI) and the measured Chl:  224 

ChlCI = 10-0.4909 + 191.6590 * CI  [CI  -0.0005 sr-1]     (4) 225 

In comparison, for the same data points corresponding to CI  -0.0005 sr-1 (N=50), the OC4v6 226 

predicated Chl showed a lower coefficient of determination (R2 = 0.85, N=50) and higher RMS 227 

difference from the in situ Chl (RMS = 34.87%). Even when new coefficients from these low-228 

Chl data points were tuned to result in a better fit between band-ratio R and Chl, RMS difference 229 

was reduced to 22.95% but still higher than the CI predictions (Table 1). Indeed, the contrast 230 

between the different data scattering in Fig. 3a for ChlOC4 and Fig. 3b for ChlCI is apparent. From 231 

this regression alone, the CIA appears to perform better than the OC4v6 for low concentrations 232 

(Chl  0.25 mg m-3). Note that although the number of data points used in the regression is 233 

limited (N=50), they were collected from different ocean basins (Fig. 3a inset) covering the 234 

Pacific, Atlantic, Gulf of Mexico, and the Southern Ocean. Thus, the CIA might be applicable 235 

for most oligotrophic waters. 236 

Fig. 3b also shows that the CIA may only be applicable for low concentrations, because the 237 

relationship quickly falls apart for CI > 0.0005 sr-1, corresponding to ChlCI ~ 0.4 mg m-3. The 238 

reason why the CIA does not work well above this concentration is demonstrated in Sections 6.1 239 

and 6.2 using radiative transfer modeling. Indeed, above this concentration, the CIA tends to 240 

underestimate Chl significantly (Fig. 3b), where the original OC4v6 should be used instead. For 241 

intermediate concentrations a mixture between the two algorithms may be used to assure image 242 



 9

smoothness when the algorithm switches from one to another. For this practical consideration, 243 

the new global product of chlorophyll (ChlOCI) is defined as follows: 244 

ChlOCI = ChlCI   [for ChlCI  0.25 mg m-3] 245 

  ChlOC4   [for ChlCI > 0.4 mg m-3] 246 

  α×ChlOC4 + β× ChlCI  [for 0.25 < ChlCI ≤ 0.4 mg m-3],   (5) 247 

where  α = (ChlCI - 0.25)/(0.4 -0.25), β =  (0.4 - ChlCI)/(0.4 - 0.25). Because such-derived Chl is 248 

from two algorithms (OC4 and CIA), we use the term ChlOCI hereafter to represent the merged 249 

product. 250 

 251 
5. Validation of the new Chl algorithm 252 

The CIA was implemented to derive ChlOCI from SeaWiFS Level-2 Rrs(λ) data where concurrent 253 

in situ Chl were found (see data source). Fig. 4 shows the comparison between in situ Chl and 254 

satellite ChlOCI, and between in situ Chl and satellite ChlOC4. For high concentrations (ChlOCI > 255 

0.4 mg m-3) the data points between the two algorithms were forced to be identical (Eq. 5). For 256 

low concentrations (Chl  0.25 mg m-3), the CI algorithm outperforms the OC4 algorithm by all 257 

measures, from RMS difference, R2, to mean and median ratios (Table 2). Note that although 258 

only a limited number of data points were available for low concentrations, a slight improvement 259 

in algorithm performance may lead to larger difference in image analysis, because the majority 260 

of the ocean is oligotrophic. Indeed, analysis of the 13-year SeaWiFS monthly data between 261 

1998 and 2010 indicated that 77.8±1.0% of the global ocean waters had surface Chl ≤ 0.25 mg 262 

m-3, and 88.4±1.4% had surface Chl ≤ 0.4 mg m-3. Thus, such a new algorithm might have 263 

profound effects on global-scale studies. Note that if a local OCx algorithm is developed for low 264 

concentrations only (Fig. 3a red line), its performance will also improve over the globally tuned 265 

OC4 algorithm in statistical measures and is also slightly better than the CIA in terms of median 266 

ratio. However, its R2 value is lower than the CIA, especially when a linear form is used. Global 267 

validation results using this local OCx algorithm showed plateaued performance around 0.2-0.3 268 

mg m-3. More importantly, because it takes a similar band-ratio form, it suffers from same 269 

problems as encountered by the OC4 algorithm for low concentrations (see below). Thus, it is 270 

listed in the table for demonstration only and was not implemented for global data processing. 271 
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Because only limited in situ data are available to evaluate algorithm performance at low 272 

concentrations (e.g., there is no in situ Chl < 0.02 mg m-3), below we take a theoretical approach 273 

to compare the sensitivity of ChlCI and ChlOC4 algorithms to various perturbations, including 274 

sensor noise, atmospheric correction, and non-covarying in-water constituents. 275 

 276 
6. Algorithm theoretical basis, and its sensitivity to simulated and realistic perturbations. 277 
6.1. Algorithm theoretical basis: why and when it works  278 

Assuming that the influence of measurement geometry (i.e., bi-directional reflectance effects) on 279 

Rrs(λ) can be corrected [Morel and Gentili, 1993; Lee et al., 2011], Rrs(λ) is entirely determined 280 

by the inherent optical properties (IOPs) through primarily spectral absorption and 281 

backscattering by the various in-water optically active constituents (OACs). These include water 282 

molecules, phytoplankton, colored dissolved organic matter (CDOM or yellow substance), and 283 

detrital particles. In high-wind seas, the OACs may also include bubbles induced by wave 284 

breaking, which may increase the backscattering properties significantly. Following Lee et al. 285 

[2010], Rrs(λ) can be expressed using spectral absorption (a) and backscattering (bb) coefficients 286 

as: 287 

bp bpbw bw
rs 0 1 0 1
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,  (6) 288 

where the phase-function effects of molecular and particulate scatterings are separated explicitly. 289 

In Eq. (6),   = a + bb, while Ω represents the solar/viewing geometry. A simplified form has 290 

often been used in the literature: 291 
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where bbw and bbp are backscattering coefficients of water molecules (constant) and particles 293 

(variable), respectively. 294 

Because Rrs(670) is generally negligible for oligotrophic waters, CI from Eq. 3 can be 295 

approximated as 296 
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Because bbw(443) ≈ 2.6 bbw(555), and bbp(443) ≈1.6 bbp(555) (assuming a spectral slope of 2), Eq. 
298 

8 can be further simplified as 
299 

 )555()443(2)555()443(2
)443())443(3.1)555(()443())443(8.0)555((

aa
G

aa
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GCI particleswaterbpbw Δ+Δ
−=

−+−
−≈

 (9)
 300 

Fig. 5 shows the two backscattering related terms (Δwater and Δparticles, x1000) for Chl ranging 
301 

between 0.02 and 1.0 mg m-3, estimated from the Morel and Moretorina [2001] Case-1 model. It 
302 

shows that for Chl < ~0.4 mg m-3, ⏐Δwater⏐ overweighs ⏐Δparticles⏐. This is due to two reasons: 1) 
303 

low bbp(443) relative to bbw(443) (e.g., for Chl = 0.1 mg m-3, bbw(443) = 0.0025 m-1, bbp(443) 
304 

~0.0015 m-1); 2) When Chl increases, the corresponding increase in bbp(443) is compensated by 
305 

the decrease in (a(555)-1.3 a(443)). These results suggest that for Chl < 0.4 mg m-3, Eq. 9 can be 
306 

further simplified to 
307 

)443(2
)443(

a
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,          (10)
 308 

which is equivalent to the band ratio: 309 
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      (11)
 310 

In other words, both CI and R are inversely related to a(443). Because for oligotrophic waters 
311 

a(443) is primarily a function of Chl, CI in Eq. 10 can be expressed as 
312 

 )(2
)443(

Chlf
bGCI bw−∝

         (12)
 313 

This simplified equation explains why Chl can be derived from CI at low concentrations. 314 

 315 
6.2. Sensitivity to perturbations from in-water constituents  316 

The empirical Chl algorithms (either OC4 or CIA) are based on the assumption that Rrs(λ) is 317 

mainly determined by phytoplankton and its direct degradation product (the so called ‘Case I’ 318 

waters, Morel and Prieur, 1977) or at least other OACs such as CDOM and detrital particles 319 

covary with phytoplankton. For low concentrations, both band-ratio (R) and CI are inversely 320 



 12

related to the total absorption coefficient (a(443), Eqs. 10 and 11), where the contribution of 321 

phytoplankton and CDOM/detrital particles to a(443) must covary in order to derive the former. 322 

There has been substantial evidence that the OACs often do not covary even for the open oceans 323 

[Loisel et al., 2002; Dierssen, 2010], which may explain why a globally optimized 324 

parameterization in OC4 may work well for one ocean basin or one season but its performance 325 

can be much worse for another [e.g., Gregg and Casey, 2004]. Thus, for global applications, one 326 

measure to assess algorithm robustness is to test its sensitivity to various scenarios where OACs 327 

do not covary. 328 

For such a sensitivity analysis, the same approach of Lee et al. [2010] to assess IOP algorithm 329 

uncertainty was adapted here for both the OC4 and CIA. Synthetic data (Rrs(λ) derived from 330 

various IOP combinations) were used to evaluate the impact of IOP variability on Chl retrieval 331 

accuracy.  332 

Briefly, starting from Eq. (6), the geometric parameters ( )(and),(,)(),( 1010 ΩΩΩΩ ppww GGGG ; sr-1) 333 

were taken as (0.0604, 0.0406, 0.0402, 0.1310 sr-1) [Lee et al 2011]. The absorption and 334 

backscattering coefficients were modeled as: 335 
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where aw() and bbw() are for water molecules and taken from Pope and Fry ([1997] and Morel 337 

[1974], respectively. aph(), adg(), and bbp() are for phytoplankton pigments, detrital particles 338 

and CDOM, and particulate matter, respectively, and they are modeled as: 339 
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Here )(λ+
pha  is aph() normalized to aph(440) and taken from the IOCCG [2006] database.  341 

The dependence of adg() and bbp() on Chl (or aph(440)) were defined as: 342 
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where the exponent of 0.62 was taken from Gordon and Morel [1983], and 0.015 is the 344 

backscattering/total-scattering ratio [Sullivan and Twardowski, 2009]. 345 

For each Chl value (corresponding to an aph(440)), four parameters can be changed 346 

independently in modeling Rrs(λ), and Chl can be retrieved from the modeled Rrs(λ) with both 347 

OC4 and CIA (Eqs. 2-5) and compared with the input Chl to produce a relative error estimate. 348 

These four parameters include p1, p2, S, and η. Below we show the results of three scenarios.  349 

Scenario 1. Both adg and bbp vary independently from aph(440)   350 

aph(440) was set to 0.0028, 0.008, 0.024, and 0.05 m-1, respectively, corresponding to Chl of 0.02, 351 

0.05, 0.3, and 1.0 mg m-3, respectively [Bricaud et al., 1995]. The minimum aph(440) (0.0028 m-1) 352 

is only half of the minimum aph(440) in the IOCCG dataset, and approximates the aph(440) 353 

values in the South Pacific Gyre [Morel et al., 2007b, Lee et al 2010]. For each aph(440) (and its 354 

corresponding Chl), p1 varied from 0.4 to 2.0 with a step of 0.1 (17 p1 values); p2 varied from 0.1 355 

to 0.6 with a step of 0.1 (6 p2 values); S varied from 0.013 to 0.019 with a step of 0.002 (4 S 356 

values); and  was set to 0.5 and 1.5. Thus, for each aph(440) (Chl), there are 816 sets of a&bb, 357 

816 Rrs spectra, and 816 retrieved Chl values. The histogram of the relative errors of the 816 358 

retrieved Chl values from each algorithm is shown in Fig. 6.  359 

Except for the “high” concentration case (Chl = 1.0 mg m-3), the performance of the two 360 

algorithms is similar. Most results showed relative errors to within ±50%. The CIA appears to 361 

yield less data points for errors > 60%, and appears to have a better performance (narrower 362 

histogram) for Chl = 0.3 mg m-3.   363 

Scenario 2. adg varies independently from aph(440), but bbp covaries with aph(440)    364 

For each aph(440), p2 was set to 0.45,  = 1.0, S = 0.016, but p1 was changed from 0.3 to 2.5 with 365 

a step 0.1 (23 p1 values). Fig. 7a shows that the relative errors in the retrieved Chl from both 366 

algorithms change from negative to positive with increasing adg/aph ratios, an expected result 367 

where the increased CDOM/detrital particles were mistakenly regarded as Chl because they all 368 

strongly absorb the blue light. For extremely low concentrations (Chl < 0.1), errors from the CIA 369 

are slightly higher, but for higher concentrations the errors approach those from the OC4 370 

algorithm. For the extreme case of Chl = 1.0 mg m-3, errors from the CIA are lower than those 371 

from the OC4 algorithm, especially when adg(440)/aph(440) is > 2.0 or < 1.0. In general, for Chl 372 
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≤ 0.25 mg m-3 and the moderate range of adg(440)/aph(440) (1.0 – 2.0), the retrieval errors from 373 

the two algorithms are similar. 374 

Scenario 3. bbp varies independently from aph(440), but adg covaries with aph(440) 375 

For each aph(440), p1 was set to 1.0,  = 1.0, S = 0.016, but p2 was changed from 0.1 to 0.6 with a 376 

step of 0.05 (21 p2 values). Fig. 7b shows that for Chl < 0.3 mg m-3, the CIA yielded much lower 377 

relative errors for all cases regardless of the error sign. The errors from the CIA change sign 378 

between 0.1 and 0.3 mg m-3. At Chl = 0.4 mg m-3, the CIA errors approach those from the OC4. 379 

At Chl = 1.0 mg m-3, errors from the CIA are significantly higher than those from the OC4. 380 

These results suggest that for Chl < 0.4 mg m-3, the performance of the CIA is often significantly 381 

better than the OC4v6 when bbp varies independently from aph(440) (or Chl). 382 

The results above are based on simulated datasets, some of which may not be realistic in nature. 383 

Indeed, on large regional scales, the absorption OACs often covary [Morel, 2009], although their 384 

relative proportions in modulating the Rrs(λ) may change from one ocean basin to another. For 385 

example, although the ratio of adg(440)/aph(440) showed a weak seasonality in an oligotrophic 386 

ocean site and there was an observable temporal lag between the two absorption terms, they did 387 

show high correlations in the temporal patterns [Hu et al., 2006]. In contrast to absorption OACs, 388 

bbp relative to Chl may vary substantially in both space and time [Loisel et al., 2002; Dierssen, 389 

2010], where the CIA should perform significantly better than the OC4 algorithm in the 390 

algorithm tolerance to the independent bbp changes for low concentration waters. 391 

Overall, from these model-based simulations, we believe that the CIA should perform at least 392 

equivalently to the OC4 algorithm for Chl < 0.4 mg m-3, if not significantly better. These results 393 

are also consistent to those shown in Fig. 3 when in situ data (assumed error free, but they 394 

certainly contained both measurement and data reduction errors) were used to evaluate algorithm 395 

performance, and consistent with those shown in Fig. 5. 396 

 397 

6.3. Sensitivity to digitization-noise and atmospheric correction errors 398 

The above simulations are based on the assumption that the inputs of the algorithms, namely the 399 

Rrs(λ) data, are error free. In practice, Rrs(λ) derived from satellite measurements may contain 400 

various errors from imperfect radiometric calibration, instrument noise and digitization round-off 401 
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noise, imperfect atmospheric correction, residual errors from whitecap and sun glint corrections, 402 

and stray light contaminations (Eq. 1 and Fig. 1).  403 

Assuming an error-free calibration and an error-free atmospheric correction scheme, Hu et al. 404 

[2001] used model simulations to evaluate the SeaWiFS data product uncertainties originating 405 

from instrument and digitization noise alone. They found that 1) errors in the retrieved Rrs(λ) and 406 

band-ratio Chl were primarily from noise-induced perturbations in the atmospheric correction, 407 

which were propagated and enlarged from the near-IR bands to the visible bands, and 2) relative 408 

errors in the band-ratio Chl were more prominent in both low (< 0.1 mg m3) and high (> 10 mg 409 

m3) Chl ranges than in the intermediate Chl ranges.  410 

The same simulations were applied here to compare relative errors in ChlOC4 and ChlCI due to 411 

digitization/noise. Briefly, random noise at the level between -0.5δ(λ) and 0.5δ(λ) was added to 412 

ρt(λ) in Eq. (1), where δ(λ) is the spectral remote sensing reflectance corresponding to 1 digital 413 

count in the individual band: 414 

 ρt
’(λ) = ρt(λ) + noise.         (16) 415 

ρt(λ) and ρt
’(λ) were fed to the identical atmospheric correction and bio-optical inversion 416 

algorithms under various observation conditions (aerosol type and optical thickness, 417 

solar/viewing geometry), and the derived Chl from the noise-free ρt(λ) and noise-added ρt
’(λ) 418 

were compared and relative error assessed. Figs. 8 and 9 show examples of the simulation results. 419 

For 10,000 model runs of the given aerosol information (maritime aerosol with relative humidity 420 

of 90%) and solar/viewing geometry (scene center, solar zenith angle θo= 60o), the errors in the 421 

retrieved Rrs(λ) due to digitization/noise alone are presented in Fig. 8. To first order, the errors 422 

are spectrally linear (Fig. 8a), and errors at 443 nm are roughly twice those at 555 nm (Fig. 8b). 423 

Because of the approximate linearity, most of these errors were cancelled in Eq. 3, resulting in 424 

much smaller errors in the CI (Fig. 8c). In contrast, these same Rrs(λ) errors can only be 425 

cancelled to a lesser degree in the band ratio R (Eq. 2), especially when the ratio is significantly 426 

different from 2 (when the ratio is ~2, adding twice as much error in the numerator as in the 427 

denominator will make the ratio unchanged). For the oligotrophic oceans, Rrs(555) is small (the 428 

blue/green ratio R may reach > 6.0 - 8.0), then large errors in the blue/green ratio could be 429 

resulted when Rrs(λ) contains small, spectrally linear perturbations. Thus, the different sensitivity 430 
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of R and CI to the digitization/noise induced errors leads to different accuracy in the retrieved 431 

Chl (Fig. 9). For the Chl range considered here, while the relative errors in ChlOC4 increased 432 

sharply with decreasing Chl, the errors in ChlCI remained unchanged at a much lower level. 433 

Simulation results for other aerosol and solar/viewing geometry were different from those shown 434 

in Figs. 8 and 9, but the general pattern remained the same, i.e., relative errors in ChlOC4 were 435 

always higher than in ChlCI for Chl < 0.4 mg mg-3, with only the former depending on Chl.  436 

Clearly, for Chl < 0.4 mg m-3, ChlCI is much less sensitive than ChlOC4 to digitization/noise 437 

induced errors for SeaWiFS. In practice, the atmospheric correction scheme implemented in 438 

SeaDAS has inherent errors to within ±0.002 in reflectance at 443 nm, which is the basis for the 439 

5% fidelity in the retrieved reflectance at 443 nm for clear waters [Gordon and Wang, 1994a; 440 

Gordon, 1997]. The ±0.002 reflectance errors are equivalent to Rrs(443) errors of ~ ±0.002/ = 441 

±0.0006 sr-1, corresponding to Rrs(555) errors of about ±0.0003 sr-1. These additional errors are 442 

comparable to those due to SeaWiFS digitization/noise (Figs. 8a & 8b) and are independent of 443 

instrument sensitivity (i.e., they apply to all ocean color sensors including SeaWiFS and 444 

MODIS/Aqua). While the digitization/noise induced errors, assumed randomly distributed, may 445 

be averaged out if sufficient number of points (image pixels) are available, the atmospheric 446 

correction errors may create a bias at various spatial and temporal scales because the conditions 447 

to result in these atmospheric correction errors may not be random (yet the spatial/temporal 448 

distributions of these conditions is unknown). This effect will be shown below with satellite data 449 

analysis. 450 

 451 
7. Evaluation using SeaWiFS and MODIS/Aqua imagery 452 

The CIA was applied to SeaWiFS Level-2 GAC data to derive ChlCI, and compared with the 453 

default ChlOC4. In the comparison, the following quality control flags were used to discard all 454 

suspicious data points: atmospheric correction failure (bit 1), land (bit 2), high sun glint (bit 4), 455 

total radiance greater than knee (bit 5), large satellite zenith (bit 6), stray light (bit 9), cloud/ice 456 

(bit 10), coccolithophores (bit 11), large solar zenith (bit 13), low water-leaving radiance (bit 15), 457 

chlorophyll algorithm failure (bit 16), questionable navigation (bit 17), near-IR exceeds 458 

maximum iteration (bit 20), chlorophyll warning (bit 22), and atmospheric correction warning 459 

(bit 23). These are the same flags as used to perform data quality control during SeaWiFS and 460 
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MODIS Level-3 data binning. Fig. 1 shows the images of ChlOC4, ChlCI, τ_865, and Rrs(555) for 461 

the North Atlantic Ocean gyre from an arbitrarily selected date. 462 

The image speckling effect is apparent in the ChlOC4 image (Fig. 1a), where discontinuity and 463 

patchiness can also be found. While the speckling effect (pixelization noise) is due primarily to 464 

digitization/noise induced errors, the patchiness is more likely due to atmospheric correction 465 

errors and other correction errors (such as whitecap correction). Indeed, similar discontinuity and 466 

patchiness are also found in the τ_865 and Rrs(555) images (Figs. 1c and 1d). Such sharp 467 

changes and patchiness in both the atmosphere and ocean properties in an ocean gyre are 468 

unlikely to be realistic, but can only be due to algorithm errors. These errors occasionally led to 469 

Rrs(555) values less than the theoretical limit for even the clearest ocean waters, 0.001 sr-1. In 470 

contrast to the ChlOC4 image that contains speckle noise and patchiness, the ChlCI image in Fig. 471 

1b, derived from identical Rrs(λ) data as used to derive ChlOC4, shows much smoother and more 472 

spatially coherent distributions even near cloud edges. These results strongly suggest that ChlCI is 473 

much more immune to both digitization/noise and atmospheric correction errors, consistent with 474 

those found from the simulations (Figs. 8 & 9). Note that some of the noises are due to straylight 475 

contamination near clouds, but most of these noises are effectively removed by the CIA, 476 

suggesting that these noises are also spectrally linear. 477 

To quantify the image speckling noise from the satellite images, a 3x3 median filter was used to 478 

smooth the Chl images, with the result assumed as the “truth.” The relative difference between 479 

the original data and the smoothed data was assumed to be primarily from digitization/noise 480 

induced errors. To avoid potential assessment bias due to insufficient sample size, all valid 481 

SeaWiFS Level-2 pixels for the 20o x 20o box in the North Atlantic gyre from the 599 images in 482 

1998 were queried, and RMS error for each predefined Chl interval was calculated. Fig. 10a 483 

shows that the RMS errors in ChlOC4 increase sharply with decreasing Chl while these errors in 484 

ChlCI remain stable at a much lower level. The overall patterns agree very well with those from 485 

the model simulations (Fig. 9), suggesting that most of these speckling errors originate from 486 

digitization/noise (through error propagation in the atmospheric correction). The discrepancy in 487 

the error magnitude between Fig. 9 and Fig. 10a originated from the different scenarios: Fig. 9 is 488 

for a single observing condition based on simulations while Fig. 10a accounts for all observing 489 

conditions for the entire year. Another reason may be due to stray light and imperfect sun glint 490 
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and whitecap corrections, which were not accounted for in the simulations. Indeed, the SeaWiFS 491 

GAC data were collected by resampling the 1-km data every 4th row and column, and the 492 

potential small clouds between the resampled pixels may lead to stray light contamination to the 493 

“valid” pixels. These potential stray light problems for SeaWiFS GAC data cannot be assessed 494 

from the data alone because of the data gap (i.e., the resampled “1km” pixels in the GAC data 495 

are 3-km away from each other). Yet, Figs. 10a and 1 show that under realistic measurement 496 

conditions the relative RMS errors in ChlCI is significantly smaller than in ChlOC4 for low 497 

concentrations. This finding holds true even when the SeaWiFS LAC data at 1-km resolution are 498 

used for the same comparison. 499 

The statistics in Fig. 10a also suggest the improvement of the CI algorithm in reducing the 500 

number of “extreme” data points from the OC4 algorithm (e.g., Chl < 0.02 mg m-3). These 501 

“extreme” points are not only due to digitization-induced errors, but also due to atmospheric 502 

correction errors and/or other algorithm artifacts (whitecap and sun glint corrections, stray light 503 

contamination). Indeed, the changes in the number of valid pixels for each Chl interval from 504 

ChlOC4 to ChlCI suggest data redistribution, which will affect time-series analysis over low-505 

concentration waters. 506 

SeaWiFS data for the North Atlantic and South Pacific Gyres for an entire year were visualized 507 

to examine whether the above observations could be generalized. The results confirmed those 508 

shown in Fig. 1, and suggest that most digitization-noise related specking errors can be removed 509 

using the CIA for low concentrations, and many other algorithm artifacts (sun glint and whitecap 510 

corrections, atmospheric correction, and stray light contamination) can also be reduced with the 511 

CIA. The effect of such correction on time-series analysis is demonstrated below. 512 

 513 
8. Comparison between ChlOC4 and ChlCI time-series 514 

Fig. 11 shows a one-year time-series at an oligotrophic site in the North Atlantic Gyre using 515 

SeaWiFS daily Level-2 GAC data. While the ChlOC4 data show high speckling (high standard 516 

deviations at each 3x3 point) and nearly no seasonality due to other errors, the ChlCI data show 517 

much cleaner time series and also a clear seasonality. Note that the standard deviation at each 518 

point represents digitization/noise induced errors, but the deviation of the 3x3 mean data value 519 

from the seasonal pattern represents errors from other sources, which are effectively removed in 520 

the ChlCI time series. This effect also remains for the monthly composite time series at the same 521 
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location (Fig. 12). The seasonality of ChlCI is clear in every year of the 13-year time series (note 522 

that there were some missing data after 2005 due to instrument operations), but less apparent in 523 

the corresponding ChlOC4 time series. The mean monthly variance (standard deviation over mean) 524 

reduced from 26.6% in ChlOC4 to 9.9% in ChlCI. All these results suggest improvements of the 525 

CIA in constructing Chl time-series for oligotrophic waters.  526 

The improvement of ChlCI in deriving a better time series is primarily because of reduction of 527 

algorithm-induced errors as opposed to the reduction in speckling noise. As shown in Figs. 11 528 

and 1 as well as in Hu et al. [2001], while the image speckling noise can be removed using pixel 529 

averaging (either 3x3 or temporal averaging), algorithm-induced errors cannot be removed this 530 

way and will ultimately propagate to higher-level data products in global or regional time-series 531 

analyses. The significantly reduced errors in the ChlCI data product may result in more consistent 532 

spatial and temporal patterns than the current OC4 algorithm for the oligotrophic oceans.  533 

 534 
 535 
9. Discussion  536 

9.1. Algorithm accuracy: band ratio or band difference? 537 

The comprehensive analyses above, from direct validation, theoretical background, sensitivity 538 

analysis through bio-optical and atmospheric correction simulations, to satellite data product 539 

comparison, all suggest that the CIA is more robust than the OC4 algorithm for low 540 

concentrations (Chl ≤ 0.25 mg m-3). This range corresponds to about 77% of the global ocean 541 

area, suggesting potentially profound effects in global- and regional-scale studies. In particular, 542 

studies focusing on ocean gyre variability [McClain et al., 2004 et al., 2004; Polovina et al., 2004] 543 

and second-order ocean chlorophyll variability [Brown et al., 2008] may need to be revisited 544 

with the new algorithm. 545 

The improved performance of the CIA is primarily due to two reasons. First, for most cases 546 

considered, it appears equivalent or even more tolerant (i.e. less sensitive) than the OC4 547 

algorithm to in-water perturbations when the various OACs (especially particle backscattering) 548 

do not covary. Although the non-covariance of the OACs may represent a primary reason why a 549 

“global” algorithm may not work for a particular region [Claustre and Maritorena, 2003; 550 

Dierssen, 2010], it is not the objective of any empirical algorithm to solve this global “puzzle.” 551 

Likewise, the chlorophyll-specific absorption coefficient (i.e., absorption per Chl) may also vary 552 
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substantially due to different pigment composition and phytoplankton size, but all “global” 553 

empirical algorithms would suffer the same from this variability. At the least, the CIA is 554 

equivalent or slightly better for most oligotrophic waters than the OC4 algorithm to the in-water 555 

perturbations. The improved performance over backscattering perturbations is of particular 556 

importance, as this may lead to an improved Chl retrieval in scattering-rich low-concentration 557 

waters due to bubbles or other marine organisms such as coccolithophores. Second and most 558 

importantly, the CIA can partially remove most algorithm artifacts induced by digitization-noise 559 

errors, atmospheric correction errors, residual errors due to imperfect sun glint and whitecap 560 

corrections, and some of the stray light contamination. Although the band-ratio OC4 algorithm 561 

can also remove some of these errors to a certain degree, the removal is much less effective for 562 

low-concentration waters.  563 

Indeed, the concept to use alternative ways instead of band-ratio algorithms to derive Chl is not 564 

new. Campbell and Esaias [1983] proved why a curvature algorithm in the form of Sj
2/(SiSk) 565 

could be used to derive chlorophyll concentrations. Here Sj represents the measured signal in one 566 

band (calibrated or not) and Si and Sk represent the signals from the two neighboring bands. 567 

Barnard et al. [1999] showed the validity of a similar curvature approach to derive absorption 568 

coefficients. Lee and Carder [2000] further used simulations to compare band-ratio and band-569 

curvature algorithm performance, and highlighted that band-ratio algorithms were more sensitive 570 

to a wider dynamic range. 571 

Early pioneer efforts for algorithm development also proposed band-difference algorithms 572 

[Viollier et al., 1978; Viollier et al., 1980; Tassan, 1981], where the difference between two 573 

neighboring blue and green bands was related to surface Chl. The rationale for choosing a blue-574 

green band difference was because of its tolerance to various errors in the spectral reflectance, 575 

including whitecaps [Tassan, 1981]. However, through model estimates, Gordon and Morel 576 

[1983] argued that because reflectance is in principle proportional to backscattering to the first 577 

order (i.e., Rrs ∝ bb/a, see Eq. 7), a band-difference algorithm will retain most variability of bb 578 

relative to phytoplankton, thus subject to large errors if bb varies independently from 579 

phytoplankton (e.g., sediment-rich coastal waters). In contrast, as long as the spectral variability 580 

of bb is within a narrow range, a band-ratio algorithm will overcome such variability to first 581 

order, making the algorithm less sensitive to independent bb changes. For this reason, except for 582 
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a handful of studies in the 1980s, band difference algorithms have rarely been used in the 583 

published literature. One exception was perhaps the normalized difference pigment index (NDPI) 584 

algorithm proposed by Frouin [1997] for the POLarization and Directionality of the Earth’s 585 

Reflectances (POLDER) instrument [Mukai et al., 2000], which combined the band-difference 586 

and band-ratio forms using the 443, 490, and 555-nm bands. The NDPI algorithm is essentially a 587 

band-ratio algorithm, although the 443-555 difference in the numerator has been shown to 588 

remove some noise. A similar combination of band-difference and band-ratio was proposed for 589 

the recently launched Geostationary Ocean Color Imager (GOCI), yet its performance over 590 

oligotrophic waters needs to be validated.  591 

The fundamental principles and model simulation results in Sections 6.1 and 6.2 suggest that the 592 

arguments in Gordon and Morel [1983] on the weakness of band-difference algorithms should be 593 

revisited for oligotrophic oceans. Indeed, for Chl < 0.4 mg m-3, the simulation results showed 594 

that a 3-band difference algorithm (i.e., the CIA) is more tolerant to independent bb changes than 595 

the band-ratio algorithm. This may appear against intuition for the reasons outlined in Gordon 596 

and Morel [1983]. However, Eq. (6) shows that Rrs(λ) is not proportional to particulate 597 

backscattering (bbp), but influenced by both molecular and particle backscattering (bbw) and bbp. 598 

When Chl is low, the proportion of bbp to total bb is relatively small (e.g., bbp(440) ~35% of total 599 

bb(440) for Chl = 0.1 mg m-3, and the other 65% is due to a constant water molecular scattering), 600 

resulting in the tolerance of the CIA to independent bbp changes. In addition, the design of CI 601 

(Eq.3) places more relative weighting of bbw than for bbp for low concentrations. For high Chl 602 

waters (e.g., Chl = 1.0 mg m-3, Fig. 7b), bbp dominates bb, and the CIA becomes more sensitive 603 

than the OC4 algorithm to independent bbp changes, consistent with the arguments of Gordon 604 

and Morel [1983]. For the tolerance to other errors (sensor noise, atmospheric correction residual 605 

errors, sun glint and whitecap correction residual errors, stray light contamination, etc.), the CIA 606 

is better than the band-ratio algorithm, confirming Tassan’s argument. The CIA, however, is not 607 

a simple blue-green difference, but takes a third band in the red to account for the various errors 608 

listed above.  609 

The stability of empirical Chl algorithms to independent bbp changes is particularly important to 610 

reduce Chl errors or inconsistencies either in one ocean basin or across multiple basins. Dierssen 611 

[2010] showed that for low Chl values (< 0.2-0.4 mg m-3), bbp(532) may increase by several folds 612 
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from the North Atlantic to the California coastal waters for the same Chl, and bbp(532) in the 613 

same ocean basin may also remain relatively stable when Chl varied substantially. Similarly, 614 

Loisel et al. [2002] showed seasonal shifts of bbp(490)/Chl from SeaWiFS monthly data for both 615 

North Atlantic and North Pacific, with their relative ratios varying between ~0.6 and ~1.7 (x 10-2 616 

(m-1 / mg m-3)), a change of about 3 folds. Fig. 7b suggests that for a 3-fold change between 617 

0.175 and 0.525 on the x-axis, relative errors in ChlCI are mostly within ±10% for Chl ≤ 0.3 mg 618 

m-3, while the relative errors in ChlOC4 nearly doubled. Thus, the CIA can reduce backscattering 619 

induced errors in the Chl retrieval for oligotrophic waters. 620 

Although the accuracy of the CIA appears to be higher than the OC4 algorithm for SeaWiFS (Fig. 621 

4), it is indeed difficult to evaluate the absolute algorithm accuracy for low concentrations. This 622 

is primarily due to the lack of sufficient high-quality in situ data. The entire SeaBASS archive is 623 

restricted to Chl  0.02 mg m-3, and only a limited number of stations had Chl between 0.02 and 624 

0.05 mg m-3. Laboratory measurement errors in determining Chl from seawater samples, using 625 

either fluorometric or HPLC methods, can be 50% [Trees, et al., 1985; Kumari, 2005]. The 626 

errors in these ground “truth” data further weaken the statistical robustness of the validation 627 

results when only several points are available. Future efforts may emphasize the oligotrophic 628 

ocean gyres to collect more in situ data in this range. Because most commercial instruments have 629 

a precision of about 0.01 mg m-3, accurate laboratory measurement for this range is extremely 630 

difficult. While new sensors may be developed to increase the precision and accuracy, our 631 

current emphasis is on data consistency across various spatial and temporal scales, for which the 632 

CIA appears to yield better performance than the band-ratio algorithms. 633 

Despite such improved performance in the CIA, all potential artifacts or uncertainties for 634 

empirical algorithms, as discussed and demonstrated in the refereed literature [IOCCG, 2000 & 635 

2006; Dierssen, 2010], still exist (although to a less degree than band-ratio algorithms, as shown 636 

in the algorithm sensitivity to bbp variability). Both CI and band-ratio provide a measure of the 637 

spectral change of Rrs (either difference or ratio). While most of such changes could be related to 638 

phytoplankton (i.e., Chl), they could also be modulated by changes in CDOM or other OACs. In 639 

addition, all these empirical algorithms assume, implicitly, a stable covariation of the 640 

chlorophyll-specific absorption coefficient with Chl. The ultimate way to improve Chl retrievals 641 

in the global oceans may still be to account for all these variability explicitly through semi-642 
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analytical inversions, but this is out of the scope of the present work. The semi-analytical 643 

algorithms, at least in their present forms, however, are not immune to the problems shown in 644 

Fig. 1d where Rrs data (input of the algorithms) contain substantial noise and errors. These errors 645 

must be corrected in order to improve the performance of semi-analytical algorithms. Likewise, 646 

algorithms for many other ocean color products (e.g. IOPs, particulate organic carbon or POC, 647 

particulate inorganic carbon or PIC) rely heavily on accurate Rrs(λ), whose performance may 648 

also be improved once the errors in the satellite-derived Rrs(λ) are reduced. 649 

All above analysis were restricted to SeaWiFS GAC data. However, application of the same CIA 650 

algorithm to SeaWiFS LAC data showed similar improvements over image quality. Fig. 13 651 

shows an example of the comparison of ChlOC4 and ChlOCI using SeaWiFS Level-2 LAC data. 652 

Clearly, all instrument/algorithm artifacts shown in the GAC data (Fig. 1) also exist in the LAC 653 

data (to a lesser degree), but these artifacts can be effectively removed by the CIA algorithm.  654 

9.2. Applications to other ocean color instruments 655 

The improved performance in the CIA for low concentrations appears to be universal across 656 

sensors, although the regression coefficients may need to be adjusted to account for sensor 657 

specifics. Figs. 14-16 show several examples from other ocean color instruments, from 658 

MODIS/Aqua, MERIS, and CZCS, respectively, where improvement in image quality in terms 659 

of reduced noise/errors and image sharpness is apparent.  660 

Similar to the SeaWiFS speckling error analysis shown in Fig. 10a, the same CIA was 661 

implemented to process all MODIS/Aqua Level-2 data for the 20o x 20o box in the South Pacific 662 

Gyre (745 images in 2002). Fig. 10b shows that, although the speckling errors are reduced for 663 

MODIS ChlOC3 relative to SeaWiFS ChlOC4 (MODIS/Aqua instrument signal-to-noise is about 2-664 

3 times higher than SeaWiFS), the general pattern remains the same, i.e., increased specking 665 

errors with decreasing concentrations. MODIS ChlOCI, in contrast, shows relatively stable and 666 

much lower specking errors. Nearly all data points in ChlOC3 < 0.01 mg m-3 have been raised in 667 

ChlOCI, and this is likely to be real, as shown in the example in Fig. 13.  668 

Fig. 13 shows that MODIS/Aqua ChlOC3 data are not immune to noise and algorithm errors even 669 

after all suspicious data (associated with the various quality control flags) are discarded. In 670 

contrast, the CIA successfully “corrected” these suspicious data to reasonable levels, as gauged 671 
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from nearby pixels and adjacent images. This result explains the histogram shift between ChlOC3 672 

and ChlCI for extremely low values in Fig. 10b. Furthermore, even when all the quality-control 673 

flags are turned off (i.e., all low-quality non-zero data are used), the CIA appears to perform well 674 

on all those flagged pixels (Figs. 13c&d), indicating that the Rrs(λ) errors from those pixels are 675 

spectrally related so that the CIA could remove these errors, at least to the first order. This 676 

suggests that the CIA algorithm may also result in more spatial coverage, once appropriate flags 677 

are determined to relax the quality control criteria. 678 

Fig. 15 shows an example of how the CIA (same coefficients used for SeaWiFS) improves 679 

MERIS image quality when compared with the default band-ratio algorithm. The reduction of  680 

pixelization and striping noise is apparent in the ChlOCI image, with more coherent eddy features 681 

observed. More profound improvement has also been found for CZCS (Fig. 16). CZCS is an 8-682 

bit instrument with much lower signal-to-noise ratio (about 3 times lower than SeaWiFS), and 683 

the band-ratio algorithm resulted in significant speckling noise and other errors (Fig. 16a), where 684 

no ocean feature can be observed. In contrast, most of these errors have been removed by the 685 

CIA, leading to clear eddy and circulation features in the North Atlantic oligotrophic ocean. 686 

Furthermore, the general gradient from west to east in Fig. 16a, a result of algorithm artifact, has 687 

been successfully removed in Fig. 16b.  688 

Although the absolute accuracy in the retrieved ChlOCI for other ocean color instruments has not 689 

been evaluated, we believe that once algorithm coefficients are tuned for the particular 690 

instruments or the satellite-derived Rrs(λ) are tuned to the SeaWiFS wavelengths, a significant 691 

improvement in product accuracy, in addition to image quality can be achieved. Such an 692 

improvement may lead to more consistent observations between different instruments. For 693 

example, after a slight adjustment to convert the MODIS/Aqua Rrs(547) to Rrs(555) and 694 

application of the same CIA and coefficients (Eq. 4) to the global data for 2006, mean ratio 695 

between MODIS and SeaWiFS Chl over the global oligotrophic oceans shows much less 696 

seasonal variability and is closer to 1.0 from the CIA than from the OCx algorithms (Fig. 17). 697 

Such an improvement is even more profound when data distributions rather than a global mean 698 

ratio are examined. Fig. 18 shows the data distribution for all “deep” waters (> 200 m) from the 699 

band ratio (OCx) and CI algorithms using all SeaWiFS and MODIS/Aqua data collected during 700 

November 2006. Although there is a slight offset of 0.01-0.02 mg m-3 in the global mean and 701 
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median values between the two algorithm results (a and b, respectively), the CIA (after blending 702 

with the OCx for Chl > 0.25 mg m-3) resulted in nearly identical histograms between SeaWiFS 703 

and MODIS/Aqua measurements, a significant improvement in data cross-sensor data 704 

consistency as compared from those obtained from the OCx algorithms. Analyses for other 705 

months of 2006 showed similar improvements. Although we are still performing an extensive 706 

evaluation of the new algorithm for the global ocean using all SeaWiFS and MODIS/Aqua data, 707 

the improved consistency between SeaWiFS and MODIS/Aqua measurements from these 708 

preliminary results is indeed encouraging, and may eventually lead to a better multi-sensor Chl 709 

climate data record for long-term studies of ocean biological changes (Antoine et al., 2005; 710 

Gregg et al., 2005; Maritorena et al., 2010).  711 

 712 
9.3. Other applications 713 

Studies of the ocean’s biogeochemistry call for the highest accuracy in data products. For many 714 

other applications, such a strict requirement may often be relaxed. For example, tracking of oil 715 

pollution requires timely knowledge on major ocean circulation features including eddies [Hu, 716 

2011; Liu et al., 2011]. The various examples shown in Figs. 13-16 prove that the CIA can lead 717 

to significantly improved image quality for feature recognition when individual images are used. 718 

This is due to its ability to reduce noise and errors as well as to “recover” most of the flagged 719 

(i.e., suspicious) pixels. Some of the eddy features are completely absent in the ChlOCx images 720 

due to noise and algorithm errors (i.e., regardless of the color stretch), but are vividly revealed in 721 

the ChlOCI images. This ability will greatly facilitate studies of eddy dynamics (e.g., Lehahn et al., 722 

2007; Rossby et al., submitted) in the oligotrophic oceans.  723 

 724 
10. Conclusion 725 

A novel 3-band reflectance difference algorithm, namely a color index algorithm (CIA), to 726 

estimate surface chlorophyll-a concentrations from satellite ocean color measurements has been 727 

shown superior to the existing band-ratio algorithms in reducing uncertainties for Chl ≤ 0.25 mg 728 

m-3, corresponding to about 77% of the global ocean. This was somehow a surprise, given the 729 

known artifacts of 2-band difference algorithms proposed three decades ago. We attribute the 730 

success of the CIA to the new design of adding a third band in the red to the blue-green bands. 731 
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This addition enables the CIA to relax the requirements of spectrally flat errors for the 2-band 732 

difference algorithms to spectrally linear errors for the CIA, and also increases the stability of 733 

algorithm performance over backscattering variability of the ocean. The improved performance 734 

of the CIA over the existing band-ratio algorithms has been demonstrated in all measures, from 735 

global validations using in situ data, atmospheric correction and bio-optical simulations, to 736 

satellite image analysis. The CIA also appears to improve data consistency between different 737 

instruments for oligotrophic oceans. We expect to implement the CIA for multi-sensor global 738 

processing for oligotrophic oceans to further test its robustness, which might lead to different and 739 

potentially improved spatial/temporal patterns of Chl in response to long-term climate changes 740 

and short-term climate variability. 741 
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 Tables 934 
 935 
 936 
Table 1. Chl algorithm performance for CI < -0.0005 sr-1 using the NOMAD dataset. OClow 937 
represents a local polynomial fit between the log-transformed band-ratio and Chl for low 938 
concentrations only (CI < -0.0005, Fig. 3a red line), which shows improved performance than the 939 
globally tuned OC4v6. The regression equation is ChlOC_low = 10.-0.39064 – 1.54789χ + 3.2125*χ*χ - 940 
3.1073*χ*χ*χ. URMS is “unbiased” RMS (see text for details). 941 

 942 
 943 
 944 
 945 
 946 
 947 

 948 
 949 
 950 

Table 2. Chl algorithm performance for Chl ≤ 0.25 mg m-3, as gauged by in situ Chl (Fig. 4). 951 
SeaWiFS-derived Rrs(λ) were used as the input of all algorithms. OClow represents a local band-952 
ratio algorithm for low concentrations only (CI < -0.0005 sr-1, Fig. 3a red line). MRE is the mean 953 
relative error after converting negative errors to positive. URMS is “unbiased” RMS (see text for 954 
details). 955 
 956 
Alg. RMS URMS Mean 

Ratio 
Median 
Ratio 

MRE R2 
(linear) 

R2 
(log) 

N 

OC4v6 535.8% 54.2% 1.79 1.19 41.5% 0.01 0.33 357 
CI 91.8% 47.2% 1.40 1.16 36.8% 0.31 0.39 357 
OClow 92.9% 45.6% 1.33 1.08 34.7% 0.20 0.36 357 
 957 
 958 
 959 
 960 

961 

Algorithm RMS URMS Mean 
Ratio 

Median 
Ratio 

R2 
(linear) 

R2 
(log) 

N 

OC4v6 34.9% 28.2% 1.11 1.08 0.73 0.85 50 
CI 16.5% 16.2% 1.01 1.01 0.78 0.95 50 
OClow 22.7% 22.3% 1.03 1.05 0.73 0.85 50 
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Figure captions 962 
 963 
Fig. 1. SeaWiFS Level-2 GAC data products at 4-km resolution on 20 February 1998 over the 964 

Sargasso Sea (about 1800 x 2640 km centered at 25.5oN 54.8oW). (a) Chl derived from the 965 

default OC4v6 algorithm (ChlOC4); (b) Chl derived from a new color-index (CI) based algorithm 966 

(ChlCI, see text for details); (c) Aerosol optical thickness at 865 nm (τ_865, dimensionless); (d) 967 

Remote sensing reflectance at 555 nm (Rrs(555), x103 sr-1). All suspicious data, as defined by the 968 

various Level-2 flags, have already been removed (black color).  969 

Fig. 2. Illustration of the CI algorithm concept. When Chl increases from 0.02 to 0.33 mg m-3, 970 

Rrs(443) decreases while Rrs(555) and Rrs(670) remain relatively stable. Thus, the distance from 971 

Rrs(555) to the linear baseline between Rrs(443) and Rrs(670) (dotted line in the figure), defined as 972 

the color index (CI), is highly corrected with Chl. This is the same principle as using the 973 

Rrs(443)/ Rrs(555) ratio to relate to Chl. These in situ data are from the NOMAD dataset. 974 

Fig. 3. Relationship between in situ chlorophyll-a concentration (Chl) and (a) reflectance ratio R 975 

and (b) color index (CI). The highlighted points emphasize those corresponding to CI ≤ -0.0005, 976 

where the corresponding data collection locations are shown in the inset map. Note that the 977 

minimum Chl in this dataset is about 0.02 mg m-3. In (a), the RMS error is estimated between 978 

measured and OC4v6 predicted Chl. If a best fit from all data points for CI < -0.0005 sr-1 is used, 979 

RMS error is reduced to 22.95%. Statistics are presented in Table 1. 980 

Fig. 4. Comparison between in situ Chl and satellite-based Chl for SeaWiFS. The satellite Chl 981 

was derived from both the OC4v6 algorithm (empty circles) and OCI algorithm (dots). Note that 982 

for Chl > 0.4 mg m-3 the results from the two algorithms were forced to be identical (Eq. 5). The 983 

locations of the in situ measurements for Chl ≤ 0.25 mg m-3 are shown in the corresponding map. 984 

The comparison statistics for low concentration (Chl ≤ 0.25) are listed in Table 2.  985 

Fig. 5. Relationship between the two backscattering terms in Eq. (9) with Chl. To show their 986 

relative magnitudes, the absolute values (x 1000) are shown here. Note that for Chl ≤ 0.4 mg m-3, 987 

the water term dominates the numerator of Eq. (9). 988 

Fig. 6. Chl algorithm sensitivity to independent changes of detrital particles and CDOM relative 989 

to phytoplankton, based on 816 model simulations for each Chl value (Eq. 6, 13-15). 990 
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Fig. 7. Chl algorithm sensitivity to independent changes of absorption of detrital particles and 991 

CDOM (adg) relative to Chl (a), and to independent changes of particular backscattering (bbp) 992 

relative to Chl (b), based on model simulations for each Chl value (Eq. 6, 13-15). Note that in (b), 993 

the added simulation was for Chl = 0.4 (star symbols), when the errors in the CI retrievals are 994 

shown to approach those of the OC4 retrievals.  995 

Fig. 8. Errors in Rrs(λ) and CI induced by SeaWiFS digitization-noise after applying the Gordon 996 

and Wang (1994a) atmospheric correction. Most of the errors are due to the impact of the small 997 

noise on the atmospheric correction bands in the near infrared, which extrapolate the atmospheric 998 

properties to the visible (Hu et al., 2001). These errors are approximately linear to changing 999 

wavelengths (a and b), and can thus be corrected to first order by the CI algorithm (Eq. 3, Fig. 2), 1000 

resulting in smaller errors in CI (and ChlCI, see Fig. 9). The model parameters are listed in (c). 1001 

Results from other modeling scenarios are different, but the principles in reducing the noise-1002 

reduced errors using the CI are the same.  1003 

Fig. 9. Error distribution in the retrieved Chl due to digitization-noise induced Rrs(λ) errors for a 1004 

clear maritime atmosphere (Fig. 8). In situ Rrs data for the input Chl concentrations (from 0.02 to 1005 

0.4 mg m-3) were combined with the Rrs(λ) errors to estimate Chl, where the “true” Chl was 1006 

determined from the input Rrs data free of errors. The differences were used to determine the 1007 

relative retrieval errors. Note that the CI-based retrieval errors are independent of Chl 1008 

concentrations.  1009 

Fig. 10. (a) Statistics of speckling error in SeaWiFS GAC images in 1998 (n=599) for a 20 x 20o 1010 

region in the Sargasso Sea. The speckling error is defined as the relative difference between the 1011 

original Level-2 Chl and a 3x3 median-filter smoothed Level-2 Chl, with the assumption that 1012 

most noise-induced speckling errors are removed in the latter. Note that while the RMS errors in 1013 

ChlOC4 increase sharply with decreasing concentrations, RMS errors in ChlCI remain stable at a 1014 

much lower level in the entire concentration range here. The overall patterns agree well with 1015 

those from the model simulations (Fig. 9), suggesting that most of these speckling errors 1016 

originate from digitization/noise (through atmospheric correction). The total number of valid 1017 

pixels from each algorithm indicates that all ChlOC4 ≤ 0.02 mg m-3 appear unrealistic due to 1018 

primarily atmospheric correction artifacts. (b) Same as in (a), but data were extracted from 1019 

MODIS/Aqua Level-2 images in 2002 (n=745) for a 20 x 20o subregion in the Southern Pacific. 1020 
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Fig. 11. Chl (mg m-3) time series derived from SeaWiFS GAC Rrs(λ) data using the OC4v6 1021 

algorithm (top) and the CI algorithm (bottom). Data were extracted from 3x3 pixels centered at 1022 

24.5oN 55oW from the daily measurements. For any given image (date), only when more than 1023 

half of the pixels (in this case, ≥5 pixels) contained valid data (i.e., not associated with any 1024 

suspicious flags) were statistics estimated.  1025 

Fig. 12. Chl (mg m-3) time series derived from SeaWiFS GAC Rrs(λ) data using the OC4v6 1026 

algorithm (top) and the CI algorithm (bottom). Data were first extracted from 3x3 pixels centered 1027 

at 24.5oN 55oW from the daily measurements. For any given image (date), only when more than 1028 

half of the pixels (in this case, ≥5 pixels) contained valid data (i.e., not associated with any 1029 

suspicious flags) were statistics estimated. The daily data were then averaged for the calendar 1030 

month to construct the monthly time series. Note that SeaWiFS was not continuously operational 1031 

after 2005 due to instrument operations.  1032 

Fig. 13. Comparison between SeaWiFS Level-2 ChlOC4 (a) and ChlOCI (b) over the western North 1033 

Atlantic Ocean. SeaWiFS data were collected on 1 June 2004 (17:15 GMT) and processed with 1034 

SeaDAS6.1. The Level-2 quality-control flags were turned off to show the circulation features. 1035 

Note that some eddy features are clearly revealed in the ChlOCI image but absent in the ChlOC4 1036 

image due to noise and residual errors in atmospheric correction and other corrections. 1037 

Fig. 14. MODIS/Aqua Level 2 ChlOC3 and ChlOCI derived from a subregion in the South Pacific 1038 

Gyre (about 2200 x 440 km centered at 25.2oS 110.8oW) on 4 March 2003, 21:10 GMT. (a) and 1039 

(c) show the default ChlOC3 when the quality control flags are on and off, respectively. (b) and (d) 1040 

are the corresponding ChlOCI images. 1041 

Fig. 15. Comparison between MERIS full-resolution (FR) ChlOC3 (a) and ChlOCI (b) over the 1042 

western North Atlantic Ocean. MERIS data were collected on 7 May 2011 (15:21 GMT) and 1043 

processed with SeaDAS6.1. Note that most speckling and vertical striping noise in the ChlOC3 1044 

image has been removed in the ChlOCI image, where several eddy and circulation features can be 1045 

better observed. Further, although the same algorithm coefficients for SeaWiFS were used, 1046 

ChlOCI values in offshore water appear to be closer than ChlOC3 to those from SeaWiFS for the 1047 

same region during similar periods (Fig. 13). 1048 
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Fig. 16. Comparison between CZCS Level-2 ChlOC2 (a) and ChlOCI (b) over the western North 1049 

Atlantic Ocean (about 30o – 36oN, 70o – 60oW). CZCS data were collected on 31 July 1983 1050 

(16:02 GMT) and processed with SeaDAS6.1. Note that all eddy and circulation features in the 1051 

ChlOCI image are completely absent in the ChlOC2 image. 1052 

Fig. 17. Mean Chl ratio over global oligotrophic oceans between MODIS/Aqua and SeaWiFS 1053 

estimates using the OCx (blue) and CI (black) algorithms.  Here “oligotrophic” is defined as all 1054 

9-km pixels with SeaWiFS mission mean Chl  0.1 mg m-3. 1055 

 1056 
Fig. 18. Chl distribution in the global deep oceans (> 200 m) during November 2006, as derived 1057 

from SeaWiFS (black) and MODIS/Aqua (red) measurements. Results in (a) are from the OCx 1058 

band-ratio algorithms, and in (b) are from the CI algorithm (blended with the OCx algorithms for 1059 

Chl > 0.25 mg m-3). Note the offset of 0.01 – 0.02 mg m-3 in the global mean and median values 1060 

between (a) and (b). Results from other months of 2006 show similar improvements in histogram 1061 

consistency.1062 
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(a) (b) (c) (d) 

Fig. 1. SeaWiFS Level-2 GAC data products at 4-km resolution on 20 February 1998 over the Sargasso Sea (about 
1800 x 2640 km centered at 25.5oN 54.8oW). (a) Chl derived from the default OC4v6 algorithm (ChlOC4); (b) Chl 
derived from a new color-index (CI) based algorithm (ChlCI, see text for details); (c) Aerosol optical thickness at 865 
nm (τ_865, dimensionless); (d) Remote sensing reflectance at 555 nm (Rrs(555), x103 sr-1). All suspicious data, as 
defined by the various Level-2 flags, have already been removed (black color).  
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Fig. 2. Illustration of the CI algorithm concept. When Chl increases from 0.02 to 0.33 mg m-3, 
Rrs(443) decreases while Rrs(555) and Rrs(670) remain relatively stable. Thus, the distance from 
Rrs(555) to the linear baseline between Rrs(443) and Rrs(670) (dotted line in the figure), defined as 
the color index (CI), is highly corrected with Chl. This is the same principle as using the 
Rrs(443)/ Rrs(555) ratio to relate to Chl. These in situ data are from the NOMAD dataset. 
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Fig. 3. Relationship between in situ chlorophyll-a concentration (Chl) and (a) reflectance ratio R 
and (b) color index (CI). The highlighted points emphasize those corresponding to CI ≤ -0.0005, 
where the corresponding data collection locations are shown in the inset map. Note that the 
minimum Chl in this dataset is about 0.02 mg m-3. In (a), the RMS error is estimated between 
measured and OC4v6 predicted Chl. If a best fit from all data points for CI < -0.0005 sr-1 is used, 
RMS error is reduced to 22.95%. Statistics are presented in Table 1. 
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Fig. 4. Comparison between in situ Chl and satellite-based Chl for SeaWiFS. The satellite Chl 
was derived from both the OC4v6 algorithm (empty circles) and OCI algorithm (dots). Note that 
for Chl > 0.4 mg m-3 the results from the two algorithms were forced to be identical (Eq. 5). The 
locations of the in situ measurements for Chl ≤ 0.25 mg m-3 are shown in the corresponding map. 
The comparison statistics for low concentration (Chl ≤ 0.25) are listed in Table 2.  
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Fig. 5. Relationship between the two backscattering terms in Eq. (9) with Chl. To show their 
relative magnitudes, the absolute values (x 1000) are shown here. Note that for Chl ≤ 0.4 mg m-3, 
the water term dominates the numerator of Eq. (9). 
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Fig. 6. Chl algorithm sensitivity to independent changes of detrital particles and CDOM relative 
to phytoplankton, based on 816 model simulations for each Chl value (Eq. 6, 13-15). 
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Fig. 7. Chl algorithm sensitivity to independent changes of absorption of detrital particles and 
CDOM (adg) relative to Chl (a), and to independent changes of particular backscattering (bbp) 
relative to Chl (b), based on model simulations for each Chl value (Eq. 6, 13-15). Note that in (b), 
the added simulation was for Chl = 0.4 (star symbols), when the errors in the CI retrievals are 
shown to approach those of the OC4 retrievals.  

adg(440)/aph(440)
0.0 0.5 1.0 1.5 2.0 2.5 3.0

Er
ro

r 
in

 r
et

ri
ev

ed
 C

hl
 (%

)

-80.0
-60.0
-40.0
-20.0

0.0
20.0
40.0
60.0
80.0

(a)

(b)

OC4, Chl=0.02
OC4, Chl=0.05
OC4, Chl=0.1
OC4, Chl=03
OC4, Chl=1.0

CI,  Chl=0.02
CI,  Chl=0.05
CI,  Chl=0.1
CI,  Chl=0.3
CI,  Chl=1.0

bbp relative to Chl
0.0 0.2 0.4 0.6

Er
ro

r 
in

 r
et

ri
ev

ed
 C

hl
 (%

)

-80.0
-60.0
-40.0
-20.0

0.0
20.0
40.0
60.0
80.0

OC4, Chl=0.4

CI,  Chl=0.4



 44

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 8. Errors in Rrs(λ) and CI induced by SeaWiFS digitization-noise after applying the Gordon 
and Wang (1994a) atmospheric correction. Most of the errors are due to the impact of the small 
noise on the atmospheric correction bands in the near infrared, which extrapolate the atmospheric 
properties to the visible (Hu et al., 2001). These errors are approximately linear to changing 
wavelengths (a and b), and can thus be corrected to first order by the CI algorithm (Eq. 3, Fig. 2), 
resulting in smaller errors in CI (and ChlCI, see Fig. 9). The model parameters are listed in (c). 
Results from other modeling scenarios are different, but the principles in reducing the noise-
reduced errors using the CI are the same.  
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Fig. 9. Error distribution in the retrieved Chl due to digitization-noise induced Rrs(λ) errors for a 
clear maritime atmosphere (Fig. 8). In situ Rrs data for the input Chl concentrations (from 0.02 to 
0.4 mg m-3) were combined with the Rrs(λ) errors to estimate Chl, where the “true” Chl was 
determined from the input Rrs data free of errors. The differences were used to determine the 
relative retrieval errors. Note that the CI-based retrieval errors are independent of Chl 
concentrations.  
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Fig. 10. (a) Statistics of speckling error in SeaWiFS GAC images in 1998 (n=599) for a 20 x 20o 
region in the Sargasso Sea. The speckling error is defined as the relative difference between the 
original Level-2 Chl and a 3x3 median-filter smoothed Level-2 Chl, with the assumption that 
most noise-induced speckling errors are removed in the latter. Note that while the RMS errors in 
ChlOC4 increase sharply with decreasing concentrations, RMS errors in ChlCI remain stable at a 
much lower level in the entire concentration range here. The overall patterns agree well with 
those from the model simulations (Fig. 9), suggesting that most of these speckling errors 
originate from digitization/noise (through atmospheric correction). The total number of valid 
pixels from each algorithm indicates that all ChlOC4 ≤ 0.02 mg m-3 appear unrealistic due to 
primarily atmospheric correction artifacts. (b) Same as in (a), but data were extracted from 
MODIS/Aqua Level-2 images in 2002 (n=745) for a 20 x 20o subregion in the Southern Pacific. 
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Fig. 11. Chl (mg m-3) time series derived from SeaWiFS GAC Rrs(λ) data using the OC4v6 
algorithm (top) and the CI algorithm (bottom). Data were extracted from 3x3 pixels centered at 
24.5oN 55oW from the daily measurements. For any given image (date), only when more than 
half of the pixels (in this case, ≥5 pixels) contained valid data (i.e., not associated with any 
suspicious flags) were statistics estimated.  
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Fig. 12. Chl (mg m-3) time series derived from SeaWiFS GAC Rrs(λ) data using the OC4v6 
algorithm (top) and the CI algorithm (bottom). Data were first extracted from 3x3 pixels centered 
at 24.5oN 55oW from the daily measurements. For any given image (date), only when more than 
half of the pixels (in this case, ≥5 pixels) contained valid data (i.e., not associated with any 
suspicious flags) were statistics estimated. The daily data were then averaged for the calendar 
month to construct the monthly time series. Note that SeaWiFS was not continuously operational 
after 2005 due to instrument operations.  
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Fig. 13. Comparison between SeaWiFS Level-2 ChlOC4 (a) and ChlOCI (b) over the western 
North Atlantic Ocean. SeaWiFS data were collected on 1 June 2004 (17:15 GMT) and 
processed with SeaDAS6.1. The Level-2 quality-control flags were turned off to show the 
circulation features. Note that some eddy features are clearly revealed in the ChlOCI image but 
absent in the ChlOC4 image due to noise and residual errors in atmospheric correction and other 
corrections. 

(a) (b) 
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(a) 

(b) 

(c) 

(d) 

Fig. 14. MODIS/Aqua Level 2 ChlOC3 and ChlOCI derived from a subregion in the South 
Pacific Gyre (about 2200 x 440 km centered at 25.2oS 110.8oW) on 4 March 2003, 21:10 
GMT. (a) and (c) show the default ChlOC3 when the quality control flags are on and off, 
respectively. (b) and (d) are the corresponding ChlOCI images. 
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(a) (b) 

Grand Bahama Grand Bahama 

Fig. 15. Comparison between MERIS full-resolution (FR) ChlOC3 (a) and ChlOCI (b) over the 
western North Atlantic Ocean. MERIS data were collected on 7 May 2011 (15:21 GMT) and 
processed with SeaDAS6.1. Note that most speckling and vertical striping noise in the ChlOC3 
image has been removed in the ChlOCI image, where several eddy and circulation features can 
be better observed. Further, although the same algorithm coefficients for SeaWiFS were used, 
ChlOCI values in offshore water appear to be closer than ChlOC3 to those from SeaWiFS for the 
same region during similar periods (Fig. 13). 
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Fig. 16. Comparison between CZCS Level-2 ChlOC2 (a) and ChlOCI (b) over the western North 
Atlantic Ocean (about 30o – 36oN, 70o – 60oW). CZCS data were collected on 31 July 1983 
(16:02 GMT) and processed with SeaDAS6.1. Note that all eddy and circulation features in the 
ChlOCI image are completely absent in the ChlOC2 image. 
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Fig. 17. Mean Chl ratio over global oligotrophic oceans between MODIS/Aqua and 

SeaWiFS estimates using the OCx (blue) and CI (black) algorithms.  Here “oligotrophic” 

is defined as all 9-km pixels with SeaWiFS mission mean Chl  0.1 mg m-3. 
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(a) 

(b) 

Fig. 18. Chl distribution in the global deep oceans (> 200 m) during November 2006, as 
derived from SeaWiFS (black) and MODIS/Aqua (red) measurements. Results in (a) are 
from the OCx band-ratio algorithms, and in (b) are from the CI algorithm (blended with 
the OCx algorithms for Chl > 0.25 mg m-3). Note the offset of 0.01 – 0.02 mg m-3 in the 
global mean and median values between (a) and (b). Results from other months of 2006 
show similar improvements in histogram consistency. 


