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Abstract. We motivate and introduce a query language PrQL designed
for inspecting machine representations of proofs. PrQL natively supports
hiproofs which express proof structure using hierarchical nested labelled
trees. The core language presented in this paper is locally structured
(first-order), with queries built using recursion and patterns over proof
structure and rule names. We define the syntax and semantics of locally
structured queries, demonstrate their power, and sketch some implemen-
tation experiments.

1 Introduction

Automated proof tools and interactive theorem provers are increasingly called
upon to produce evidence of their claims, in the form of representations of proofs
that may be independently checked or, perhaps, imported into other systems.
Proofs must connect together atomic rules of inference and axioms in a sound
way according to an underlying logic. Checking that this has been done cor-
rectly is straightforward, although producing a proof in the first place may be
extraordinarily difficult.

Real proofs can be very large, perhaps consisting of tens or hundreds of
thousands of atomic rules of inference. There are many things that are interest-
ing to know about such objects, beyond the basic fact that they are correctly
constructed. For example, some natural questions when inspecting a proof are:

– What is the high-level structure of this proof, (how) can we break it down
into pieces to understand it?

– Given a proof of a property which exploits a set of domain-specific axioms,
which axioms actually occurred in the proof? (Or, in a purely logical setting,
does a proof rely on axioms of classical logic?)

– Given a problem statement which contains some existential propositions as
sub-formulae, which, if any, witnesses were found to make them true?

– Does a large proof contain duplicated parts that could be abstracted (or
generalised) into a separate lemma, using a cut-like rule to reduce the size
of the proof?
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When the user is trying to understand the proof construction process, there
are natural questions which relate the constructed proof back to the procedures
that produced it. If tactics are our notion of proof producing procedure, some
questions relating the proof to the tactics that produced it are:

– Given a set of tactics and a proof, which tactics were invoked in producing
the proof and what subgoals did they solve?

– Were any tactics used repeatedly in this proof, perhaps with similar or iden-
tical inputs?

– Did some tactics get invoked but do no useful work?
– Given a failed proof (represented as a proof with unproved portions), which

tactics were tried on the unproved portions?

These sort of questions are not idle curiosities: they are useful for practical
proof engineering, when managing and maintaining sets of properties, proofs and
programs which create and check them. One of us (Denney) routinely resorts to
low-level scripted tools to perform these kind of examinations when building
large safety cases supported by formal proofs.

We consider querying proofs here in a rigorous manner with the hope of
enabling more general tools with clear foundations. In this paper, we introduce
the basis of a query language PrQL designed specifically for querying proofs.

Hierarchical structured proofs. The foundation we start from is Hiproofs [1,2],
which provide a simple abstract notion of proof tree by composing atomic rules
of inference from an unspecified underlying logic. Going beyond ordinary trees,
they have a notion of hierarchy, by allowing labelling and nesting subtrees. This
simple addition provides a precise and useful notion of structure in the proof
which can be used, for example, for noting where a lemma was applied, or where
a particular tactic or external proof tool produced a subtree.

Contributions and paper outline. This paper contributes towards generic founda-
tional aspects of theorem proving systems. Specifically, we design a proof query
language from first principles, directly connected with a precise abstract notion
of proof. With the help of some implementation experiements, we establish that
it is useful. Although query languages for tree and graph structured data have
been studied over the last decade or so, they have very rarely been applied to
formal proofs.

The rest of this paper is structured as follows. Section 2 introduces the un-
derlying setting of hiproofs used in the rest of the paper. Section 3 describes
the design decisions we took for our query language, and introduces it with a
sequence of informal examples and their intended meanings. Section 4 then de-
scribes the meaning of queries formally, and shows that example queries indeed
have the denotations expected. In Section 5 we describe some experimental im-
plementations of the query language. These are early ideas, presented to demon-
strate some possible practical end points of our work rather than a complete
implementation study. We give pointers and discussion of some related work in
the concluding Section 6.
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2 Hiproofs

Hiproofs add structure to an underlying derivation system, a simple form of
logical framework. We give a brief recap here, for fuller details please see [2,1].

A hiproof is built from (inverted) atomic inference rules a in the underlying
derivation system, to which we give a functional reading: a hiproof maps a finite
list of input goals [γ1, . . . , γn] to a list of output subgoals [γ′1, . . . , γ

′
m]. Such a

hiproof has the arity n→ m. A nested hiproof, appearing immediately inside a
labelled box, has a single input goal which is the root of the tree at that level.

Informally and graphically, we draw hiproofs as inverted trees with a nested
structure. Denotationally, a hiproof can be understood as a pair of an ordered
tree and a forest with the same set of nodes, subject to some well-formedness
conditions. Syntactically, a hiproof can be written as a term s in this grammar:

s ::= a atomic
| id identity
| [l ] s labelling
| s1 ; s2 sequencing
| s1 ⊗ s2 tensor (juxtaposition)
| 〈〉 empty

(1)

Fig. 1 shows an example hiproof term and its graphical representation in the
middle. Boxes indicate nestings and have labels in their top corners; unlabelled
boxes contain atomic rules. Tensor ⊗ places things side-by-side and sequencing ;
builds “wiring” to connect things together, using identity to create wires where
a goal is not manipulated. In the example, id exports the second subgoal from
the atomic rule a outside the box labelled l. The empty proof 〈〉 is useful when
building proofs programmatically.

Valid hiproofs. A hiproof is called valid if it corresponds to a real proof tree in
the underlying derivation system. The hiproof term in Fig. 1 validates the proof
tree shown on the right-hand side, where an input goal γ1 is proved using the
atomic inference rules a, b and c. Validity extends naturally to arbitrary hiproof
terms that have more than one input goal; such a term corresponds to a finite
sequence of proof trees. We write s ` g1 −→ g2 if s is valid in this more

([l] a ; b ⊗ id) ; [m] c

c
m

l
a

b
γ2

b
γ3

c

γ1
a

Fig. 1. A hiproof, its graphical representation and a proof it validates.
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γ1···γn
γ

a is an atomic inference

a ` γ −→ [ γ1, . . . , γn ] id ` γ −→ γ

s ` γ −→ g

[l] s ` γ −→ g 〈〉 ` [ ] −→ [ ]

s1 ` g1 −→ g s2 ` g −→ g2
s1 ; s2 ` g1 −→ g2

s1 ` g1 −→ g′1 s2 ` g2 −→ g′2
s1 ⊗ s2 ` g1 ∧ g2 −→ g′1

∧ g′2

Fig. 2. Validation of Hiproofs.

general sense, taking a list of input (proven) goals g1 to produce a list of output
(unsolved) goals g2. This relation is defined by the rules in Fig. 2, where∧ stands
for list append.

Validity checking can be seen as a way of adding goals to a hiproof; corre-
spondingly, a valid hiproof can be seen as a nested labelling applied to a flat
proof. In this paper we restrict our attention to valid hiproofs and we assume
that the goals are uniquely determined by (or implicit within) the validated
hiproof.

3 Local Structured Queries

How should we express queries on proof such as those in Section 1? One design
choice would be to take an existing query language for graph (or semi-structured)
data models (e.g., see [3] for models and [4] for web query languages), and
then map from hiproofs into the existing language and use queries there. The
drawback with that approach is that we immediately lose connection with our
particular source language, where it is most natural to express and study our
queries. So instead we shall start from queries written in a minimal native query
language, and investigate a direct semantics for them.

Our queries follow the hiproof structure, matching on leaves with atomics,
structured proofs using labels, or on input or output goals of subproofs. We
consider queries which specify structure only locally, in the sense that they cannot
directly compare one part of the tree with another, or measure absolute position
within the global proof. This restriction arises because we use only first-order
variables that refer to names and goals, not to subtrees or paths. Despite this,
the language is still rather expressive and captures most of our desired queries.

To introduce the language, we begin with constructs for matching leaves and
goals within proofs, and then build up following the linear hiproof syntax.

Matches. We build matches inside queries using wildcards, variables (which may
get instantiated), constants (which have to match exactly) and, in the case of
goals, some goal filtering predicates ψ. Let VarN be a set of schematic variables
standing for names, ranged over by N in general and A when we suggest an
atomic rule name or L a label name. Let VarG be a set of variables standing for
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lists of goals. The name matches and goal matches are given by:

nm ::= a | l | ∗ | N
gm ::= [ψ1, . . . , ψn] | G

where ψ stands for a logic-dependent predicate on goals γ used to check some
structural property of the goal term. For example we might have a predicate
that checks whether a goal γ is in the form of a horn clause, when φhornclause(γ)
holds. In [2] we used such predicates in a tactic assert ψ to influence the course
of a proof, by failing if ψ(γ) does not hold for the current goal. Most simply, we
suppose that we always have a predicate to check for equality with any specific
goal γ and we overload γ to stand for that predicate.

We use matches to build up the basic queries which specify local structure.
Informally, a basic query may hold for a given hiproof and a substitution of
variables the query contains; we will define the result of a query to be the set of
variable instantiations that make it true. As (merely) a matter of style, we use
a verbose SQL-like textual notation:

q ::= ∗ anything non-empty
| nothing nothing (matches only identity)
| atomic nm atomic rule match
| inside nm q q satisfied inside box with label matching
| q1 then q2 q1 and q2 satisfied by successive nodes in ;
| q1 beside q2 q1 and q2 satisfied by adjacent nodes in ⊗
| ingoals gm goals into sub-proof match
| outgoals gm goals out of sub-proof match

Notice that the subject of the query is left implicit, phrases act as anchored
patterns. This core is almost the same language as the hiproof syntax itself,
omitting empty proofs and adding the ability to match on goals within the proof.
Queries built using the first five of these constructors are called elementary.

For the hiproof given in Fig. 1, the following queries are each satisfied (the
alignment around then matches the vertical split):

(inside l ∗) then (inside m ∗)
(inside ∗ ∗ then ∗ beside nothing) then ∗

(inside L1 ∗) then (inside ∗ atomic A)

The first two are purely structural, matching the form of the tree. The first
matches the outer structure consisting of the box labelled l followed by the box
labelled m. The second examines the shape inside the first box. The final query
is satisfiable with the (unique) instantiation L1 7→ l, A 7→ c.

Connectives. We allow propositional logical connectives to build compound
queries, with familiar intended meanings:

q ::= . . .
| q1 ∧ q2
| q1 ∨ q2
| ¬q
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Search and check. Two important quantifier combinators on queries allow us
to search within a proof for somewhere that a query is satisfied, or check that
a query is satisfied everywhere. With a syntactic interpretation, the natural
domain of quantification is by subterm; because any subterm of a valid hiproof
is also valid, this makes sense and we equate “subproof” (in the hiproof sense)
with subterm.

q ::= . . .
| somewhere q q holds in some subproof
| everywhere q q holds in every subproof

The scope of somewhere and everywhere extends as far right as possible.
These queries might be added directly to the language meaning, but we define
them instead using recursion (introduced below). The somewhere combinator
is used in many of our examples. For example, a proof uses a tactic tac if the
query

somewhere inside tac ∗

is satisfied. As another example, we use a match on a goal-list variable G to find
the goals passed into a tactic. The query

(somewhere inside m ingoals G) ∨ (somewhere atomic b ∧ ingoals G)

can be read as “tell me the goals that are input to tactic m or the atomic rule
b”. This would return the pair of instantiations {G 7→ [γ2], G 7→ [γ3]} for the
hiproof in Fig. 1.

When is everywhere useful? Clearly not for anything that requires a fixed
structure, but with a goal-matching assertion that checks the format of the goals,
for example, the check

everywhere outgoals [φhornclause]

requires that every goal appearing in the tree must have that certain form. With
conditional queries we can specify that only goals appearing in certain places
must have some property.

Recursive queries. Just as with tactics we can allow recursively defined queries.
Recursively defined queries allow us to build up regular patterns. Singly-recursive
queries can be defined using query variables Q:

q ::= . . .
| µQ.q

where q is a query in which Q can appear free. An example of a pattern query
is:

µQ. (atomic a then (ingoals [γ2] beside Q)) ∨ (inside m ∗)

which is satisfied by proofs that repeatedly apply the atomic rule a, until reaching
a box named m.
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Using recursion we can define the searching and checking quantifiers de-
scribed above:

somewhere q
def
= µQ. q ∨ (inside ∗ Q) ∨ (Q beside ∗) ∨ (∗ beside Q)∨

(Q then ∗) ∨ (∗ then Q)

everywhere q
def
= µQ. q ∧ ((inside ∗ Q) ∨ (Q beside Q) ∨

(Q then Q) ∨ nothing ∨ atomic ∗))

these ensure that q holds at one (or every) node following the structure of the
proof: notice that exactly one of the disjuncts must hold in the recursive cases.
Later on we will show that these definitions have the intended meaning.

Derived forms. Using this core, we can readily add more derived forms:

q1 when q2
def
= ¬q2 ∨ q1

provesgoal γ
def
= ingoals [γ] ∧ outgoals []

axiom nm
def
= atomic nm ∧ outgoals []

islabel nm
def
= inside nm ∗

isthen
def
= ∗ then ∗

whenin nm q
def
= inside nm q when islabel nm

somewherealong q
def
= µQ. q ∨ (Q beside ∗) ∨ (∗ beside Q)

separately q1 q2
def
= µQ. (somewhere q1 beside somewhere q2)

∨ (somewhere q1 then somewhere q2)
∨ (inside ∗ Q)

nearby q
def
= µQ. q ∨ (Q beside ∗) ∨ (∗ beside Q)

∨ (Q then ∗) ∨ (∗ then Q)

The when conditional combinator is satisfied if q1 is satisfied whenever q2 is; by
convention, the scope of q1 and q2 in when extend as far as possible. The last
three combinators again use recursion to expand the scope of the local structure
specifications. The query somewherealong q is satisfied if q is satisfied in a
⊗-list of hiproofs; separately q1 q2 requires that q1 and q2 hold on disjoint
portions of the proof, arbitrarily separated. The query nearby q is an adjusted
version of somewhere which restricts to the same level (without descending
into labelled boxes).

3.1 Examples

Now we can write many of our motivating examples. For example, the input
goals to tactic tac are simply the G that satisfy:

somewhere inside tac ingoals G.
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The tactic tac occurs recursively in a hiproof if the query

somewhere inside tac somewhere islabel tac

is satisfied. The tactic inner always occurs whenever the tactic outer is invoked:

everywhere whenin outer somewhere islabel inner.

A tactic named base always appears alongside a tactic named step inside the
tactic induct:

everywhere whenin induct somewhere (somewherealong islabel base)

∧ (somewherealong islabel step).

Further examples are given after looking at the semantics.

4 Semantics

We will define the semantics of queries using a satisfication relation s |=σ q.
This denotes satisfication of a structured query on a hiproof s with respect to a
substitution σ for match variables. The substitution maps variables N to names
for atomic tactics and labels, and variables G to lists of the form [γ1, . . . , γn].

Two base satisfaction relations define matching on names and goal lists:

∗ |=σ n always
n′ |=σ n iff n = n′

N |=σ n iff σ(N) = n

[ψ1, . . . , ψn] |=σ g iff ∃γ1 · · · γn. g = [γ1, . . . , γn] and ψ1(γ1) · · ·ψn(γn)
G |=σ g iff σ(G) = g

Before giving the main relation, we consider hiproof terms in more detail.
Terms s in the hiproof grammar denote tree-based models in the denotational
semantics of hiproofs [1]. Under the denotational interpretation, certain terms
are equivalent. We will give our interpretation over the syntax, but closing under
this equivalence. More specifically, we consider valid hiproofs given in Sect. 2
modulo these equations:

s ; id = s id is an identity for sequencing

id ; s = s

s ⊗ 〈〉 = s 〈〉 is an identity for juxtaposition

〈〉 ⊗ s = s

s ; 〈〉 = s 〈〉 is a right-identity for sequencing

s1 ; (s2 ; s3) = (s1 ; s2) ; s3 ; is associative

s1 ⊗ (s2 ⊗ s3) = (s1 ⊗ s2) ⊗ s3 ⊗ is associative

(s1 ; s2) ⊗ (s3 ; s4) = (s1 ⊗ s3) ; (s2 ⊗ s4) ; and ⊗ can be exchanged
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These equations are justified by the denotational semantics (which we omit from
this paper), and it is easy to confirm that the equations preserve validity on the
same lists of input and output goals for the rules in Fig. 2. We will write s = s′

if two terms are equal in the theory generated by these equations (i.e., closing
also under congruence). We reserve s ≡ s′ to denote syntactic identity.

Definition 1 (Query satisfaction). Let s be a valid hiproof and q a query in
the minimal query language. The satisfaction of q for s with the substitution σ
is defined as the least relation s |=σ q satisfying:

s |=σ ∗ when s 6= 〈〉
id |=σ nothing
a |=σ atomic nm when nm |=σ a
[l] s |=σ inside nm q when nm |=σ l and s |=σ q
s1 ; s2 |=σ q1 then q2 when s1 |=σ q1 and s2 |=σ q2
s1 ⊗ s2 |=σ q1 beside q2 when s1 |=σ q1 and s2 |=σ q2
s |=σ ingoals gm when gm |=σ g where s ` g −→ h
s |=σ outgoals gm when gm |=σ h where s ` g −→ h
s |=σ q1 ∧ q2 when s |=σ q1 and s |=σ q2
s |=σ q1 ∨ q2 when s |=σ q1 or s |=σ q2
s |=σ ¬q when ¬(s |=σ q)
s |=σ µQ.q when s |=σ q[µQ.q/Q]
s |=σ q when ∃s′. s′ |=σ q and s′ = s.

Recursive queries µQ.q are interpreted using unfolding; this suffices since we
query only finitely deep trees. More precisely, we can define satisfaction using an
auxiliary relation |=n indexed by the maximum depth of the number of unfoldings
of a recursive query, where µnQ.q can be unfolded at most n times. Then |= is
defined as the union of all finite unfolding relations |=n. The definition works
for singly recursive queries where we do not need to interpret queries with free
query variables, but can be extended standardly for mutually recursive queries.

Proposition 1. Let s be a valid hiproof. Then

1. s |=σ somewhere q iff ∃s′.s′ is a subterm of s and s′ |=σ q,
2. s |=σ everywhere q iff ∀s′.s′ is a subterm of s and s′ |=σ q.

(where quantification ranges over non-empty terms, and s is a subterm of itself).

Thus these important derived forms have the intended meanings.

How precise are our queries? The following proposition establishes, as in-
tended, that every term can be characterised up to equality by a query. Thus,
we can use queries to describe finite sets of hiproofs.

Proposition 2. Given any empty-normal hiproof s, there is a query Q(s) which
characterises s precisely.



main.tex 293 2011-11-01 21:44:14Z da

10 David Aspinall, Ewen Denney, and Christoph Lüth

Proof. Let Q(s) be given by the embedding:

Q(id) = nothing

Q([l] s) = inside l Q(s)

Q(s1 ; s2) = Q(s1) then Q(s2)

Q(s1 ⊗ s2) = Q(s1) beside Q(s2)

Q(〈〉) = ¬∗

Now we claim that whenever s′ |=σ Q(s) for some s′, we must have s = s′.

How expressive are our queries? This is another natural question, which we
discuss further below in Sec 4.3.

4.1 Examples and their results

Now we demonstrate how some of our motivating queries are written in our
language; meanings can be calculated using the semantics above to show that
they are as desired.

The invocation of a query to get some results can be written in SQL style as:

select e from s where q

which denotes the set of expressions σ(e) for all substitutions σ that satisfy the
query. That is:

{σ(e) | s |=σ q}. (2)

The kind of expressions e chosen here depends on what we want to do with
query results. We don’t consider a general transformation language for query
results here, but one could easily allow expressions that combine pieces of query
results in arbitrary ways, for example, building new hiproofs again over the query
variables. Our examples below restrict to simple query variables.

– To find all the axioms in a valid hiproof s:

Axioms(s) = select A from s where
somewhere axiom A

Applied to s = ([l] a ; b ⊗ id) ; [m] c, this query returns {A 7→ c, A 7→ b}.
– To find the existential witnesses inside a valid hiproof s, we can find uses of

the existential introduction rule:

Wit(s) = select A from s where
somewhere atomic A ∧ atomic ExIt

Strictly, this requires a slight generalisation of our atomic name matching to
admit sets of names; we assume the ExI rule is annotated by the witness t
that is chosen.
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– Which goals are input to (or output from) a tactic called tac?

Input(tac, s) = select G from s where
somewhere inside tac ingoals G

Output(tac, s) = select G from s where
somewhere inside tac outgoals G

– Which tactics call themselves recursively? (shown earlier for fixed tac)

Rec(s) = select L from s where
somewhere inside L somewhere islabel L

– Which tactic uses atomic tactic a, i.e., inside which label does a occur?
Using the nearby combinator defined in the last section, this query returns
all labels L which contain a directly, i.e., labels which are the immediate
surrounding parent of a, not a more distant ancestor.

Inside(a, s) = select L from s where
somewhere inside L nearby atomic a

– Are there steps in the proof which have no effect?

UselessTacs(s) = select L from s where
somewhere inside L ingoals G ∧ outgoals G

This returns useless tactics that return the same goal that they were given
(necessarily G must be a single element list by the hiproof structure). Of
course, some tactics may be even worse and return the same goal that they
were given and some more besides! To deal with these, we would need to
extend goal matching to allow subset inclusion.

– Are there duplicated subproofs inside a proof? A good way to answer this
is to look for subtrees that have the same input and output goal lists, using
the separately operator introduced earlier:

Duplicates(s) = select Gi, Go from s where separately q q

where q abbreviates ingoals Gi ∧ outgoals Go

Of course, to return (or locate) the actual subtrees that prove the same
things, we would need to extend the query language with variables ranging
over hiproofs (or paths in hiproofs). See Sect. 4.3 for discussion of this.

4.2 Query equivalence

Prop. 2 characterises proofs by queries. We can turn this around, and ask whether
queries can be characterised by the proofs that satisfy them. This motivates
a Leibniz-style equality between queries — two queries are equal if they are
satisfied by the same proofs and the same substutions. This question is also
motivated by complexity considerations — there may be more than one query
to get a particular answer, but which one is more efficient?
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Definition 2. We say two queries q, p are equivalent, written p ∼= q, if for all
proofs s and substitutions σ, we have s |=σ q ⇐⇒ s |=σ p.

With this definition, we have the following groups of equations. First, the
logical connectives distribute over the basic queries:

inside nm (p ∧ q) ∼= inside nm p ∧ inside nm p (3)

inside nm (p ∨ q) ∼= inside nm p ∨ inside nm p (4)

p then (q1 ∧ q2) ∼= (p then q1) ∧ (p then q2) (5)

(p1 ∧ p2) then q ∼= (p1 then q) ∧ (p2 then q) (6)

p then (q1 ∨ q2) ∼= (q then q1) ∨ (p then q2) (7)

(p1 ∨ p2) then q ∼= (p1 then q ∨ (p then q2) (8)

p beside (q1 ∧ q2) ∼= (p beside q1) ∧ (p beside q2) (9)

(p1 ∧ p2) beside q ∼= (p1 beside q) ∧ (p2 beside q) (10)

p beside (q1 ∨ q2) ∼= (p beside q1) ∨ (p beside q2) (11)

(p1 ∨ p2) beside q ∼= (p1 beside q ∨ (p beside q2) (12)

Alternatively:

inside nm (p�q) ∼= (inside nm p)�(inside nm pq) (13)

(p1�p2)⊗q ∼= (p1⊗q)�(p2⊗q) (14)

p⊗(q1�q2) ∼= (p⊗q1)�(p⊗q2) (15)

for � ∈ {∧,∨} and ⊗ ∈ { then , beside }.
Secondly, negation distributes over the basic queries in the following fashion.

For example, a query inside lm q is not satisfied by s if s is either not of the
form [l] s′, or if it is and s′ does not satisfy q. This gives us:

¬(inside lm q) ∼= inside lm (¬q) ∨ (atomic ∗) ∨ (∗ beside ∗) ∨ (∗ then ∗)
(16)

¬(p beside q) ∼= (¬p) beside ∗ ∨ ∗ beside (¬q) ∨ (atomic ∗) ∨ (inside ∗ ∗) ∨ (∗ then ∗)
(17)

¬(p then q) ∼= (¬p) then ∗ ∨ ∗ then (¬q) ∨ (atomic ∗) ∨ (inside ∗ ∗) ∨ (∗ beside ∗)
(18)

Finally, we have the deMorgan equalities, double negation, commutativity and
distributivity of conjunction over disjunction:

¬(p ∧ q) ∼= (¬p) ∨ (¬q) (19)

¬(p ∨ q) ∼= (¬p) ∧ (¬q) (20)

¬(¬p) ∼= p (21)

(p1 ∨ p2) ∧ q ∼= (p1 ∧ q) ∨ (p2 ∧ q) (22)

(p ∧ (q1 ∨ q2) ∼= (p ∧ q1) ∨ (p ∧ q2) (23)

(24)
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Equations (3) to (23) are proven by expanding Def. 2 and using Def. 1. Example
here? Seems all rather obvious. From these equations, we can get the notion
of a normal form.

Definition 3 (EEF and DNF). A query is in extended elementary form
(EEF), if it is an elementary query, a negation of an elementary query, or
inside nm q where q is an extended elementary query.

A query q is in disjunctive normal form (DNF), if it is of the shape
∨
i=1...n

∧
j=1...mi

φi,j
where φi,j are extended elementary queries, or in other words a disjunction of
conjunctions of extended elementary queries.

Theorem 1. For each query q, there is a an equivalent query q′, denotated as
DNF(q), such that q ∼= q and q′ is in DNF.

Proof. The proof proceeds by structural induction on q. Given an arbitrary q,
we first push negation inside using equations (16) to (20). Now, using equations
(3) to (12) we can push the query constructors (inside, then, beside) inside
the logical connectives. Finally, use (22) and (23) to transform the formula into
a disjunction of conjunctions.

ToDo:

– How big does it get? Blowup seems quadratic (note the negation equations
only add a constant overhead) at each step– is that polynomial or exponential
in total?

– Need to handle recursion.

4.3 Towards globally structured queries

There is a limit to what queries in our language can express. We call these queries
locally structured because they are based on building up patterns of structure
that are matched implicitly to a position in the tree. Using variable substitution
and structural recursion, queries can span and relate different portions of the
tree, but it is not possible to write a query that directly refers to (or returns) a
position in the tree, or does any counting.

This limitation can be lifted, e.g., by adding a notion of path to the language,
so we have a way to refer to positions in the tree. We have refrained from doing
that in this paper to study the restricted case in detail first.

– TODO: something on expressivity/complexity: maybe say/show that with
paths, queries are more succinct; maybe show a query that cannot be ex-
pressed although result is in the language (i.e., some substitution of label-
s/axioms/goals).
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5 Implementing Queries

We have implemeted a prototype of the query language for small experiments. It
represents queries as an algebraic datatype Q, and in time-honoured fashion uses
SML as both implementation platform and scriptable command-line interface.
Hiproofs are represented modulo the equations in Sect. 4, following the denota-
tional semantics in [1]. The implementation is a functor which is generic over
the proofs in question, reflecting the generic nature of the query language.

Corresponding to the semantic interpretation in Def. 1, the implementation
provides a function:

val sat : P.HiPrf -> Q -> Subst list

which calculates the set of possible substitutions of query variables for names
and goal lists to satisfy the given query; a satisfiable query with no substitution
yields a singleton result of the empty substitution, while an unsatisfiable query
yields the empty list as a result.

The function sat is a straightforward recursion over the structure of the
query; the hiproof equations are taken care of by using a canonical (denotational)
representation. For the basic queries an auxiliary function match_nm implements
matching on atomic tactics and labels, and match_gm similarly for goals. Cru-
cially, most compound queries are conjunctive: they decompose the argument,
obtain sets of results for each of the subqueries, and then combine by pointwise
unification of the resulting substitutions. (The unification here is very simple,
just checking that the same variable is not mapped to different atoms, labels or
goals, so it is a partial function.) In Haskell-like syntax, this is written as:

r1 >> r1 = [ s | s1<-r1, s2<-r2, SOME s<-unify(s1, s2) ]

In contrast, to combine the results of disjunction it suffices to concatenate the
result lists. Roughly, sat is implemented with cases like this:

sat (Atom a) (Atomic am) = match_nm(a, am)

sat (Lab l s) (Inside lm q) = match_nm(l, lm) >> sat s q

sat (Seq s1 s2) (q1 Then q2) = sat s1 q1 >> sat s2 q2

...

sat s (q1 And q2) = sat s q1 >> sat s q2

sat s (q1 Or q2) = sat s1 q1 @ sat s2 q2

sat s q = []

We provide two instantiations of the generic implementation: one for the
syntactic hiproofs, where we have a datatype S as in (1), and one which models
Isabelle proof objects as hiproofs.

5.1 Isabelle Proofs

Needs to be cleaned up. Notes about Isabelle proof objects:

– They have an inherent hierarchical structure, which may or may not be what
we want. Boxes correspond to proven theorems; skeleton reduces a proof to
the proof down to the axioms of the logic.
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– How to model sequence and tensor? Need to divine from structure of proof
and arity of rules (theorems).

– This means queries are not logic-independent. The axiom query always work,
but the recursive-tactic query now means does a theorem use itself in its own
proo.

– Isabelle proof objects do not have any information about the high-level proof
scripts used to create them. We can add this information by using vacous
“label theorems” which are just φ −→ φ, but the names of which carry
labelling information. The hierarchical structure will now only take account
of the label theorems.

5.2 TSTP

Proofs in TSTP consist of the sequence of formulas output by an automated
theorem prover, including axioms, conjecture, and derived formulas. All formulas
have a source. For derived formulas the source indicates the inference rule and
antecedent formulas from which it was derived. For a leaf formula the source is
the original location of the formula. TSTP, itself, does not have any notion of
inference rule—these are supplied by the underlying provers.

Consider the underlying proof on the right of Fig. 1. This can be translated
into TSTP in either a forwards style, where we start with formulas, γ2 and
γ3 given by axioms b and c, respectively, and then apply inference rule, a, to
conclude γ1, or in a backwards style, where we start with conjecture γ1, apply a
to get two sub-goals, and then discharge them with the corresponding axioms.
The TSTP representations of these derivations are quite different, though they
have a single analogous proof tree.

Although TSTP does not represent tactics, inference rules can be nested,
giving a simple form of hierarchy. We could also look to decompose the deriva-
tions thus deriving an implicit hierarchy, or extend the language with labels on
sub-derivations to represent hierarchy explicitly.

6 Related work and conclusions

This paper introduced locally structured proof queries in our proof query lan-
guage, PrQL. Much remains to be done. Further work will extend the language
to globally structured (higher-order) queries and queries defined directly over
our semantic models. To explain implementation strategies, we ought to give a
more precise account of how queries are evaluated: this might be with a direct
operational interpretation, or via an auxiliary mechanism. Further out, we want
to set this work in the context of related query languages, perhaps by trans-
lations. We plan to investigate mappings from PrQL to both PML and TSTP.
Via mappings to other foundational query languages for graph models, we may
derive expressivity and complexity results (see e.g., [5]).
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Related work in theorem proving. The idea of a general query language for in-
specting formal proofs appears novel, although there are many investigations
into exploiting proofs using ad hoc features to reference or manipulate parts of
proofs. We can’t survey all but mention a few. Connecting decision procedures
to theorem proving, researchers added invocation records (and perhaps justi-
fications) grafted into an overall proof or justification (e.g., [6]). Noteworthy
sub-trees may be represented using names for reference (and then shared to cre-
ate a dag structure) as in TPTP and its proof format TSTP [7]. Many systems
use debugging output for proof procedures to create a lengthy log, which explains
where things were tried and failed. Some tools use representations of proof trees
in the first place which connect the proof-producing mechanism to the proof
and are equipped with browsing and editing mechanisms, e.g., NuPrl [8]. The
strand of research into proof-carrying code has taken the independence and de-
pendability of proofs (and more generally, certificates for search procedures) very
seriously [9]. Besides checking proofs, other researchers made efforts to translate
proofs between systems [10]; ways to discover dependencies between parts of
proofs [11] to help simplify or rearrange; and ways to mine proofs to discover
common patterns [12].

TSTP proofs can be queried by translation [13] into the Proof Markup Lan-
guage (PML) [14], which provides an interlingua representation for the justifica-
tion of results produced by Semantic Web services. PML represents both proof
and provenance level information. Queries in PML are simply partial proofs,
rather than expressions in a separate query language (although PrQL also has
similarities to its underlying proof language), and query evaluation seeks to re-
turn (possibly partial) proofs that “fill in the blanks” in the initial query. A
browser also allows certain forms of querying.

Query languages for structured data and programs. Away from theorem proving,
query languages for trees and graphs have been studied for some time. Languages
related to PrQL include those aimed at semi-structured (XML-like) models such
as UnQL [15] which uses structural recursion on tree (and graph) representa-
tions, similarly to PrQL’s recursive queries, and Graph Logic [16] which uses
a separating conjunction to destruct the graph subject of queries. Checking for
patterns in programs, ASTLog [17] is a Prolog variant for examining syntax
trees and PQL [18] is a more general framework for querying programs based on
examining a program text at varying levels of abstraction.
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