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ABSTRACT 
 

We have measured mode pushing by the dispersion of a rubidium vapor in a Fabry-Perot cavity and have 

shown that the scale factor and sensitivity of a passive cavity can be strongly enhanced by the presence of 

such an anomalous dispersion medium. The enhancement is the result of the atom-cavity coupling, which 

provides a positive feedback to the cavity response. The cavity sensitivity can also be controlled and tuned 

through a pole by a second, optical pumping, beam applied transverse to the cavity. Alternatively, the 

sensitivity can be controlled by the introduction of a second counter-propagating input beam that interferes 

with the first beam, coherently increasing the cavity absorptance. We show that the pole in the sensitivity 

occurs when the sum of the effective group index and an additional cavity delay factor that accounts for mode 

reshaping goes to zero, and is an example of an exceptional point, commonly associated with coupled non-

Hermitian Hamiltonian systems. Additionally we show that a normal dispersion feature can decrease the 

cavity scale factor and can be generated through velocity selective optical pumping.  
 

Keywords: Optical Resonators, Laser Gyroscopes, Coherent Optical Effects 

1. INTRODUCTION 
 

The modification of the response of an optical cavity by an intracavity dispersive medium is of interest for 

applications such as enhancement of the sensitivity-bandwidth product for interferometric gravity wave detectors,
1-3

 

precision measurements of the Lense-Thirring frame-dragging effect, the auto-stabilization of optical cavities,
4,5

 

enhanced strain sensing,
6
 and the enhancement of optical gyroscopes.

5,7-12 
In a recent paper the phenomenon of mode 

pushing in a Fabry-Perot cavity by an intracavity medium with an absorption resonance was demonstrated.
9
 In the region 

of the absorption resonance, the peaks of the cavity modes are displaced from their empty cavity positions by an amount 

which depends on the anomalous dispersion associated with the medium’s resonance. It was shown that the mode 

pushing is further enhanced by the variation in the absorption across the finite width of the cavity mode profile which 

results in a reshaping of the mode. These effects have particular relevance to optical ring cavity devices, in particular to 

optical gyroscopes and to ring laser gyroscopes. For these sensors the mode pushing phenomenon may be used to 

enhance both the magnitude of the response to rotation (scale factor) and the signal-to-noise ratio (sensitivity). 

Fortunately, the essential physics of the mode pushing due to the intracavity dispersive/absorptive medium can be 

studied simply with a one-dimensional cavity, e.g. a Fabry-Perot cavity with tunable spacing as shown in Fig. 1, and 
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does not require assembly of a rotating ring cavity. Neither is a high finesse cavity required. Although for device 

development of passive resonator gyros, high finesse would ultimately be desirable because the sensitivity scales 

inversely with mode width, for laboratory studies a low finesse cavity has the advantage that its mode widths are 

comparable to Doppler-broadened Rb transition linewidths, making observation and demonstration of the dispersion 

enhancement considerably more straightforward. In this paper we review our recent results using such a low finesse 

passive cavity, which demonstrate that the sensitivity, defined as the cavity scale factor divided by the mode width, can 

be strongly modified the intracavity dispersion,
9
 and examine various methods that may be used for tuning the scale 

factor.
11,12

 

 

Fig. 1. A Fabry-Perot cavity with an intracavity dispersive medium. 

The frequency shift that occurs for a given cavity rotation rate (in the case of a ring cavity) or change in cavity 

length (for a planar cavity) defines the cavity scale factor. In a previous paper we demonstrated that the scale factor 

enhancement of a cavity containing an intracavity dispersive medium having a linear complex round trip transmittivity 

( ) ( ) exp[ ( )]i  where 0  is the detuning from the medium resonance in angular frequency units, is 

given by 
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where 0p p  and 0q q  are the specific mode detunings with and without the dispersive medium 

present, respectively. We have written the result in terms of two dimensionless phase times 
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where ˆ ( )gn  is the effective group index, c  is the empty cavity round trip time, and 
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represents an additional cavity feedback phase that must be added to the round trip phase shift ( ) ( )  to obtain 

the detuning with respect to the pushed mode frequencies, i.e., ( ) ( ) ( ) ( )c pF . The detuning in the 

absence of the medium is determined simply by the empty cavity round-trip phase shift ( ) ( )c q . Note that 

while ( )  depends only on the dispersive medium properties, ( )F  depends on the net electric-field gain per round 

trip ( ) ( )g ra , i.e., it depends on the cavity properties, where r is the round-trip mirror reflectivity, and a accounts 

for other frequency-independent cavity losses. Hence the factors ( )pF , and ( )cav pT , account for the variation of 

absorption across the finite width of the cavity mode, which further increases the mode pushing through a reshaping of 

the mode profile. When the width of the cavity mode is narrow in comparison with that of the dispersive feature, e.g., in 

the case of a laser, this mode reshaping can be neglected, and we recover the result in refs [5] and [8], specifically that 

the scale factor enhancement is inversely proportional to the group index ( ) ˆ( ) 1/ ( )L

p g pS n . Given the same level 

of absorption, larger dispersive feedbacks are therefore obtained for a passive cavity than for a laser. 
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2. SCALE FACTOR POLE, CRITICAL ANOMALOUS DISPERSION AND GAIN, AND 

EXCEPTIONAL POINTS 
 

Taking the derivative of Eq. (4) within the approximation of constant group index in the linear regime near 

resonance we obtain 

 

2 2 2
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where ( ) ( ) /p pd d  and 2 2( ) ( ) /p pd d . Now we are most interested in the scale factor at 

resonance, where 0p  and the first derivative of the medium transmission goes to zero, i.e., (0) 0 . The scale 

factor on resonance is thus 
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where we have expanded the result as a geometric series to first order. The series diverges when  
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which corresponds to the occurrence of either a pole or a zero in the scale factor depending on whether the term in the 

absolute value is positive or negative, respectively. Eq. (7) is a transcendental equation that can be rearranged as 

 
2 1cg , (8) 

where cg  is the critical value of the gain corresponding to the scale factor pole and 2

0 0
ˆ( ) /g cn  is a dispersion 

parameter that does not depend on the cavity parameters r and a. Note that the dispersion parameter is negative for 

anomalous dispersion so that a solution to Eq. (8) only exists for 1cg , i.e., the critical gain always occurs below the 

lasing threshold. In the limit of weak dispersion, 1 , we obtain 1cg . Note that the critical gain value cg

corresponds to a critical value of the group index, or critical anomalous dispersion (CAD), as a result of the Kramers-

Krönig relations. The CAD occurs in general for group indices ˆ0 1gn , and occurs at ˆ 0gn  only for the case of a 

laser or when the cavity modes are much narrower than the dispersive feature. For example, for our previously reported 

experiments,
11,12

 the critical value was ( ) 0.67c

gn  for both the F = 1 to F’ and F = 2 to F’ Doppler broadened 

transitions. 

On a final note related to CAD, the scale factor pole is an example of an exceptional point, commonly associated 

with coupled non-Hermitian Hamiltonian systems, where the complex eigenvalues of the system are fully degenerate. 

There is, therefore, an accumulated geometric Berry phase as parameters are varied about this exceptional point. For 

group indices lower than the CAD value (or gain values exceeding cg ), an avoided level crossing is evident by a 

splitting of the cavity mode. It is straightforward to show that anomalous dispersion corresponds to conservative 

coupling between the atoms and the cavity mode, whereas normal dispersion corresponds to dissipative coupling. 

3. ENHANCED CAVITY SENSITIVITY 
 

An enhanced scale factor, by itself, may not result in enhanced measurement sensitivity. For a passive cavity the 

sensitivity is determined largely by the scale factor S, divided by the mode width W (in addition to detector shot noise). 

Fortunately, whereas the cavity scale factor experiences a pole when ˆ ( ) ( ) 0g p cav pn T , the mode width always 

remains finite. This is because the mode width and scale factor depend differently on the group index as a result of the 

variation of absorption over the mode width which reshapes the mode as it is swept across the resonance. Our 

experiments on passive cavities have shown that the sensitivity defined as /S W  can readily be increased above 
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unity by the presence of an intracavity dispersive medium.
9,11,12 

As shown in Fig. 2, the sensitivity in fact has a pole at 

two distinct values of the net round trip electric field gain ( )pg : (i) at the critical gain cg  corresponding to a pole in 

Eq. (1) owing to the dispersive feedback, and (ii) at the lasing threshold ( ) 1pg  as a result of the collapse of the 

mode width to the Schawlow-Townes linewidth. 

 

 

Fig. 2. Scale factor 
0S  (solid curve), normalized mode width 

0W  (dashed curve), and sensitivity 
0

(dotted curve) 

versus cavity roundtrip field gain on resonance 
0g  for the D2, F = 1 to F’ Doppler broadened transition, showing 

regions of (a) mode splitting, (b) mode pushing, and (c) mode pulling. In region (b) the medium is absorbing 

0 1and the dispersion is anomalous such that 
0 1S . The critical gain occurs at 0.28cg  (solid vertical line). 

In region (a) the anomalous dispersion is so strong that mode splitting occurs. When 
0g ra  (dashed vertical 

line) the medium becomes transparent, 
0 1 , resulting in the empty cavity case, i.e., 

0 0 0 1S W . In region 

(c) the medium is amplifying 
0 1and normal dispersion results in 

0 1S , but the mode width 
0W  narrows 

resulting in an increase in sensitivity as the lasing threshold, 
0 1g , is approached. Measurements of 

0S  using a 

3 cm Rb87 vapor cell under different pumping conditions (see next section) are indicated by the two points on the 

graph.  

3. TUNING BY OPTICAL PUMPING 
 

Our experiments on unlocked passive cavities have demonstrated that the cavity scale factor can be tuned through 

its pole by using optical hyperfine pumping to modify the absorption of the intracavity medium. In these experiments a 

narrow linewidth tunable “probe” diode laser is scanned over the modes of a Fabry-Perot cavity containing an Rb87 cell 

as described previously.
9
 The detuning between the cavity mode and the atomic resonance, , is varied by adjusting the 

Fabry-Perot cavity length, and spectra are recorded for a variety of detunings to produce a plot of the cavity scale factor 

as shown in Fig. 3. In Fig. 3a, a scale factor enhancement of 4.0S  is evident by the increased slope near the D2, F = 1 

to F’ Doppler broadened resonance, whereas the mode width enhancement, limited by the variation in absorption (as 

discussed previously), was only 2.5W , translating to a sensitivity enhancement of / 1.6S W  for this case. A 

second tunable diode laser, locked to a pumping transition (e.g., F = 1 to F’ = 2), provides a pump beam of adjustable 

intensity that is focused via a cylindrical lens into the intracavity vapor cell, in a direction orthogonal to the probe beam. 

The orthogonality of the pump and probe beams means that all velocity groups sampled by the probe beam are pumped, 

i.e., the pumping is not velocity-selective along the probe propagation axis. As a consequence of this arrangement, no 

additional resonances occur in the probe spectrum (in contrast with the velocity-selective collinear pumping scheme 

(a) (b) (c) 
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outlined in section 5). Hence the pump beam shifts uniformly the optical transmission of the Rb87 vapor, which in turn 

modifies the cavity scale factor. As shown in Fig. 3b, the scale factor can either increase or decrease depending on the 

choice of pumping transition, and can be tuned continuously simply by changing the pump intensity. This continuous 

tuning capability could be used to adaptively change the sensitivity of an optical gyroscope, increasing it for low rotation 

rates and decreasing it for large rotation rates, increasing its effective dynamic range. Furthermore, the time scale for 

changing the sensitivity with optical pumping can be on the order of one microsecond or less, with moderate pump 

intensities. This allows for rapid tuning of the cavity optical response, which can be important for gyroscopic 

applications in highly dynamic environments. 

           

Fig. 3. Cavity scale factor enhancement, i.e., dispersive vs. empty cavity mode detuning for a 3 cm 87Rb cell in a 

15 cm Fabry-Perot cavity (a) without pump beam and (b) with pump beam locked to the F = 1 to F’ = 2 (blue 

curve) and F = 2 to F’ = 2 (red curve) transitions. In (a) near the 87Rb D2, F = 1 to F’ Doppler broadened 

resonance, the scale factor is increased by anomalous dispersion. In (b) the scale factor is strongly affected by the 

presence of the pump beam and can be either decreased (blue curve) or increased until it passes through a pole 

resulting in mode splitting (red curve). 

Data were also obtained with cavity modes tuned across the D2, F = 2 to F’ Doppler broadened resonance.
11,12

 In 

this case, when the pump was locked to the F = 2 to F’ = 2 transition, we obtained a scale factor of S = 14.8 and width 

increase of W = 2.8, resulting in a sensitivity enhancement of = S / W = 5.2. 

4. TUNING BY COHERENT CONTROL OF ABSORPTION 
 

An alternative method to the use of a pump beam for tuning the cavity sensitivity is to use a second input “probe” 

beam that coherently interferes with the first probe beam. Recent experiments by us and others have shown that the 

absorptance of a cavity can be enhanced and even become unity (a perfect absorber), in particular when a second beam 

of the correct amplitude and phase is incident upon the cavity.
13-15 At this point, even though the intracavity material 

itself may not be a strong absorber, the cavity coherently absorbs all the incident radiation falling upon it in a process 

that is the time reverse of a laser (where a cavity emits coherent radiation). This coherent perfect absorption (CPA) 

essentially results from two beam interference: the transmittance of the first beam and the reflectance of the second beam 

destructively interfere. More precisely, when there is only one beam incident on the cavity, the peaks and widths of the 

cavity modes are determined simply by the complex eigenvalues of the cavity. With two incident beams, on the other 

hand, the cavity transmission is determined not only by the cavity eigenvalues, but also by the interference of the two 

inputs. Therefore, the cavity absorptance, and consequently, the scale factor are controllable simply by varying the 

intensity or phase of the second beam, as shown in Fig. 4. This method has the advantage over the hyperfine pumping 

method in that it is completely linear and occurs irrespective of the choice of intracavity medium. 

(a) (b) 
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Fig. 4. Absorptance (left) and scale factor (right) for a symmetric cavity with two inputs containing a dispersive 

medium. Left: Absorptance at 0  for equal input amplitudes, 1 , and various values of the relative phase 

0 , / 2 , and . At 0   the absorptance is enhanced (suppressed) at even detunings 

and suppressed (enhanced) at odd detunings. All detunings are in FSR units. Hence, the absorption can be toggled 

on or off at any given cavity mode simply by changing the phase (or amplitude) of the second beam. Note also 

that CPA (A = 1) is observed on resonance when 0 . Right: Scale factor for a fixed phase, 0 , and various 

values of the relative amplitude, 0  (single input), 0.4 , 0.45 , and 0.5 . The scale factor is tuned 

by varying the intensity of the second input.  

5. DECREASING THE CAVITY SCALE FACTOR 
 

For many applications it is instead important to decrease the scale factor of a cavity, thereby stabilizing it against 

unintended motion of the cavity mirrors over some finite bandwidth. Since anomalous dispersion can be used to increase 

scale factor via mode pushing, the question that arises is whether decreased scale factors can be achieved by the mode 

pulling associated with the introduction of a normal dispersion medium. In Fig. 5a, we introduce a hypothetical normal 

dispersion feature modeled as a single Lorentzian function on top of our Doppler broadened transition, and calculate the 

transmission of the cavity. The effect of the normal dispersion is clearly observed. The mode narrows as it is pulled 

towards and held by the narrow normal dispersion feature, until the detuning becomes so large that it is finally pushed 

away by the broader anomalous dispersion feature. This results in a flattening in the scale factor plot as shown in Fig. 5b 

in a manner that is analogous to the formation of a dead-band in a passive gyro. 

           

Fig. 5. (a) Cavity transmittance as a cavity mode is swept through an atomic resonance having a narrow normal 

dispersion feature. Near the resonance the mode is pulled and trapped by the normal dispersion, then abruptly 

(a) (b) 
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released and pushed away by the broader anomalous dispersion feature. (b) Scale factor for a cavity containing a 

medium having a normal dispersion feature. The scale factor is significantly reduced near the resonance. 

Such a normal dispersion feature can be readily produced in the Rb87 absorption spectrum using the technique of 

velocity selective optical hyperfine pumping. To generate the normal dispersion feature the pump beam is locked to a 

hyperfine transition that pumps atoms out of the given probe transition (Fig. 6b), resulting in a decrease in the absorption 

of the probe and the appearance of a normal dispersive feature in the Rb87 absorption spectrum. The pump beam used to 

produce the normal dispersion feature enters the Rb87 cell collinear to the probe beam in order to affect atoms over a 

narrow range of velocities. We have observed modest decreases in cavity scale factor using this method. 

 

          

Fig. 6. (a) Bottom: F = 2 probe transmission spectrum. The pump beam is locked to the 87Rb F = 2 to F’ = 2 

hyperfine resonance, generating a strong normal dispersion feature at the F = 2 to F’ = 3 transition in the probe 

spectrum. The second smaller feature results from the transfer of a second group of atoms whose velocity is such 

that the pump is resonant with the F = 2 to F’ = 1 transition. Top: the saturated absorption spectrum is also 

provided for reference. (b) 87Rb D2 transition energy level diagram showing pump and probe transitions. 

6. CONCLUSION 
  

In this paper we have reviewed experiments that demonstrate how the sensitivity of the modes of an optical cavity 

can be increased by anomalous dispersion and tuned by the application of a second pumping or interfering beam. We 

have also introduced a method for decreasing the cavity scale factor using velocity selective optical pumping. The 

observed behaviors are not unique to the coupling of atoms and photons in a cavity, but are fundamental to systems of 

coupled oscillators and are therefore ubiquitous in nature.  
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turn increases gyro scale factor. 

 Linear effect, independent of choice of intracavity material, only moderate 

intensities required on second beam.  



Closed Loop Experimental Setup 



Conclusions 

• The sensitivity of a passive cavity can be enhanced due to anomalous 

dispersion (even more so than in the case of a laser due to the 

absorption) and controlled by a repumping or interfering beam. But 

mode splitting occurs when atom-cavity coupling is too large. 

• The sensitivity of any coupled oscillator system is enhanced near the 

exceptional point (scale factor pole, critical gain/anomalous dispersion) 

A dispersive medium in a cavity is a coupled oscillator.  

• Velocity-selective optical pumping can be used to produce a normal 

dispersion feature that can reduce scale factor. 

• The cavity can be locked to the laser, which in turn is locked to the 

atomic resonance, resulting in closed-loop operation. 
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