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Motivation for Retrieving Surface Parameters

Estimating the surface Seaflux vi LHF OAflux v3 LHE
heat fluxes from satellite | __

requires:

e Sea surface temp (SST)
e Specific humidity (Qa)
e Air temperature (Ta)
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Current estimates show
systematic differences of Hoaps v3 LH - Jofuro v3 LHF
25-50Wm2 ) --i2 R E X
Qa & Ta differences are a
major driver of the
differences between
these products.
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Large-scale patterns are similar but amplitudes
can be very different.
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Retrievals of near-surface parameters from microwave
brightness temperatures

AMSR-E Mean Sensitivity to QV, Wspd, SST
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Based on simulations from CRTM Forward and
Jacobian model.

* Observations at
microwave frequencies
show dependencies on:

e Water Vapor (QV)

e Surface wind speed

e Sea Surface
Temperature

e This sensitivity is state
dependent
* Presence of clouds

e Sensitivity to surface
layer (i.e. within 10m) is
low



Sources of information in successful retrievals of near-
surface temperature and humidity

There is a strong connection between the near
surface air-temperature and humidity.
e Clausius-Clapeyron

The sea surface temperature and air
temperature are typically strongly correlated
e Narrow distribution of (SST-TA)

Studies have shown total columnar water vapor
(precipitable water) and surface air temperature
to be highly correlated (Liu, 1988).

Nonlinearity arises:
e Dependence on atmospheric state
 Dependence on surface conditions
* Inherent relationships between moisture
and temperature.

From Roberts et al. (2010)
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Inverse retrieval approach

TB=F(X) X=F*TB)
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e Stepwise linear regression  Neural Network (Jones et al.,
(Jackson et al.,2006) 1999)
e Genetic Algorithms (Singh et
Inputs Hidden Outputs al. 2006)
layer !

e Neural Network with first

X, — /.Hl{;m””{’ guess (Roberts et al., 2010)
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Data Fusion: Merging AMSR-E and AMSU-A

Example AMSUA AMSRE Geometry,; Contour=AMSRE

Training dataset

 Directin situ
measurements are co-
located with satellite-
observations.

e CRTM-based simulations
can be used to
supplement the in situ
dataset.

AMSR-E and AMSU-A sensors on AQUA have co-
located footprints with minimal time between
samples.

e Co-located measurements

between AMSR-E and
AMSU-A are available from
mid-2002.



Improved Surface Humidity Retrieval

AQUA Advantage
) 1st Attempt AMSU + AMSRE; QA
e AMSU-A contains RMSE: 1.3 g/kg
. BIAS: -0.03 g/kg
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TS-TA, Regress

Improved Surface Temperature Retrieval
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Overall improvements are
found for near-surface
temperature

The near-surface stability is
also better represented.

Improved by taking
information directly related
to the surface temperature
and temperatures in the
lower troposphere.



Conclusions

o A statistical retrieval methodology for surface
parameters is improved using a nonlinear approach
e Due to nonlinear nature of the problem

» Retrieval of the near-surface parameters is improved

through use of multiple sensors
» Additional information is available for inversion

e It is Important to include a synthetic component of the
training dataset; choices arises regarding sampling

 Future work : add a priori information to help regularize the
network (i.e. a Bayesian approach).
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