Materials for Life Cycle Optimization
Presented at Space Day, UCF, 2012
Martha Williams, Ph.D., Lead Polymer Scientist
Kennedy Space Center, FL 32899
www.nasa.gov
Materials for Life Cycle Optimization

2.0 Materials for Life Cycle Optimization

2.1 Material Assessment
Goals:
1) Decrease processing cost
2) Improve processing efficiency
3) Increase safety
4) Reduce risk

2.2 Self-Repair Systems
Goals:
1) Enable long duration missions
2) Increase safety
3) Reduce risk

2.3 Thermal Insulation
Goals:
1) Enable long duration missions
2) Improve energy efficiency
3) Increase safety
4) Reduce risk

2.4 Electrostatic Dissipative Technologies
Goals:
1) Enable long duration missions
2) Improve processing efficiency
3) Increase safety

2.5 Long Life Materials for Extreme Environments
Goals:
1) Enable long duration missions
2) Decrease processing costs

2.6 Manual Repair of Advanced Materials
Goals:
1) Enable long duration missions
2) Decrease processing costs
Past and Current Partnerships

- **NASA Centers:** (JSC, LaRC, MSFC, GSFC, and GRC)
- **Academia:** (UCF, UF, USF, FIT, Embry Riddle, Georgia Tech, Alberta, Harding, Illinois-Urbana Champagne, University of Southern Mississippi, Manhattan College)
- **Industry:** (Thermax, DeWAL, Sharklet, Crosslink, Sabic, Amalgam, ARcnano, Epner, Conductive Composites, TE Connectivity, Automobile, Coatings and Pigments Industries)
- **Other Government Agencies:** DoD, including NAVAIR, Air Force and Army; DoE and EPA.
Polymer Science and Technology

- Flame retardant materials (with FIT)
- Self healing materials for wiring and inflatable structures
- Next generation wire materials, new wire constructions
- Detection systems for wiring and flat surfaces
- Aerogel composites for reducing heat transfer
- Foam thermal insulation materials
- Switchable materials for transient thermal management applications (with UCF)
- Conductive polymers and carbon nanotube (CNT) composites for printed circuitry and damage detection
- Aerogels for environmental remediation
- Chemochromic hazardous gas detectors (with UCF)
- Antimicrobial polymers for potable water system and closed loop systems
- Novel concepts for radiation shielding

Contact: Martha K. Williams, Ph.D.
Martha.K.Williams@nasa.gov
H2 Sensing Technologies and UCF Partnership

Works like a dosimeter:
Rate of color change depends on concentration and time.

LPA OMBUU Deployment for STS 117, 118, 120, 122, 123

Response time is slower at cryogenic temperatures but sensor can be engineered to avoid these conditions.

and STS 130, 131

Contact: Luke Roberson, Ph.D.
Luke.B.Roberson@nasa.gov
Shape Memory Alloys for Transient Thermal Applications

KSC and Florida Space Institute/University of Central Florida Partnership

- The goal of this project is to bring together novel, unique materials and transient thermal systems. The project will identify novel materials and utilize specialty or custom made shape memory alloys that can adapt under transient thermal management applications, including cryogenic applications. All within a single architecture.
NASA's Corrosion Technology Laboratory
Research and Development

- Coating development (Smart coatings for corrosion detection and control).
- Corrosion resistant materials and maintenance procedures for different environments.
- Investigation of materials degradation in different environments.
- Long-term prediction of corrosion performance from accelerated tests.
- Detection of hidden corrosion.
- Self-healing coatings.

Smart-Multifunctional Coating Concept

Hidden Corrosion Indication Concept

Contact: Luz Marina Calle, Ph.D.
Luz.M.Calle@nasa.gov
Fiber Composites Research and Development

- NASA Exploration Systems Directorate Composites for Exploration (CoEx)
 - Inter-center team responsible for investigating the potential to develop composite materials and structures technologies
 - Largest composite aerospace structures ever made - heavy lift launch vehicle payload fairing applications.
- NASA Office of Chief Technologist/Game Changing Division Composite Cryotank Technologies and Demonstration Project (CCTD)
 - Inter-center team responsible for developing and demonstrating advanced composite technologies
 - Goal is to achieve 30% weight savings 25% cost savings of LH₂ composite cryotanks.
- Non-destructive evaluation, inspection tools and structural health monitoring
 - Developing new tools that will allow for inspection and continual monitoring of fiber reinforced composite systems
- Self-repair for fiber composite systems

Contact: LaNetra Tate, Ph.D.
LaNetra.C.Tate@nasa.gov
321-867-3789
Electrostatics & Surface Physics Laboratory

- Dust mitigation and electrostatic dissipative technologies for Lunar and Mars Exploration
- Habitat Demonstration Unit dust mitigation panels
- Dust mitigation technologies for Materials International Space Station Experiment (MISSE)
- Electrostatic dissipative technologies for optical systems
- NIAC Research regolith-derived heat shields for atmospheric entry
- Electrostatic dust precipitation for In-situ Resource Utilization (ISRU)

Dr. Carlos I. Calle
Carlos.I.Calle@nasa.gov

Dr. Michael Hogue
Michael.D.Hogue@nasa.gov

Right – EDS on HDU hatch before operation
Left – EDS after operation
Specialty Capabilities at KSC

Capabilities:
• KSC Beachside Atmospheric Exposure
 Contact Information
 Dr. Luz Marina Calle
 Luz.M.Calle@nasa.gov
• Unique Electrostatics and Surface
 Physics Laboratory
 Dr. Carlos I. Calle
 Carlos.I.Calle@nasa.gov
• One-of-a-kind Cone Calorimeter for fire testing
 Dr. Martha K. Williams
 Martha.K.Williams@nasa.gov
• Composite repair new procedures and techniques for out of autoclave
 Dr. Lanetra C. Tate
 Lanetra.C.Tate@nasa.gov