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This paper documents the integration of a large hatch penetration into an inflatable 
module. This paper also documents the comparison of analytical load predictions with 
measured results utilizing strain measurement.  Strain was measured by utilizing 
photogrammetric measurement and through measurement obtained from strain gages 
mounted to selected clevises that interface with the structural webbings.  Bench testing 
showed good correlation between strain measurement obtained from an extensometer and 
photogrammetric measurement especially after the fabric has transitioned through the low 
load/high strain region of the curve.  Test results for the full-scale torus showed mixed 
results in the lower load and thus lower strain regions.  Overall strain, and thus load, 
measured by strain gages and photogrammetry tracked fairly well with analytical 
predictions.  Methods and areas of improvements are discussed. 

 

I. Introduction 
n today’s sometimes uncertain environment one thing is certain, soft-good structures have been and will continue 
to play an important role in the Space Program and there are many opportunities for innovative technology 

development.  Key soft-good structures currently being used in the Space Program include space suits, 
micrometeoroid / orbital debris protection systems, impact attenuation systems, and numerous material applications 
(thermal protection, atomic oxygen protection, IVA applications, etc…).  Other soft-good opportunities include 
inflatable modules (such as airlocks and habitats), inflatable aerodynamic decelerators, inflatable sunshields, 
inflatable solar sails, and inflatable telescopes. Understanding a variety of design, analysis, test, and manufacturing 
methods and how these various techniques interact is an important part of effectively and efficiently utilizing soft 
goods for desired space and terrestrial applications.   

For this study, NASA embarked on integrating a large hatch/frame penetration into an inflatable module.  
Integrating a large hatch/frame penetration may become a requirement for large inflatable modules if multiple ports 
are required to attach multiple modules together.  

During TransHab and subsequent testing, the woven restraint construction has been proven to be a damage 
tolerant, repeatable, and efficient design for a highly loaded fabric structures.  The TransHab geometry consisted of 
a large 23 ft diameter cylinder with end-domes and a metallic central core.   For this type of geometry, the maximum 
membrane stress is based on the 23 ft cylindrical diameter.  Therefore, high strength webbing arranged with high 
areal density is required, resulting in a tightly woven structure.  From a structural standpoint a torus has a 
geometrical advantage over a large cylindrical structure in that the maximum stress is based on the (smaller) cross-
sectional diameter of the torus rather than the (large) diameter of a similarly sized cylindrical structure.  These 
inherently lower stresses allow alternate, lighter weight, restraint layer constructions to be considered.  For the Full-
Scale Torus Test Article (Figure 1), the stress is based on the 12.3 ft diameter toroidal cross-section resulting in a 
relatively lower membrane stress.  Therefore, high strength webbing may be spaced further apart, similar to a cargo 
net type construction, to carry the global pressure loading.  A structural bladder (urethane coated Vectran) is used to 
support the load between structural webbings. For a flight design a separate carrier fabric and non-loaded low-
permeability bladder layer(s) will probably be required to meet leak rate requirements at pressurization.   
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The Full-Scale Inflatable Module shown in 

Figure 1, hereafter referred to as the Phase II article, 
was originally designed to support a deployment and 
mating test in support of a Lunar Surface Systems 
(LSS) outpost.  Phase I and Phase II articles were to be 
deployed and mated in a terrestrial environment.  New 
direction outlined in the 2011 President’s proposed 
budget included a focus away from near-term (2020) 
return to the lunar surface and an increased interest in 
technology development.  Therefore, the focus of this 
project shifted towards a design limit pressurization 
test.   

 
Today many man-rated soft good structures (such 

as airships) use a high, typically 4.0, Factor of Safety 
on design load to account for a number of unknowns, 
including:  uncertainty in manufacturing techniques, 
difficulty in predicting load path and frictional effects, 
and limited ability to accurately measure load during 
testing and accurately correlate it with analytical predictions.  When measuring loads in fabric members many 
measurement devices can be inaccurate or adversely affect the geometry of the soft-good member that is being 
investigated.  In the past, NASA has applied strain gages to metallic clevises that interface with structural webbings 
to measure strain and thus calibrated load during pressurization with mixed results.  For this study, NASA utilized 
photogrammetry in addition to strain measurement of calibrated clevises to measure axial strain in the straps during 
pressurization.  Photogrammetry has been utilized successfully on testing of Composite Overwrap Pressure Vessels 
(COPV) at WSTF and NASA hopes to demonstrate similar results on a soft-goods structure which are much more 
flexible when compared to COPV.1

II. Phase II Test Article Design 

 NASA will utilize photogrammetry by using the ARAMIS software system.   

The Phase II test article consists of a load bearing restraint layer, a bladder or gas barrier, and a structural 
metallic core as shown in Figure 2.  The test article restraint layer consists of one in wide Kevlar webbing that is 
fabricated in cargo net pattern as seen in Figure 1 and 2. The test article is 28 ft in diameter and 12.3 ft in height and 
weighs approximately 11,000 lbs when assembled with the bulk of the weight coming from the non-flight steel core. 
The bladder and restraint layer are assembled to a central metallic core structure, which is 12 ft in diameter and 12 ft 
high, to form a full scale inflatable torus.  Underneath the structural restraint layer is the bladder or gas barrier.  For 
this test the bladder was required to 
maintain pressure for testing only and was 
not representative of a flight design.  The 
bladder and structural restraint layer attach 
to the structural core of the module at steel 
bulkheads at each end.  The longitudinal 
members of the structural restraint layer are 
attached to the bulkheads using a series of 
clevises that are bolted to the bulkheads.  A 
40-in diameter hatch with 49-in structural 
frame is integrated into the belly of the 
fabric.  Clevises are also mounted to the 
structural hatch/frame in the longitudinal 
and hoop directions and interface with the 
structural restraint layer.  Strain gages are 
placed on the clevises that can measure 
change in load when the structural restraint 
is inflated.   

 

Figure 1. Full-Scale Torus Inflatable Module with 
“Cargo-Net” Construction. 

Figure 2. Cross section view of the Phase II test article showing 
the hatch & frame, structural metallic core, restraint layer, and 
bladder/gas barrier. 
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III. Photogrammetry  
The Digital Image Correlation system used in this test 

program was developed by GOM mbH of Braunschweig, 
Germany and utilizes a software package called ARAMIS.  
The ARAMIS software uses the principles of 
photogrammetry that allows full-field displacement and 
strain measurements.  The system requires spraying high 
contrast dot patterns onto a sample, which is then tracked in 
ARAMIS by thousands of correlation areas known as facets. 
The center of each facet is the measurement point that can 
be thought of as a 3D digital extensometer.  An array of 
these extensometers forms an in-plane strain rosette.  The 
facet centers are tracked in each successive pair of images, 
with accuracy up to one hundredth of a pixel.  

Figure 3 shows two 5 megapixel video cameras that 
were used in the test with a 6 ft camera bar, non-standard 
with the ARAMIS system, fabricated for the purpose of this 
test. Figure 4 shows an approximate 0.26 in dot pattern used 

on the Phase II article. The dot size was chosen to meet 
a general criterion that each dot occupies 3 to 5 pixels 
on the camera sensor.   

The digital cameras were used at a resolution of 
2448 x 2050 pixels and recorded every 5 seconds, but 
capable of recording up to 15 frames per second.  The 
ARAMIS cameras work as a stereo pair to create a 3D 
volume of the area in which the ARAMIS software can 
take measurements. This volume varies with the angle 
of the cameras and lens choice. Our camera setup 
consisted of 12 mm lenses with the cameras angled at 
24.7°, giving a measuring volume of 2,626.3 mm / 
2,306.8 mm / 2,306.8 mm. To calibrate for this volume, 
a 1,200 mm calibration object type cross was moved in 
specified locations to calibrate the sensor. Because the 
effective area that the cross covers was a fraction of the 
total area needed for an effective calibration, extra steps 
were taken to cover all four corners for each camera 
lens.  This is done in order to compute any lens distortion that 
may affect computation of the outer perimeters.  The ARAMIS 
system was able to solve approximately 52 ft2

The system uses a control unit for synchronizing the 
cameras.  This control unit is capable of accepting several 
analog and digital inputs. During testing, input from a pressure 
gage attached to the hatch was recorded and included in the data 
output.   

 of area on the 
expandable structure.  

A. Photogrammetry Calibration Testing 
Calibration testing was performed on 1 in wide Kevlar 

12,500 lb/in webbing to compare photogrammetric strain 
measurement to the deflection of an extensometer in a tensile 
testing machine and to produce a load vs. strain curve for 
photogrammetry analysis. Three webbing samples were tested 
using Capstan Grips as shown in Figure 5 and Figure 6. Each 
sample was prepared for photogrammetry by first painting with 
white paint, then applying a black speckle pattern to support strain measurement. Extensometers were placed on the 

Figure 4. Phase II article with Painted “Dot” Pattern 
to Support Photogrammetric Analysis (Close-Up). 

Figure 5. Photogrammetry benchmark testing 
setup with photogrammetry cameras, 
ARAMIS software, and test specimen. 

Figure 3. Phase II article with Painted “Dot” 
Pattern and Photogrammetry Camera System. 
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test samples with a gage length of 4 in. During testing, each strap was 
loaded to approximately 8,000 lbf. Photogrammetric strain measurements 
were taken at the left, center, and right portions along the width of the 
strap to see how measurements varied.  

Photogrammetric testing data showed a slight variation in the strain 
measurement between the left, center, and right locations along the width 
of the strap. Although this variation was not significant, it is worth noting 
that the center location measured the maximum strain between the three 
locations, and was thus chosen as the primary measurement location for 
photogrammetry strain measurement on future tests.  

Compared to the extensometer, the photogrammetry strain 
measurement showed smaller values of strain for a given load, but 
followed the same stress-strain relationship. Stretch in the strap material 
as it is loaded may cause this variation along with differences in test set-
up and alignment between runs.  

From this testing, load vs. strain curves were created for future 
photogrammetry use. Just as strain gages are calibrated, photogrammetry 
benchmark testing allowed a known load to pull the strap, while the 
photogrammetry system measured the strain. The relationship between 
this measurement and the applied load are plotted as shown in Figure 7. 
There are two important regions on this curve, where the load vs. strain relationship differs. Below 2,000 lbf, the 
relationship is quadratic and can be expressed by a quadratic equation as shown in the figure. Above 2,000 lbf, the 
load vs. strain relationship is linear and can be expressed by a linear equation, also shown in the figure. This dual 
region curve is characteristic of webbing straps tested as they initially stretch before fully taking load. During full-
scale pressurization tests of the Phase II Article, this calibration curve is used to analyze test data by converting 
measured photogrammetric strain to load. 
 

 
Figure 7. Load vs. Pressure Photogrammetry Calibration Curve generated from 
benchmark photogrammetry testing. Includes testing data and best fit lines for both 
quadratic and linear region. Also shows 2,000 lbf transition line. 

Figure 6. Kevlar webbing in tensile 
testing machine for photogrammetry 
benchmark testing. 
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IV. Phase II Test Objectives 
The objectives of the Phase II tests are to validate assumptions related to the integration of a hatch structure 

into an inflatable module, and to correlate analytical predictions of strap loading with measured strain/load utilizing 
strain gages and photogrammetric strain measurements.   

V. Phase II Pre-test Assumptions 
1. At low pressure, scatter in strain gage measurements is expected.  However, first order trends will be 

present.  Low pressure strain gage measurements should provide insight into future placement and 
the capabilities of the strain gages. 

2. Strain measurement as measured by the photogrammetry cameras is expected to provide good data 
locally and globally. 

VI. Pre-Test Analytical Predictions 
Analysis of the test article was performed using a process developed and refined during the TransHab project.  

The calculation uses standard membrane stress equations for thin walled pressure vessels to generate strap loads.  
The analysis also accounts for factors such as strap spacing or overlap, seam efficiency, and the non-uniform loading 
of hoop straps in the toroidal section for the purposes of designing the test article. 

The geometry of the Phase II test article is different from most of the articles in the TransHab project.  The Phase 
II test article geometry is purely toroidal, there is no cylindrical section.  A toroidal geometry, as shown in Figure 8, 
can have fewer straps and lower strap loads than similar modules with cylindrical sections.     

 

 
Figure 8. Toroid shape diagram. 

The equation for axial stress in a toroidal pressure vessel, where 𝑞 is the internal pressure and 𝑡 is the shell wall 
thickness, is 

 𝜎1(𝜑) =
𝑞𝑏
2𝑡 

 
𝑟(𝜑) + 𝑎
𝑟(𝜑)

 (1) 

The equation for hoop stress in a toroidal pressure vessel is 
 

𝜎2 =
𝑞𝑏
2𝑡 

 (2) 

The test article is made up of 240 longitudinal straps and 40 hoop straps.  Hoop straps are equally spaced, and 
longitudinal straps are grouped in pairs, with each longitudinal pair equally spaced around the test article.   

The load per thickness of each longitudinal strap, 𝑃1, where 𝑛1 is the number of longitudinal straps and 𝑤 is the 
width of the straps, is  

 
𝑃1(𝜑) = 𝜎1(𝜑)

2𝜋𝑟(𝜑)
𝑛1𝑤

 (3) 

The load per thickness of each hoop strap, 𝑃2, where 𝐿1 is the length of the longitudinal strap and 𝑛2 is the 
number of hoop straps, is  

 𝑃2 = 𝜎2
𝐿1
𝑛2𝑤

 (4) 

Hoop straps are numbered from the top of the test article to the bottom.  The test pressure was defined as 5 psig 
(55% of the 9 psig design pressure). The predicted strap loads are shown in Figure 9 below. Since the longitudinal 
strap load is a function of angular position, the predicted load varies according to where the photogrammetry 
measurements were taken.  The predicted loads are linear between 0 and 5 psi.  
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Figure 9. Predicted strap loads for both axial/longitudinal and hoop straps. 

VII. Instrumentation 
The Phase II test article includes seven strain gages that are attached to the roller/clevis assemblies which 

attach the strap restraints to the hatch/frame. The gages are arranged as shown below in Figure 10 with four gages 
mounted on clevises that interface with cylindrical hoop straps and three gages mounted on clevises interfacing with 
axial/longitudinal straps. After installation of each strain gage, calibration was performed to establish the 
relationship between strain and axial load in the strap.  

 

 
Figure 10. View of Phase II Hatch/Frame showing strain gage and 
photogrammetry measurement locations. 
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VIII. Testing of the Phase II Article 
Low pressurization testing of the Phase II article was completed on 02/18/2011 at the Energy Systems Test 

Area (ESTA) at Johnson Space Center (JSC) in Houston, TX. Inflation of the test article was done in a series of step 
increments, allowing time between steps to complete system checks and for technicians to approach the test article if 
needed. Because of the potential danger of the fully inflated article, no personnel may approach the structure until it 
has been pressure proofed to at least twice the approaching pressure. For example, the article was pressurized to 5 
psig and then lowered back down to 2 psig, a level at which technicians could approach it safely.  The pressure was 
held at 2 psig, which allows the article to take shape and gives personnel time to adjust straps if needed and ensure 
everything is aligned properly before pressurization proceeds. After adjustment was completed, pressurization 
continued at a rate of 0.05 psi/min to a maximum pressure of 5.22 psig. The pressure was held there for 5 min, and 
then slowly released to deflate the article.  

B. Data Reduction 
Throughout the entire pressurization process, strain gage and photogrammetric measurements were taken and 

recorded for this low pressurization test of the Phase II article. Additionally, two pressure sensors and a 
thermocouple were installed on the hatch and used to record pressure and temperature inside the article. The strain 
gage output data was converted from strap strain to strap load using the defined calibration curves for each gage, as 
established during gage installation, as mentioned in Section VII. The strain measurements from photogrammetry 
analysis were converted to load using the calibration curves defined by the photogrammetry benchmark testing as 
explained in Section II-A.  

In order to compare strain gage data and photogrammetry data side by side, the photogrammetry data had to be 
adjusted. In the axial direction, the load in the strap varies depending on the location of the measurement, as outlined 
in Section VI and shown in Figure 9. For example, Figure 10 shows that the photogrammetry measurements of strap 
1 and 2 are in different locations and thus have different predicted loads. In order to compensate for this difference, 
the data for these straps was scaled so that its prediction value matched the prediction value of the strain gages. This 
scaling was done for all the axial photogrammetry locations. In the hoop direction, the photogrammetry 
measurements were taken in a location of a strap seam. Figure 10 shows the location of strap seams on the left and 
right side of the hatch. They are shown with cross-stitching over the strap and span the length between three axial 
straps. This stitch has two straps on top of one another and forms a loop that connects to the clevis and hatch. 
Because there are two straps, and the photogrammetry was collected at this location, the data it collected is actually 
twice as high as it should be. Therefore, the test data was divided by two in order to get the proper readings. This 
reduction was done for all photogrammetry hoop measurements. The results of these data adjustments are shown in 
the following plots where both the strain gage and photogrammetry data is compared to the strain gage prediction 
values.  

IX. Results 
Load measurement determined from calibrated strain gages produced good but somewhat mixed results.  

Looking at Figure 11, the measured loads in the hoop direction (gages 3, 4, 6, and 7) tracked fairly well with the 
analytically predicted values.  Load measurement determined from individual strain gages 3, 4, 6, and 7 were an 
average of 17%, 17%, -39%, and 3% relative to predicted values, respectively, from 1-5 psig (see Table 1).  Clevis 
strain gages see bending loads in additional to axial strain and can produce variations in strain and thus load 
measurements.  These types of results are consistent with previous inflatable structure testing where strain gaged 
clevises interface with structural webbings.2

Figure 12
 Two of the axial gages (2 and 5) tracked slightly higher than analytical 

predictions (15% and 16%, respectively, from 1 to 5-psig) as shown in  and Table 1.  However, at 5 psig, 
gage 1 measured strain and thus load and average of 54% higher than the analytical prediction from 1 to 5 psig.  All 
other strain gages produced much better correlation with analytical predictions.  The photogrammetric 
measurements corresponding to the structural strap that interfaces with clevis/strain gage 1 produced result more in 
line with analytical predictions.  It is for those reasons; the authors question the accuracy of the clevis/strain gage 1 
readings. The average values measured by the strain gages tracked fairly well with the analytical predictions (see 
Figure 13 and Table 1). 

 The strain measurements taken from photogrammetry system produced some scatter in distribution but in 
most cases the linear curve fit generated from the distributed data, tracked fairly well with analytical predictions.   
For the hoop straps the photogrammetry measurements taken from the straps that interface with strain gaged clevises 
3, 4, 6, and 7, tracked fairly well an average of 34%, 11%, -8%, and 4%, respectively, when compared with 
analytical predictions from 1 to 5 psig (See Figure 14 and Table 1). For the axial straps the photogrammetry 
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measurements taken from the straps that interface with strain gage clevises 1, 2, and 5 tracked fairly well, -18%, 
18%, and -14%, respectively, with analytical predictions from 1 to 5-psig (See Figure 15 and Table 1).   Average 
hoop and axial strap photogrammetry tracked fairly well with analytical predictions with the average hoop 
photogrammetry measurements slightly over the analytical predictions after 1.5 psig and the average axial 
photogrammetry measurements slightly under analytical predictions (see Figure 16 and Table 1).   

Figure 17 shows photogrammetry and strain gage measurements for the individual hoop straps and compares 
them with analytical predictions.  Despite variation in individual measurements, average measurements track fairly 
well with analytical predictions (Figure 18).  Figure 19 shows photogrammetric and strap measurements for the 
individual hoop straps and corresponding analytical predictions.  Once again, despite variations in individual 
measurements, when measurements are averaged they track fairly well with analytical predictions (see Figure 20).  
All measurements taken during this test were in the low pressure region where loading in the straps were below 
2,500 lb for the axial straps and 1,250 lb for the hoop straps.  As described in Section III-A, for photogrammetry 
measurements, the linear portion of the curve starts around 2,000 lb loading so most of the photogrammetry results 
are in the quadratic prediction region, and only the axial straps are entering the linear region above 4 psig. 

 
 
 
 
 

Table 1. Average Percent Difference Between Analytical Predictions and Strain 
Gage and Photogrammetric Measurement between 1-5 psig and at 5 psig. 
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Figure 11. Load vs. pressure from strain gage measurements of straps in the hoop 
direction. Includes measured strain gage data with linear fit and analytical predictions.  

 

 
Figure 12. Load vs. pressure from strain gage measurements of straps in the axial 
direction. Includes measured strain gage data with linear fit and analytical predictions. 
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Figure 13. Load vs. pressure of strain gage measurements in both the hoop and axial 
directions. Includes an average of measured strain gage data in each direction with 
linear fit and analytical predictions. 

 
Figure 14. Load vs. pressure from photogrammetry measurements of straps in the hoop 
direction. Includes measured photogrammetry data with linear fit and analytical 
predictions. 
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Figure 15. Load vs. pressure from photogrammetry measurements of straps in the axial 
direction. Includes measured photogrammetry data with linear fit and analytical 
predictions. 

 
Figure 16. Load vs. pressure of photogrammetry measurements in both the hoop and 
axial directions. Includes an average of measured photogrammetry data in each 
direction with linear fit and analytical predictions. 
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Figure 17. Load vs. pressure of strain gage and photogrammetry measurements in the 
hoop direction. Includes a linear fit curve representing the measured strain gage and 
photogrammetry data at each hoop strap location and analytical predictions. 

 
Figure 18. Load vs. pressure of strain gage and photogrammetry measurements in the 
hoop direction. Includes an average of measured strain gage and photogrammetry data 
in the hoop direction with linear fit and analytical predictions. 
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Figure 19. Load vs. pressure of strain gage and photogrammetry measurements in the 
axial direction. Includes a linear fit curve representing the measured strain gage and 
photogrammetry data at each axial strap location and analytical predictions. 

 

 
Figure 20. Load vs. pressure of strain gage and photogrammetry measurements in the 
axial direction. Includes an average of measured strain gage and photogrammetry data 
in the axial direction with linear fit and analytical predictions. 



 
American Institute of Aeronautics and Astronautics 

 
 

14 

X. Conclusions/Future Work 

A. Photogrammetry Conclusions 
Data acquisition of large structures is a difficult undertaking by itself.  Data acquisition of an expandable 

structure with different interfaces is even more of a challenge.  Field of view is the first step when working with any 
structures, it is what determines the distance, lens, camera separation, camera angle and dot size that should be used 
for any given test. 

For the Phase II expandable structure, the plan was to capture as much surface area of the article as possible in 
a single pressurization and from that data, analyze just a few small sections. With a large field of view, the camera is 
observing gross movement and strain, but when measuring a relatively small strap that is far away, there will be 
environmental noise introduced in the data. When done outside, there are many possible sources that affect the data.  
Lighting is a big issue, like facing the camera to a transient sun, or having some cloud coverage. Changes in 
temperature can also slightly change camera orientation relative to each other, which makes them go out of 
calibration ever so slightly. 

Another difficult task with large structures is dot size. A 5 pixel diameter dot size is a good minimum when 
working with a large structure.  Relatively speaking, the Phase II test required a much higher dot count with a large 
field of view than the small speckle pattern and small file do view used on the benchmark test. However, the 
ARAMIS does not track dots, but rather groups of dots. The software uses square facets to track deformation and 
movement. Each facet is composed of a group of dots that both cameras can detect and resolve its location in a three 
dimensional volume.  If the facet falls between the interface of two different materials, like the interface between the 
restraint layer and the bladder material in the Phase II article, a higher facet deformation is seen, which incorrectly 
influences the data. With a large size, a facet at an interface could deform, making the center of the facet on a point 
to point measurement change overall length by 0.01 in.  At a length of three or four inches, a change of +/- 0.005 in 
to +/- 0.01 in from the true value can also create very noisy data, especially when that three or four inches is a 
relatively very small section of a larger picture.  

Figure 21 and Figure 22 below show the difference between a large and a small field of view. On both 

Figure 21. Large field of view on Phase II test article 
and resultant strain vs. pressure curve. 

Figure 22. Small field of view from benchmark 
testing and resultant strain vs. load curve. 
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instances, the length of the line strain was about three to four inches, but because we can cover more pixels the 
closer we are, we are not affected by subtle deformation that changes the location of the center of the facet as with a 
larger field of view at a greater distance. 

If not interested on the shapes of the structure while it is been inflated and only interested on certain straps then 
you would have to give up the large field of view of 8 ft to something closer to 2 ft, change the dot pattern to a 
speckle pattern in order to create dots much smaller and have better lighting.  Doing the test indoors will also 
provide more controls for better data as you are controlling the lighting and temperature extremes.  

B. Strain Gage Conclusions 
Measuring load in inflatable structures through utilization of calibrated strain gaged clevises is a difficult task 

due to a number of variables involved.  Foremost, clevis strain can be effected by many factors including clevis bolt 
preload, bending loads, off-axis strap loading, and wide variability in the lower strain (and thus load) regions.  
Results are expected to improve when measuring higher strains in the higher load regions.  Despite testing in the 
lower load regions, results from this test were promising and an improvement over prior testing of woven inflatable 
structures where friction in the weave can produce greater variability and uncertainty in loading.2

1. Test in the higher strain and higher load regions. 

  Six of the seven 
strain gaged calibrated clevises tracked fairly well with analytical predictions.  In order to obtain better results the 
following suggestions are recommended: 

2. Design a high stress/strain region in the clevis.  This can prove to be difficult if also trying to test in the 
higher pressure regions or design in multiple clevises in a limited space. 

3. Place the strain gage in a region on the clevis that only sees tension from the strap and no bending. 

C. General Conclusions and Forward Plan 

Photogrammetry has proven to be an effective method for measuring strain and load in the belly of fabric structures.  
Although results show variability, improvements are expected when testing in the higher strain regions (above 2,000 
pounds for this test article).  Improvements are also expected when moving toward utilizing a smaller speckle 
pattern for greater photogrammetry sampling.   

Future testing on the Phase II article includes a Damage Tolerance Test to 9 psig. During the test, the structural 
restraint layer will be severed at pressure and load redistribution will be measured through photogrammetry and 
strain gaged clevises. To improve strain gage results, adding additional calibrated strain gages is desirable but 
currently beyond the resource scope. For photogrammetry improvement, a smaller photogrammetry speckle dot 
pattern will be utilized and the cameras will be moved closer to the test article. Additionally, testing indoors is 
preferred, but due to safety concerns of a large, highly loaded inflatable structure, it is not permitted. 
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	Photogrammetry has proven to be an effective method for measuring strain and load in the belly of fabric structures.  Although results show variability, improvements are expected when testing in the higher strain regions (above 2,000 pounds for this test article).  Improvements are also expected when moving toward utilizing a smaller speckle pattern for greater photogrammetry sampling.  
	Future testing on the Phase II article includes a Damage Tolerance Test to 9 psig. During the test, the structural restraint layer will be severed at pressure and load redistribution will be measured through photogrammetry and strain gaged clevises. To improve strain gage results, adding additional calibrated strain gages is desirable but currently beyond the resource scope. For photogrammetry improvement, a smaller photogrammetry speckle dot pattern will be utilized and the cameras will be moved closer to the test article. Additionally, testing indoors is preferred, but due to safety concerns of a large, highly loaded inflatable structure, it is not permitted.
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