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Abstract

Acceptable results have been obtained using conventional techniques to model the
generic human operator’s control behavior. However, little research has been done in an
attempt to identify an individual based on his/her control behavior. The main hypothesis
investigated in this study is that different operators exhibit different control behavior
when performing a given control task. Furthermore, inter-person differences are
manifested in the amplitude and frequency content of the non-linear component of the
control behavior. Two enhancements to the existing models of the human operator, which
allow personalization of the modeled control behavior, are presented in this manuscript.

One of the proposed enhancements accounts for the “testing” control signals, which
are introduced by an operator for more accurate control of the system and/or to adjust his/
her control strategy. Such enhancement uses the Artificial Neural Network (ANN), which
can be fine-tuned to model the “testing” control behavior of a given individual. The other
model enhancement took the form of an equiripple filter (EF), which conditions the
power spectrum of the control signal before it is passed through the plant dynamics
block. The filter design technique uses Parks-McClellan algorithm, which allows
parameterization of the desired levels of power at certain frequencies. A novel automated
parameter identification technique (APID) was developed to facilitate the identification
process of the parameters of the selected models of the human operator. APID utilizes a
Genetic Algorithm (GA) based optimization engine called the Bit-climbing Algorithm
(BCA).

Proposed model enhancements were validated using the experimental data obtained
at three different sources: the Manual Control Laboratory software experiments,
Unmanned Aerial Vehicle simulation, and NASA Langley Research Center Visual
Motion Simulator studies. Validation analysis involves comparison of the actual and
simulated control activity signals. Validation criteria used in this study are based on
comparing Power Spectral Densities of the control signals against that of the Precision

model of the human operator.
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This manuscript also addresses the issue of applying the proposed human operator
model augmentation to evaluate the effectiveness of the motion feedback when
simulating the actual pilot control behavior in a flight simulator. The proposed modeling
methodology allows for quantitative assessments and prediction of the need for platform

motion, while performing aircraft/pilot simulation studies.
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1. Introduction

1.1. Modeling human operator

Understanding how a human controls a system and therefore, being able to predict operator
behavior under varying conditions, are the primary motivations to develop human operator
models. These models have many applications in a variety of areas. This manuscript contains the
review of existing models of the human operator and also presents research into the development
of model enhancements, which allow modeling control behavior of a given individual, rather
than a generic human operator. This document also presents an intelligent systems based
approach to automated parameter identification of parameters of selected human operator

models.

The pioneer of operator modeling as we know and understand this term was Arnold Tustin
[1]. In mid 40’s he had performed a series of studies on modeling a gun turret operator. The
gunner was to track a target by controlling the azimuth of the turret. If expressed in modern
control theory terms, the gunner was performing a single degree of freedom control task. Figure

1.1 illustrates how Tustin [1] envisioned the operator plus plant system.

Target azimuth Gun azimuth

o1 v (1)

Human
> Gun

operator

v

Figure 1.1. A block diagram representation of the task of controlling the gun turret

Over the years, the form of the man-machine system, with the human performing a manual
control task has remained the same. What was subjected to change is the “Human operator”

block. Tustin [1] hypothesized that the human can be described by a linear, constant coefficient



differential equation. By that time the theory of “linear-servomechanisms” was well developed,

hence allowing it to be applied in the analysis of the manual control tasks.

McRuer [2] presented his vision of the human operator model, which is conventionally
referred to as the Crossover Model. The essence of the model is that the human adapts his/her
behavior to the plant dynamics. In his model, McRuer [2] introduces the remnant’, which

accounts for the non-linearities in the man-machine system.

The Optimal Control Model (OCM), developed by Kleinman, Baron, Levinson [3],

describes the operator in the following manner:

a well motivated, well-trained human operator behaves in a near optimal
manner subject to his/her inherent limitations and constraints, and
knowledge of the control task

At the heart of the OCM lies the Kalman predictor (filter), which estimates the values of
the state variables given at each instant of time and the noisy measurements (observations) of

linear combination of those variables.

Ronald Hess [4] has developed a model, which falls into a category of anthropomorphic or
structural models, i.e. models which attempt to mimic the human psychomotor structure. The
essential feature of the Hess structural model is that it has the so-called “proprioceptive”
feedback, the path that provides the human with the sensational information. In addition to
modeling the perceptual system, the model offers models of the visual, neuromuscular and

central nervous systems.

Recently Cardullo, et al. [5] performed a study on improving and substantially expanding
the Hess model. The essence of their approach was to include motion and force feedbacks into

the model.

Chapter 2 describes in detail several conventional models of the human operator, such as

the Crossover model, Hess structural model, Hosman descriptive model, and OCM. Some of the

" The term “remnant” is used to describe the noise injection by the human, and/or nonlinearities and errors in the
system, given a linear representation of the human, and/or system dynamics. In most cases, remnant is modeled as a
filtered white noise.



new approaches to modeling of the human operator, such as using fuzzy inference systems [6]

and neuro-controllers [7] are presented as well.

1.2. Soft computing

Machine intelligence techniques, otherwise known as soft computing (SC) techniques, are
becoming more and more popular in the research community. Such tools as Fuzzy Inference
Systems (FIS), Artificial Neural Networks (ANN), Genetic Algorithms (GA), etc., are the
constituent parts of the mathematical apparatus offered by the SC approach. Operator models
developed with the utilization of these techniques may be classified as anthropomorphic, since
all of the above mentioned SC techniques have their biological origins. Artificial neural
networks, for instance, were designed with the real neuron structure in mind. The primary
purpose of the fuzzy inference systems is to deal with imprecision and uncertainty in a manner as
human being does it. Genetic algorithms function based on the concept of the “survival of the
fittest”. In addition to that, the SC methodology, if applied to the manual control problem, is
capable of coping with highly non-linear plant dynamics or even in cases where the precise
mathematical description of the controlled plant is impossible [4]. However, the more important
feature of the SC techniques, which is more relevant to current research, is that FIS and ANN as
well as their hybrids are data driven mathematical tools. In other words, models, which are
designed based upon SC are 100% tuned, based on the existing data, and/or expert knowledge on
the modeled phenomenon. For example, ANN is trained based on the available data, to pickup
and adapt to any type of behavioral pattern. In case of FIS, if-then inference rules are defined

based on either data or the expert knowledge.

Since the invention of SC in the mid 60’s, there have been a number of attempts to develop
a SC based model of a human operator. However, in those instances, the developed models were

not the operator models, per se, but rather controllers.

- Fuzzy controller of the washing machine,
- Fuzzy controller of the subway train (Japan),
- Fuzzy controller of a helicopter (Japan)

- Fuzzy based controller of an automobile (Germany)



This list is just a few examples of the successful implementations of SC algorithms in the
area of automatic control. The following paragraphs briefly describe one of the successful
implementations of SC in the area of manual control of the vehicle.

In the early to mid 90’s a group of scientists from Germany developed and successfully
tested a soft computing based controller for the car. The controller was designed to operate as an
autopilot and to control the lateral position of the car on the road. Figure 1.2 shows the closed
control loop with a) the human and b) controller in the loop respectively. The primary objectives
of the designed controller were to provide assistance in collision avoidance, lane switching and
convoy driving.

The controller was designed in a form of a neural network. Obviously it is a data driven
model, i.e. the neural net is tuning itself to mimic operator’s behavior based on the existing pool
of data on the response of the operator to varying driving conditions. The system dynamics of a
car are highly nonlinear, especially with respect to velocity control. In this respect, the neural-net
based controller exercises one of the major advantages of the neural network, i.e. it does not
necessarily require the accurate knowledge of the controlled system (car), whereas the
conventional controller design methods are restricted to the linear approximations of the

controlled element.

Chapter 3 provides a more in-depth look at the structure and functionality of the ANN and

its components.
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Figure 1.2. a) General Driver/Car closed control loop, b) the Neural Network/Car control
system. Adopted from Neusser [7].

1.3. Scope of research
Conventional models of the human operator produce somewhat acceptable results
modeling the control behavior of a generic operator. However, these models provide a limited

ability to reproduce the non-linear components of the control behavior of an actual operator.

The issue of modeling a human operator was taken in this research one step further in an
attempt to learn how to model individual behavior of different operators. Presented research
applies SC techniques to better model the non-linear human behavior. The main hypothesis,
which stimulated this research, can be described as: every individual may have his/her unique
way of performing the same control task, e.g. a testing element of control behavior. Such

behavioral “fingerprint” can be characterized by the power magnitude and frequency content of



the non-linear control behavior. By the testing element of control it is meant that as the human
operator adapts to the system control dynamics, he/she applies different control inputs by
observing/sensing the output. In other words, different operators may adapt to system dynamics
by employing different learning/control strategies. Conventionally, non-linearities in the man-
machine system are accounted for by introducing remnant, a band-limited white noise. Such an
approach, however, has limited ability to discriminate among different operators. To overcome
this difficulty, a complement of model enhancements have been developed, which are oriented
toward modeling the testing (learning) element of control (TEC) portion of the overall non-linear

control behavior. Chapter 5 provides in-depth description of the proposed model enhancements.

The proposed model enhancements comprise conventional signal processing elements as
well as soft computing techniques, such as ANN. Since the development and tuning of the neural
network is a data driven process, and the available data were quite limited, a novel automated
parameter identification technique (APID) was developed to facilitate identification of
individual-specific parameters of the human operator model and the enhancements. The
backbone of the proposed APID is another SC technique known as a genetic algorithm (GA).
More specifically, a bit-climbing version (BCA) of the GA is used. The essence of the APID is
in using BCA to find an optimal combination of indentified parameters, which results in the
closest approximation of the actual control behavior data. Chapter 6 contains detailed description
of the BCA and it application. Results of application of the APID to the selected models of the

human operator are presented in the chapter as well.

The potential spectrum of application of the computational tools to identify individual
control behavior of different subjects is very broad. For example, availability of such tools
allows for non-invasive identification of a particular operator for security reasons. Since the
identification process involves parameter identification, it can be used to identify changes in the
operator behavior due to numerous reasons, such as physical impairment, intoxication, motion
sickness and so on. By comparing the actual control behavior of a pilot against that obtained
during simulation it will be possible to perform a quantitative evaluation of the handling qualities
of a particular simulator. Chapter 7 of this manuscript provides details on how the proposed
APID can be applied to evaluate the effectiveness of the motion system feedback designed by

Cardullo, et al. [5] to enhance the vestibular system feedback of the Hess structural model. Using



data obtained during experiments (Chapter 4) at the NASA Langley Research Center Visual
Motion Simulator (VMS), it is shown, that the Hess Structural Model equipped with motion
system feedback and TEC is capable of very close approximation of individual control behavior
of various pilots. APID in this case allows quantitative assessment of the effectiveness of the
motion system feedback. Moreover, it provides insight on what perception modalities dominate

in human perception when performing a specific closed loop control task.

Chapter 8 of the manuscript draws a number of conclusions regarding the effectiveness of
the implemented augmentations to the existing models of the human operator as well as

discusses various directions for future research.



2. Literature review of conventional operator models.

2.1. Introduction
Understanding how a human controls a system or a plant and being able to predict operator
behavior under varying conditions, are the primary driving forces in the area of operator
modeling. This chapter concentrates on describing operator models that already have been

developed in the flight controls and flight simulation communities.

The pioneer of operator modeling as we know and understand this term was Arnold Tustin
[1]. In the mid 40’s he performed a series of studies investigating the gun turret control task. The
gunner was to track a target by controlling the azimuth of the turret. Using terms of classical
control theory, the gunner was performing a single degree of freedom manual tracking control
task. The overall structure of such a simple man-machine system can be illustrated by the

following block-diagram.

Target azimuth Gun azimuth

o) v (0)

Human
> Gun

operator

v

Figure 2.1. Man-machine system by Tustin [1]

Tustin [1] introduced several concepts of man-machine system modeling, which have been
recognized and are still being used by the researchers in this field. Among such concepts are
“quasi-linear system”, “describing function”, and “remnant”. Tustin [1] found from the
experimental data that the human operator can be modeled as a quasi-linear system, i.e. human
operator output consists of the linear describing function portion and a non-linear remnant

portion. The latter is represented by band-limited white noise.



As can be seen above, the architecture of the man-machine system, where human operator
works in a closed loop with the dynamic system has preserved its original form almost
unchanged. The “human operator” block, however, has been subject to some significant changes
over the course of 60 some years. The following subsections describe several major

mathematical models of the human operator that have been developed over this period of time.

2.2.Crossover model
Duane McRuer [2] in the early 70’s summarized the knowledge and the experimental data
available at that time in the area of manual control in the form of the model, which is referred to

as crossover model.

System Forcing

Error Opeator Visual Operator Output System Output
Function F(t) e(t) Stimulus c(t) m(t)

A\

DISPLAY > Y > Y

Figure 2.2. Basic Man Machine System by McRuer |[2]

It has been empirically proven that the human operator adjusts his/her control behavior in
such a manner so that the resulting “human-+plant” open loop system dynamics is the same and
can be described by the following simple transfer function.

vy =2¢" 2.1)

p-c ’
S

Where @, and 7, are the crossover frequency and the time delay respectively. In the

frequency domain the crossover model is expressed in terms of criterion imposed on the
crossover frequency and the phase margin. McRuer [2] determined that the human attempts to

force the system to cross the 0dB line between 3 and 6 rad/sec with the phase margin between



25 and 45 degrees. Figure 2.3 illustrates how the crossover model works for different cases of
plant dynamics.
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Figure 2.3. Crossover model frequency response for different plant dynamics (Flach, [9])

Based on the available experimental data for a variety of controlled elements, McRuer [§]

derived that the linear component of the human control actions can be described by the following
transfer function (Eq. 2.2).

B K, e (T,s+1)

L= T Tt

(2.2)
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Figure 2.4. An example of the discrepancy between the actual data (solid) and the crossover
model (dashed) in the area of lower frequencies (Hess, [4])

Where 7, is the lead time constant, 7is the lag time constant, and finally 7 is the time

constant of the neuromuscular portion of the transfer function. It is very important to note that
the crossover model operates best only in the vicinity of the crossover frequency, i.e. where the
“human+plant” dynamics is linear: the farther one gets away from that frequency, the more

likely it is to observe the discrepancy between the actual and simulated data (Figure 2.4).

The logical extension of the crossover model was the “precision” model. The precision

model makes the ¥, block of the model more complex in order to improve the performance in

the crossover region as well as to eliminate the frequency discrepancy at the lower frequencies.

Eq. 2.3 contains a mathematical expression of the precision model.
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The parameters 7, and 7, are used to describe the equalization capabilities of the human
operator. The parameters 7, and 7, are included to account for the phase discrepancy in the low

frequency area, which is caused by the approximate nature of the crossover model. Precision

model also contains a more complicated model of the neuromuscular dynamics: parameters 7}, ,

¢, and o, are used to describe the dynamics of the control producing limb. It is very important

to mention that the Precision model is almost solely used for matching experimental data

pertaining to individual subjects, rather than for predictive purposes.

2.3.0ptimal Control Model
The Optimal Control Model (OCM) was developed by Kleinman, et al. [3]. As opposed

to the crossover model the OCM relies on the concepts of optimal control and estimation theory

[3]:

The basic assumption underlying our approach is that the well-motivated,
well-trained human operator behaves in a linear optimal manner subject to
his inherent limitation and constraints, and his control task

The essence of the OCM is in developing a describing function of the human operator
rather than the transfer function describing only the linear component of the human operator
behavior. In other words, Kleinman, et al. [3] succeeded in developing an algorithmic model of
the human operator as opposed to structural models, pursued by Hess [4], Hosman [10], etc. The
OCM in its core solves the stochastic linear quadratic Gaussian problem, i.e. finding parameters

of the functional J (Eq. 2.4) that will drive it to its minimum.

J = E{m%z[qxf(mmz(t)]dz}, (2.4)
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The functional E represents the expected value of the expression in brackets. Coefficient

g and r are the weighting coefficients, which determine the respective contributions of the state

variables x”(¢) and control output z° () to the value of the integral.

The OCM (Figure 2.5) contains an optimal linear regulator in combination with the
Kalman filter (optimal estimator). The Kalman filter produces optimal estimates of the values of
the state variables, given the noisy measurements of the linear combinations of these state
variables. There are two places where noise is injected into the model. These account for the
non-linear distortions during observation of the controlled variable (observation noise) as well as
the noise in executing the control movements (neuromuscular noise). The values of the noise
variances are quite difficult to determine [3], since their values depend on various parameters,
such as nature and type of display, physical environment as well as the individual characteristics

of a human operator.

disturbances Human Operator
Model
w(?)

Vehicle
(1) » dynamics
o
Optimal )
Neurom(_)tor Feedback ««— Predictor — Ka_lman | Time
Dynamics Gains Estimator Delay 1
+ +

Neuromuscular noise Observation noise

J

Figure 2.5. The Optimal Control Model of the human operator (Hess, [4])

One of the strongest benefits, however, of the OCM is that it is capable of modeling
multichannel control of the plant by a human operator, something that a structural model will
struggle with. The model is capable of dealing with multiple of state variables simultaneously

thanks to the state space representation used by the model.
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2.4.Hess Structural Model

Ron Hess [4] conceptualized his model while working in the area of aircraft handling

qualities. The Hess structural model, falls into a category of anthropomorphic models of human

operator. The name of the category speaks for itself: the Hess structural model is a

physiologically inspired model. The structure of the model emulates the signal processing in the

central nervous and neuromuscular systems, while the human is performing a manual control

task. The Hess model shares this concept with its predecessor — the structural isomorphic model

(Figure 2.6), proposed by McRuer [2]. The key idea of the Hess model is to simulate the

feedback paths from various sensory modalities (Figure 2.7). The Hess structural model has a

more simplified architecture, since some of the blocks in Figure 2.6 are difficult to identify.
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Figure 2.6. Isomorphic model of the human operator (McRuer, [11])
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The human equalization then occurs through the feedback, which Hess [4] refers to as

“proprioceptive” feedback. Moreover, the structural model was designed and its parameters are

tuned to perform best in the vicinity of the crossover frequency.
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Figure 2.8. Structural model of the human operator (Hess, [4])
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The following is a description of the functionality of the Hess model.

e The error signal is interpreted by the visual system and then presented to the human and
multiplied by the gain K,

e If the motion cues are available then the output signal, i.e. the rate of change of the output
m 1s sensed by the vestibular system. Then it is multiplied by the gain K and subtracted
from signal u, . Please note that the version of the Hess model used during current
research excludes the motion cues, i.e. K is equal to zero.

e The resulting signal u, is then passed through a delay, which is introduced there to
account for the latency due to neuro-processing, motor nerve conduction, etc.

e Signal u, forms the input to a closed loop system. In the open loop path there is a model
Y, of the limb driving the control inceptor.

e The proprioceptive feedback consists of two loops with the models of Golgi tendon
organs and muscle spindles, which are illustrated by Y, and Y, blocks respectively.

According to Hess [4], it is proprioceptive feedback that models the basic equalization

capabilities of the human. The form of Y is determined by the form of Y, i.e. by the

order k of the controlled plant.

If compared to the crossover model, the Hess structural model looks a lot more complex
and overparameterized. However, it should not repulse anyone from using it; parameters of the
model are generally chosen to satisfy criteria set forth by the crossover model. Table 2.1 contains
nominal values of the parameters of the structural model with & being the order of the controlled

plant.
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Table 2.1. Hess structural model parameters (Hess, [4])

k K, | &k | Kk [0 [ Lo [nico | ¢ o
(rad )
sec
0 0 1.0 2.0 5.0 a 0.15 0.707 10.0
1 0 1.0 2.0 5.0 b 0.15 0.707 10.0
2 0 1.0 10.0 2.5 a 0.15 0.707 10.0

a — selected to achieve I% - like crossover characteristics

b — Parameter not applicable

K, is chosen to provide desired crossover frequency

McRuer and Magdaleno [12] did a comprehensive study of the neuromuscular dynamics of
the control limb of the human operator. They have derived the models of spindles, joint sensors,
as well as the muscle/manipulator dynamics. These models could be incorporated into the
structural model of the human operator in the format of the feedback (Figure 2.9). Hess, on the

other hand, has limited “his” neuromuscular model to the second order transfer function with

damping ratio ¢, and natural frequency o, .
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Figure 2.9. Components of the neuromuscular system (Magdaleno, [12])

The performance of the Hess structural model is generally quite satisfactory for most single
degree of freedom compensatory manual control tasks. Figure 2.10 illustrates the frequency
response function of the structural model as opposed to the precision model and experimental
data. It can be seen, that the Hess model is free of the phase drop at the lower frequencies, which

had been observed with the crossover/precision model.
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Figure 2.10. Sample comparison between Hess structural model, precision model and
experimental data (Hess, [4])

2.5.Enhanced Hess structural model

The work on enhancing and expanding of the Hess structural model was conducted by
Cardullo, et al. [5] in the framework of an investigation of influence of motion and force cueing
on pilot performance. Therefore the sensory modality models of the vestibular and the haptic
systems have incorporated into the overall structure of the Hess model. The vestibular system
representation included models of both semicircular canals and otoliths, as well as the seat haptic
receptors. These newly added modalities were implemented in a similar fashion to the

proprioceptive feedback of the original Hess structural model.
The model of semicircular canals were modeled as given in Eq. 2.5:

7 80s
C T (1+80s)(1+5.735)°

(2.5)

@
@

where o is the angular velocity and @ is the perceived angular velocity.
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The model for the otoliths (Eq. 2.6) was:

F
F,_ (;1+0.4s) , 26)
F (0.085> +5.0165+1)

Where F) is the perceived specific force and F is the actual specific force resulting from

the translational motion.
The haptic channel was modeled as:

Frpie  (s+0.01)

F (s+0.1)

(2.7)

Figure 2.11 illustrates the modified version of the Hess model. It can be seen that the new
structural model also includes models of the motion system and that of the seat. The simulator

motion system was modeled as a second order system (Eq. 2.8):
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Figure 2.11. George — Cardullo-Hess Structural Pilot Model. Adopted from Cardullo, et al.
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The motion system dynamics also incorporates a washout algorithm, which was modeled

by a high-pass filter of the following form (Eq. 2.9):

2
[0

Y , 2.9
s’ +20 o, + @) @9)

; — rad —
With @, =1.0274d/ and ¢, =1.0

The Pacinian Corpuscles receptors were modeled as follows (Eq. 2.10):

s
Where F is perceived haptic force on the buttocks and A, is skin displacement.
The seat/human interaction model was given as (Eq. 2.11):

Ay 08 (2.11)

F ($40.125+453)°

Where F is the specific force applied to the seat cushion from the translational motion.

The parameters of all systems included in the enhanced Hess model are summarized in
Table 2.2. Parameters of the expanded Hess structural model, which it inherited from the original
version of the model were tuned manually so that the frequency response of the model complies
with the requirements set by the crossover model in terms of the crossover frequency and the

amount of phase margin in the system.
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Table 2.2. Parameters of the expanded version of the Hess structural model

Hess structural model parameters
Control | K K, | k., | K | K, 1 1 7 - @,
1 T
Element
Dynamics
y 1.0 1.0 | 20.0 | 3.0 2.0 | 0.01 - 0.1 |0.707 | 10.0
s
yz 1.0 1.0 | 20.0 | 3.0 2.0 | 0.01 0.1 0.1 |0.707 | 10.0
s
Vestibular and Haptic rate feedback parameters
COHtrOl Element KSCC KOtolith KHaptic
Dynamics
y 0.1 0.1 0.1
s
y 0.1 0.1 0.1
S2

The overall performance of the model with added sensory modalities was considered to be
satisfactory: the phase margin for added feedback sensory data was improved, which was
supported by the experimental data [5]. Note that this model is used in Chapter 7 for analysis
using data obtained at the NASA Visual Motion Simulator facility.

2.6.Hosman descriptive model

Hosman [10] has developed and validated the descriptive pilot model in 1996. The model is
designed to simulate the pilot’s behavior when performing a tracking task. A block diagram of

the descriptive model is given in Figure 2.12.
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Figure 2.12. Block diagram of the descriptive pilot model (Hosman, [10])

The model is designed in such a way that the human perceives motion by means of two
sensory modalities: vision and the vestibular system. Vision senses the attitude and angular rate,
whereas vestibular system (semicircular canals SCC) is sensitive to angular accelerations. In the
“central nervous system” subsystem the sensory information from three pathways are weighted
and converged (summed up) into one single output. Each individual weighting coefficient W;

emphasizes the contribution of each sensory output.

The “information processing” block incorporates the time delay due to both the signal

processing and neuromuscular-manipulator control.

The process of tuning/adjusting the pilot model revolves around minimizing the following

cost function (Eq. 2.12):
J=Y (e +Q-u* +R-i’), (2.12)
This cost function was designed to achieve the following:

- Good performance tracking
- Effective control effort
- Adequate bandwidth and stability of the control loop as expressed in the crossover

frequency and in the phase margin.
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For these reasons, the mean square of the control signal and its first derivative are added to
the cost function. Q and R depend on the aircraft characteristics and on the task to be performed:

either the maneuver or disturbance.

In his study [10], Hosman had demonstrated great potential of the model to provide good
approximation of the actual data for various combinations of display both with and without
motion. Figure 2.13 contains bode diagrams of the descriptive model, simplified precision model

vs. actual data.
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Figure 2.13. Bode plots of the descriptive model, simplified precision model and the actual
frequency response (Hosman, [10])

It can be seen on these bode diagrams, that the descriptive model is in very good
correlation with the experimental data. It also does not exhibit any deviation from the actual data
in the lower frequencies range as opposed to the simplified precision model. As a final remark, it
is important to mention that the descriptive model has a great potential to be able to capture
individual differences in control behavior between various pilots. This can be accomplished by

fine tuning the gain coefficients in the central nervous system block of the model.
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2.7. Soft Computing based models

As a preliminary point, note that it was deemed to be unnecessary to get into a rigorous

description of the fuzzy set theory in this section, therefore only a brief description will follow.

Fuzzy Set Theory (FST), a relatively young discipline of numerical computing, was
founded by Lofti A. Zadeh [13]. Some decades later, Zadeh drew attention to the connections
between FST and other relatively new numerical approaches, which led to an integrated concept
of Soft Computing (SC). Zadeh [13]1 developed a theory of fuzzy sets, which as opposed to
conventional theory allows for imprecise definitions, i.e. sets can be described using linguistic
terms, such as small, medium, large, etc. The theory of Fuzzy Logic is based on inference
algorithms, which relay elements of the input space to the elements of the output space by means
of the linguistic rules. Such rules are often constructed based on the observation of the modeled
process, assumptions and/or expert knowledge of the human operator involved in the process.
The input and output spaces are, in turn, divided into sets, which are described by linguistic
terms. The imprecision in definition of fuzzy sets is achieved with the concept of membership
functions, which allow for a given element of the input/output space to be simultaneously a part
of two (or more) different fuzzy sets. The key feature of fuzzy logic is that it attempts to model
the inference processes of the human mind. The same concept, of biologically inspired
algorithms, is shared by other essential contributors of SC, such as Artificial Neural Networks
and Evolutionary Computing. Chapter 3 describes in detail the basics of these concepts, since
they have become the main engine of the proposed parameter identification algorithm used in
current research. In the subsequent paragraphs a brief description of the fuzzy based model of the

human operator is given.

Since fuzzy theory provides a sufficient mathematical apparatus to model the inference
processing phenomenon of the human mind, it was a natural decision to use it to model human
operating in a closed loop with plant. The model developed by George [6], describing the
behavior of a human operator performing one degree of freedom compensatory task, is a very
good example of how the conventional manual control theory can be incorporated with the SC
apparatus to form a hybrid model. In the compensatory task, the human operator tries to nullify
the error, which is presented to him/her via a display, in the presence of random disturbances in

the control process. The core of the model is the Fuzzy Inference System (FIS), which infers the
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control output based on the amount of the tracking error. Figure 2.14 illustrates the fuzzy set

definition for the human control and the displayed tracking error.

NL NM NS NZ PS PM PL

\Eman control

NL NM NS NZ PS PM PL

\ijracking error

Figure 2.14. Fuzzy set definition. Adapted from George [6]
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The linguistic terms used to describe the input space (tracking error) and the output space

(control) are summarized in Table 2.3.

Table 2.3. Linguistic set definitions

Human Control Output

Tracking Error

NL - Negative Large
NM - Negative Medium
NS - Negative Small
NZ - Near Zero
PS - Positive Small
PM - Positive Medium

PL - Positive Large

NL - Negative Large
NM - Negative Medium
NS - Negative Small
NZ - Near Zero
PS - Positive Small
PM - Positive Medium

PL - Positive Large

The designed fuzzy inference system (FIS) based model contains the following production-

rule system, which define the inference mechanism of the approach:

- If error is NL THEN human control is NL

- If error is NM THEN human control is NM

- If error is NS THEN human control is NS
- If error is NZ THEN human control is NZ

- If error is PS THEN human control is PS

- If error is PM THEN human control is PM
- If error is PL THEN human control is PL

The model was able to produce results rivaling the accuracy of the structural model of the
human operator. Figure 2.15 contains power spectrum densities of the simulated and the actual

control data.
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Figure 2.15. PSD of the fuzzy model (dotted) vs. PSD of the actual control data (solid)
(George, [14])

It can be seen that the simulated control activity is in good correlation with the actual data.
Some discrepancy is observed in the area of lower frequencies as well as power of some “bins”
is underestimated. Overall performance of such simple FIS based model was deemed to be

satisfactory.

The most recent research by George [14] has demonstrated that much better results are
obtained if the Adaptive Neuron Fuzzy Inference System (ANFIS) is used. ANFIS is a hybrid
product of the FIS and Artificial Neural Network (ANN).

2.8.Summary

This brief excursion into the history of the development of human operator models
demonstrated a few things: despite the complexity of the available models, none of them are
perfect: whether it is too complex and overparameterised, or it fails to correctly simulate the
behavior of a pilot at certain frequencies. All conventional operator models have one thing in
common — they are quite good in simulating behavior of a generic pilot, i.e. individual
differences of pilots, their individual control strategies are usually averaged out to produce the
average (generic) control behavior. The non-linear part of the control behavior, which is referred
to as remnant, is usually modeled as a band-limited white noise. Very little research has been

done in an attempt to model individual control strategy of different operators.
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The other peculiarity that is shared by all human operator models mentioned in this
overview is that there is no universal rule or methodology on how to choose parameters of these
models. In most cases it is done manually in order to drive the given model to comply with either

the crossover model standards or to match a given set of data.

This research is aimed to cover these flaws in operator modeling. Instead of looking at the
problem from the standpoint of modeling a generic operator, it is proposed to take advantage of
the individual differences between operators and develop a universal enhancement that will
allow to model such differences, namely the control strategy (Chapter 5). This approach
essentially models that portion of the remnant, which account for the control strategy of every
individual operator. On the other hand, this research develops algorithm for automated tuning of
the parameters of any given model of the human operator (Chapter 4). This study will test the
proposed algorithms on three major human operator models: Hess structural model, Hosman

descriptive model and OCM.

One thing is certain — the quest for the universal model is still on.
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3. Overview of machine intelligence technique

3.1.Introduction

Chapter 2 presented a brief description of one of the essential aspects to the body of Soft
Computing (SC) techniques, namely the fuzzy inference system. This chapter exposes the reader
to other SC techniques, such as Artificial Neural Networks (ANN) and Genetic Algorithms
(GA), which is one type of Evolutionary Computing. Research by George [14] has demonstrated
that SC techniques can be successfully applied in the area of man-machine systems. This study
heavily relies on SC. The proposed parameter identification technique, described in this
manuscript, utilizes GA in its core. Moreover, modeling of individual control strategy is
accomplished with help from ANN. More detailed discussions in terms of this application follow

in Chapters 4 and 5.

Soft Computing can be characterized as a toolbox, which can be used when building
intelligent systems, designed to model the human ability to reason, make decisions and adapt.
The roots of soft computing lie with the concepts of Artificial Intelligence (Al), however it
involves more advanced techniques rather than concentrating only on symbolic manipulation,
inherent to conventional AIl. An alternative term for SC is Computation Intelligence and some
researchers use the generic term Machine Intelligence to encompass both SC and traditional Al
The main constituents of SC are neural networks, fuzzy inference systems and derivative-free

optimization, such as genetic algorithms.

This study employs neural nets and genetic algorithms, therefore the subsequent sections of

this chapter describe in detail the specifics of these computational paradigms.

3.2.Neural Nets
Artificial Neural Networks, or simply Neural Networks (NN), are one of the primary
constituents of the SC domain of computational arsenal. The design of NN is mainly inspired by
the natural cognitive processes occurring in most living organisms. One of the main features of
the NN is its potential to process an enormous amount of data by engaging in parallel processing.

The sheer amount of inter neuron connections ensure its stability and immunity to errors, which
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can damage some of the connections. Another important feature of the NN is its capability to

mimic the human’s ability to learn as well as to cluster data.

It is also very important to mention that NN as well as other SC tools are capable of
forming hybrids with other SC methods and paradigms, thus bringing us closer to modeling a

larger range of natural processes.

The following paragraphs discuss the biologically inspired basis for building the ANN.
Artificial Neural Networks were originally inspired by and built in an attempt to model natural
processes of data collection, interpretation and processing occurring in nervous systems of living
organisms. The main unit of operation of such systems is a neuron. In order to build a fully

functioning model of the nervous system one needs to model the neuron first.

German scientist Heinrich Wilhelm Gottfried von Waldeyer-Hartz in 1891 introduced the
term “neuron” to describe nerve cells, which are responsible for transporting signals in and out of
brain. The neuron has a body with a nucleus. Numerous extensions project away from the body
of the neuron. These extensions are crucial, since they conduct signals into and out of the neuron,

thus communicating with other neurons. There are two types of extensions:

- Dendrites. Extensions of this type are characterized by smaller size and a large
number of branches. The neuron uses dendrites to receive signals from other neurons.

- Axon. Axon is the single, thick extension of the neuron, which is responsible for
transmitting the outbound signal to other neurons. Transmission occurs via axon

terminals.
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Figure 3.1. Schematic representation of a neuron

Transmitting signals between the axon terminals and/or dendrites/soma is a highly
complicated electrochemical process. There are two types of dendrites: excitatory and inhibitory.
If an excitatory dendrite is stimulated then it is more likely for the neuron to “fire”, i.e. conduct
the signal. If an inhibitory dendrite is stimulated, then it is more likely that neuron will be
passive. The probability of different dendrites to be stimulated is proportional to the amount of a
special chemical substance in the vicinity of a particular dendrite. It can be concluded from the
above, that mathematically speaking, one can assign a “weighting” coefficient to every dendrite
of a given neuron: the larger the coefficient the more likely it is to be stimulated. In the
mathematical model of the neuron, all incoming signals will be multiplied by those weighting
coefficients to ensure proper functioning of a neuron. Whether the dendrite is excitatory or
inhibitory can be modeled by making the associated weighting coefficient positive (excitatory) or
negative (inhibitory). The neuron firing mechanism depends upon the cumulative action of
dendrites: if excitatory dendrites “outweigh” the inhibitory, the neuron will fire. Mathematically

it can be expressed as if y,, the sum of weighted signals coming from the stimulated dendrites

(Eq. 3.1), exceeds some activation threshold, the neuron passes through, i.e. a signal (fires), to

other neurons connected to it. The magnitude of the signal passed depends on the absolute value

of y, relative to the activation threshold value.
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V; =Zwl.jaj (3.1)

There are several ways of implementing the activation function. One of the most common

is the sigmoid activation function (3.2). Graphically such function is represented in Figure 3.2.

1
l+e

f(x)=

(3.2)

The parameter £ is usually defined by the user. As it can be seen from Figure 3.2 this
parameter determines the slope of the activation function. The higher the value of §# , the more it

is likely for the activation function to perform in a switch-like fashion. Conversely, the smaller

the value of # , the lower the slope of the activation function becomes.

a)

f(x)

Figure 3.2. Sigmoid activation function (Osowski, [15])

Summarizing the above, the model of the neuron can be represented in a form of the signal
flowchart as shown in Figure 3.3: the weighted signals from other neurons are first summarized,
then are passed through the activation function; the output is then passed on to another layer of

neurons or being interpreted as the final output of the neural network.

33



&)y ——*

Weighted
signals from
other
neurons

Activation
function

Summation

Figure 3.3. Schematics of a mathematical model of a neuron

An essential part of any ANN is its training. The most commonly used training
mechanisms are based on minimization of some error function. Usually it would be the
discrepancy between some actual and simulated data. The output of the ANN is represented as a
function of all weighting coefficients used by the network. Training of the network is essentially
optimizing those weighting coefficients to minimize the error function. Osovsky [15]
summarizes a large variety of training algorithms. To name a few: Algorithm of variable metrics
by Broyden-Fletcher-Goldfarb-Shanno (BFGS algorithm), Levenberg—Marquardt algorithm,
Steepest decent algorithm, Resilient Back Propagation (RBPROP), etc. This manuscript does
not contain descriptions of the training algorithms for the sake of brevity. For more detail refer to
the original source [15]. It is shown in the following chapters; however, that training of the ANN
in its conventional sense can be avoided completely. The weighting coefficients are optimized by
the proposed parameter identification technique according to some fitness criteria imposed on the

output signal of the system.

There are no rigorous recommendations as far as the number of neurons and/or layers of
neurons to be used by ANN are concerned. Such decisions are to be made by the user. However,
it is very important to be aware of the problem of overparameterizing the network, i.e.
introducing a larger than necessary number of neurons/layers into the network. A large number
of weighting coefficients will result in poor time-effectiveness of the training algorithm and may
also lead to a problem of overtraining the network. Overtraining, also known as overfitting, can

lead to results, which are significantly off the range of the training data, thus rendering the
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network useless. Moody [16] provides guidelines on how to select the number of weighting

coefficients in order to avoid potential overtraining.

For the current research ANN was chosen as the primary tool for modeling the portion of
operator’s remnant, which accounts for the operator’s control strategy. One may argue that fuzzy
inference systems are more appropriate to be used when modeling control strategy, since FIS are
more inspired by the topology of the decision making process. The counter argument here is that
process of decision making has a lower frequency when compared to control strategy decision
made based on the reflexes. One of the data sets (Chapter 4) used in this study was obtained with
the Manual Control Laboratory (MCL) software. The control task there can be characterized by
the high frequency components present both in the reference input as well as the operator control
activity. Therefore, it has been hypothesized that an operator bases his/her control strategy inputs
using reflexes rather than some rigorous decision making algorithm. In addition to that, the high
pace of the control task makes it difficult to extract the if-then rules, which establish the
input/output relationship of the FIS. Chapter 5 describes details of the network implementation

and incorporation into an existing structural model of a human operator.

3.3.Simple Genetic Algorithm
The family of derivative-free optimization algorithms, which are often referred to as
Genetic Algorithms (GA), is a major contributor to the armament of the soft-computing
techniques. The term derivative free is used here is to emphasize the fact that there are no
derivatives taken during the algorithm’s execution. However, genetic algorithms still use some
evaluation criteria, on which basis they converge to an extremum in a fashion similar to that of

the conventional optimization algorithm such as gradient descent.

GA were first researched by Holland [17] and later summarized by Goldberg [18] in a form
of a theory of simple genetic algorithms (SGA). This section of the chapter will introduce the
reader to the basic concepts of operation of SGA’s since they have become the optimization
engine for the automated parameter identification technique (APID) designed and used in this

study.

The GA is the global search technique frequently used while solving optimization

problems. GA’s are largely inspired by evolutionary biology and encompass such concepts as
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inheritance, mutation, selection and recombination. The concept of natural selection (also known
as “survival of the fittest”) ensures that only the most “fit” parameters are selected from each
generation. The overall structure of a simple GA is shown in Figure 3.4. It will become evident
from further discussion that the problem of automated parameter identification can be interpreted
as a multi degree of freedom optimization problem, i.e. a large number of parameters have to be

optimized simultaneously.

There are several reasons why GA’s were used in this study. Among them is the fact that
conventional optimization methods, such as golden search and exhaustive search are deemed to
be less computationally efficient (number of iterations and mathematical manipulations it
requires to converge) than a GA based optimization. The other vote for using GA’s as opposed to
conventional optimization methods is determined by avoiding the problem of prioritization of
parameters when looking for an optimal solution. GA’s optimize all parameters at once by means
of representing parameters in the form of a string, or, speaking in terms of genetic programming,

chromosome.
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Figure 3.4. Simple GA structure flowchart

It can be seen that a GA is implemented as an iterative process. Every iteration, which is
referred to as an epoch or cycle of evolution, begins with the generation of candidate solutions,
i.e. a large number of chromosomes. Usually chromosomes of the first generation are generated
arbitrarily or based on the “best guess” of the final solution. Generations of the chromosomes are
updated at the end of the iteration. Each chromosome is a binary representation of the string of
parameters, which are being optimized. Each parameter in a chromosome occupies a certain
number of bits depending on the desired accuracy of estimation. Figure 3.5 graphically illustrates

the structure of a sample chromosome.
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Figure 3.5. Example of a chromosome structure. A,B,C,D and F are parameter to be
optimized

Within one epoch chromosomes evolve to a generation of new ones. This happens by
means of mating, which is followed by mutation. Mating occurs in pairs, which are formed
randomly. The process of mating is often implemented as a gene exchange at the crossover point.
The crossover point for each substring is selected randomly for each round of mating. Figure 3.6
contains schematics of how the gene exchange occurs at the crossover point. Two mating

chromosomes are divided into two parts: £, and F, for the first mating chromosome, and P,
and P, for the other mating chromosome. The resulting offspring chromosome inherits one part

from the first parent and the other part from the second parent.
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Figure 3.6. Mating algorithm

As the algorithm progresses through generations, solutions evolve toward a better solution.
This is ensured by the concept of natural selection. The worthiness of every chromosome is
evaluated by calculating its fitness. Several of the most fit chromosomes are selected and cloned

to the next generation unchanged. The rest of the chromosomes are bound for mating.

Mutation is yet another biologically inspired process which is also implemented within the
GA. Each gene of the offspring chromosome may change its value according to certain
probability. This event occurs after the gene recombination described in the previous paragraph.

The resulting chromosome forms a new member of the next generation.

Mutation completes the evolutionary process within a single epoch. The resulting
generation of chromosomes is then used in the next iteration of the algorithm. Usually, the
algorithm terminates when either a predetermined number of iterations has been reached, or a
satisfactory fitness level has been reached. If the algorithm has terminated due to a maximum,

user defined number of generations; a satisfactory solution may or may not have been reached.

Davis [19] has developed a variation of the hill climbing optimization algorithm, which is

essentially a hybrid of a classical hill climbing technique and an SGA. The algorithm is referred
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to as bit-climbing algorithm. It inherited binary notation from SGA. On the other hand it
manipulates only a single chromosome. Moreover, steps like mating and mutation are omitted,
since a new generation chromosome is produced by flipping every bit of a chromosome in a
certain order. Chapter 6 concentrates on describing the proposed automated parameter
identification technique, which uses the bit-climbing algorithm. Greater detail of the algorithm
and its implementation are given there in. During preliminary research it was established that
both algorithms (bit-climbing and SGA) yield result of the same accuracy. However, the decision
on using the bit-climber algorithm in the final application was made based on the fact that it is

computationally faster than the SGA.
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4. Description of Experiments

4.1.Introduction
There are three sets of data used in this study. Each set was obtained via different sources:
Manual Control Laboratory (MCL) Software, Predator Unmanned Aerial Vehicle (UAV)
simulations by USAF, and NASA Langley Research Center (LaRC) Visual Motion Simulator
(VMYS) facility.

The first data set was obtained with the use of the Manual Control Laboratory (MCL)
software package and involves a total of 19 subjects. The key feature of the MCL is that it
simulates a very basic compensatory tracking task. The software allows modifying the controlled
plant dynamics, reference signal, number of degrees of freedom etc. The test subject population
in the MCL experiments were very diverse, i.e. it included both novice and experienced
operators. The software package allowed recording the full state of the system in a format

acceptable for future analysis in MATLAB.

The second data set was provided by the United States Air Force Research Laboratory (US
AFRL) and involves data collected from the Predator UAV simulator. Experiments involved
performing a mid-air maneuver of changing (reducing) the airspeed while maintaining the
altitude and attitude of the aircraft. One of the main features of the task is that due to some
peculiarities of the visual system of the simulator (Figure 4.6) it can be considered as a pursuit
tracking task, rather than purely compensatory tracking. It will be shown that this results in a
slight modification of the structural model of the human operator. The recorded data set included
the full state of the aircraft as well as the pilot control input, such as pitch stick, roll stick, rudder
pedals and throttle. The subject population was much more consistent than the MCL subject

population since it involved 10 active duty USAF UAV pilots.

The third data set came from the NASA Langley Research Center Visual Motion Simulator
Facility. The experimental data used in the study were obtained in the framework of
investigation of the new delay compensation algorithms. The manual control task consisted of
making a landing approach given different flight conditions. Recorded data included pilot

activity and full aircraft state. The subject population consists of six pilots (both commercial and
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military) including the VMS research pilot. Therefore, this subject set was somewhat diverse.

While they were all pilots, their flying experiences were quite different.

The following sections of the chapter present the aforementioned experimental setups in

detail.

4.2.Manual Control Lab software

The Manual Control Laboratory software was developed by the Engineering Solutions Inc,
and represents a software package designed to model a variety of manual control tasks for
educational and research purposes. The software provides the user with a graphic interface,
which simulates a simple manual one or two degree-of-freedom (DOF) control task. The control
tasks available are as follows: step response, compensatory tracking, and pursuit tracking. Data
used in this study were obtained by running a set of experiments using the compensatory
tracking task simulation. Figure 4.1 shows a screenshot of the MCL simulation interface. For a
compensatory task the operator has control over the cursor, which is subject to an external
disturbance input. The cursor moves horizontally across the screen and over the target area. This
is a single degree of freedom (DOF) control task in which the operator has to force the cursor to

stay within the limits of the target.

Cursor Target

Error cue

Figure 4.1. MCL simulation interface. One degree of freedom compensatory tracking task
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The MCL software provides the user with the ability to change the reference input, plant
dynamics, target size, time of simulation as well as allows introducing time delay into the man-
machine system. The data acquired was sampled at 60 Hz. The external disturbance signal

RF(t) (Eq. 4.1) is represented by the sum of sinusoids of different amplitudes and frequencies

(Table 4.1). The plant dynamics was chosen to be l The duration of a single simulation is 35
s

seconds, which results in 2099 data points.
RE(1)=Y A4;sin(w1) 4.1)
i=1

Table 4.1. Amplitudes and frequencies of sinusoids used in the reference signal during

experiments with MCL
Sinusoid Amplitude Frequency
[ 4, w, (md sec)
1 1.0 0.35
2 1.0 0.72
3 1.0 1.08
4 0.2 2.6
5 0.2 4.7
6 0.2 6.4
7 0.2 7.6
8 0.2 11.1
9 0.2 15.2

MCL records a full state of the systems: reference signal, tracking error, operator control
activity, plant output. Moreover, upon completion of the simulation run MCL optionally prompts
the user to graphically reproduce and save frequency response functions and power spectrum

density of an operator, plant and/or plant plus operator. It automatically stores recorded data in
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ASCII format. Figure 4.2 contains a sample time history of the reference signal, operator control

activity and plant response signals.
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Figure 4.2. Sample time histories of signal obtained with the MCL software: a) actual
human control activity; b) input reference signal; ¢) plant output

The experiment protocol included a verbal explanation of the experiments, instructor
demonstration of the simulation and several pre-trial runs during which each subject had an
opportunity to familiarize him/herself with the software as well as to practice in order to achieve
an asymptote on the learning curve, i.e. when there is little or no improvement in performance
observed (Figure 4.3). Total time spent within the limits of the target for each run, was chosen to

be the measure of performance in these experiments.
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Figure 4.3. An example of the learning curve of a given subject. Adopted from George [14]

The available data set contains information for a total of 19 subjects. The subject
population was very diverse, due to individual skill level. Subject population consisted of both

novice operators as well as very experienced operators.

4.3.USAF UAV simulation data
The data set described in this section was obtained and provided by the United States Air
Force using the Predator Synthetic Task Environment (STE), which is a fixed base flight
dynamics simulator of the Predator RQ-1A System 4, Unmanned Aerial Vehicle (UAV) (Figure
4.4). Due to security concerns, information only on a single synthetic task was disclosed, namely
the Basic Mid-air Maneuvering Task, where pilots had to reduce the airspeed at a constant rate

while maintaining the heading, attitude and altitude of the aircraft.
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Figure 4.4. USAF Predator RQ-1/ MQ-1/ MQ-9 Reaper Unmanned Aerial Vehicle (UAYV)
(photo available at: http://www.af.mil/photos/mediagallery.asp?galleryID=5541&page=5 )

Figure 4.5 shows the UAV STE. According to Ball and Gluck [20], this simulator is a
scaled down (hardware-wise) version of a Predator trainer, designed to be used by the research
organizations around the country (USA), subject to ITAR restrictions against foreign disclosure.
Hardware of the simulator includes the visual system, which is composed of two CRT monitors
placed side by side, side-stick, throttle as well as rudder control inceptors. The left monitor
(Figure 4.6) presents the image of the heads up display, which is usually superimposed over the
camera view out of the nose of the UAV. In these experiments, the camera view was
intentionally turned off to simulate instrument flying. The heads up display interface contains
information on various flight parameters such as: angle of attack, airspeed, vertical speed,
altitude, engine RPM. The cross in the middle of the screen corresponds to the vertical and
lateral axis of the aircraft. The solid horizontal line crossing the entire screen is the artificial
horizon, which moves up and down if there is change in pitch angle, and rotates around the
center of the cross to simulate changes in the roll angle. The right screen (Figure 4.7) of the

simulator produces the feedback information upon completion of the simulation run.
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Figure 4.5. UAV STE: two monitors, side stick, throttle control, rudder control (not
shown). (Courtesy of AFRL)

J A A

VET BSIEL yErsg ot e

Figure 4.6. UAV STE: primary screen with simulated instruments. (Courtesy of AFRL)
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Figure 4.7. UAV STE: Secondary screen with feedback information. (Courtesy of AFRL)

The feedback data contains, but is not limited to altitude, airspeed, heading deviations
plotted over the desired values. Numerical values correspond to root mean square data, which is

a quantitative measure of the tracking performance of a pilot.
There are over 60 variables recorded during experiments. These include:
- pilot control inputs: roll stick, pitch stick, rudder pedal and throttle;
- aircraft state variables including accelerations, velocities and position;

- displayed pilot information from the heads up display such as airspeed, altitude and
attitude;

- Other variables including subject number and trial run.

All data have been stored in ASCII format, which can be used in further analysis using
mathematical platforms such as MATLAB. Figure 4.8 contains a sample time history of a pilot

control activity.
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Figure 4.8. Time history of an actual control behavior of a UAYV pilot

The nature of the control task in these experiments is pursuit tracking, rather than
compensatory tracking. This conclusion was made based on the analysis of the graphical
representation of the required change in airspeed. This has a direct implication on how such a
manual control task is modeled. According to Hess [4], an additional feed forward path must be
added to the structural model of the human operator to account for a pursuit nature of the control
task. Figure 4.9 contains a block-diagram of the Hess structural model of the human operator
with such additional feed forward path (dotted box) added. It feeds the delayed information of
the reference signal derivative into the model before it is passed through the neuromuscular
dynamics portion of the model. Other models of the human operator used in this study such as
the descriptive model by Hosman and OCM can be modified in the similar fashion. Appropriate

block diagrams are given in Appendix A of the manuscript.
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Figure 4.9. Hess structural model of the human operator with the feed forward path
(dotted box) to account for the pursuit nature of the control task (Hess, [4])

4.4.NASA simulation data

Data used in Chapter 7 were obtained at the Visual Motion Simulator (VMS) facility at
NASA Langley Research Center (Figure 4.10). The simulator features a six degree of freedom
hexapod motion system, a two crew member cockpit with a state of the art Evans and Sutherland
ESIG 3000 GT visual system, which provides the crew with the computer generated out the
window imagery. The cockpit (Figure 4.11) is equipped with side-stick control inceptor, rudder
pedals and throttle controls. Instruments are simulated in the form of analog gages as well as the
heads down CRT displays, which simulate primary flight display, artificial horizon and a generic
electronic engine display. The simulator motion system has an option to be driven by various
motion cueing algorithms, which include classical adaptive algorithm, optimal, and non-linear
optimal algorithms [21]. The control task chosen for the experiments involved landing approach

under variable conditions.
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Figure 4.11. NASA Langley VMS cockpit view. (Courtesy of NASA Langley)
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The simulator utilizes a large civil transport aircraft model in the landing approach
configuration, gust and wind models, flight management and flight control computer systems.

The simulated airport is Dallas Ft Worth (DFW) International Airport.

This research used results obtained only during the straight-in approach. During the
straight-in approach the pilot makes a landing from a specified altitude and distance before the
runway. A complete listing of the initial conditions can be found in Table 4.2. During the landing
approach, the pilot uses several cues such as out-of-window view, glide slope error and localizer
error. The latter two provide instrument representation of the longitudinal and lateral error
relative to the ideal landing approach geometry. The task at hand, therefore, is purely
compensatory tracking. During the straight-in approach, a 10 knots wind begins as a head wind,
swings around to a 90 deg wind from the left in the mid-way of the approach, and continues to

swing around to a tail wind as the aircraft crosses the threshold.

Table 4.2. Landing approach trim conditions

Altitude 1300 ft BARO, 697 ft AGL
Airspeed 135 kts

Heading angle 180 deg

Distance to runway 2 nautical miles

Flaps Full, Gear down

EPR 1.19

Glide slope ON

Localizer ON

Over 60 variables are recorded and stored digitally during the experiments. These parameters

include:
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e The four pilot control input signals: roll stick, pitch stick, rudder pedal and the throttle;

e The accelerations, velocities and displacements in the 6-DOF earth fixed geodetic frame,
accounting for 36 variables;

e Some variables of errors, such as glide slope error, localizer error, etc;

e Other variables, including variables in the motion system and the instrument readings.

The data were originally stored as text files. These files were then converted to MATLAB data
files for further analysis. For a complete description of the experiments at NASA, please refer to

the source by Guo [22].

4.5.Summary

It is important to mention the increasing complexity of the control task in the data sets used
in this research. The MCL control task is the most basic of them all: a single degree of freedom
compensatory tracking. The UAV data represent a much more complex simulation environment.
Pursuit tracking of the airspeed assumed a two degree of freedom control, i.e. pilots were using
both the pitch stick as well as the throttle. Consequently, the control task had to be split into two
different channels of control. The research presented in this manuscript, is based on the pitch
stick control only. The NASA LaRC VMS data were obtained in an even more complex
environment, which included an active motion system. The simulated aircraft landing approach
requires manual control in four different channels: pitch stick, roll stick, rudder pedals and
throttle. The research presented in chapter 7 is based on the lateral aircraft control aspect of the
landing approach. It was the responsibility of the pilot to null any roll of the aircraft due to side
wind disturbance.

The other aspect of the used data is the diversity of the subject population. The MCL
experiments, by far, used the most diverse group of subjects. The skill level of participants varied
quite significantly. The most consistent subject population took part in the UAV experiments at
AFRL. The NASA experiments involved a relatively diverse group of pilots with both civil and
military background. The major differences between pilots were observed in the control
strategies used to perform the same landing approach task. Since data used in this research is

identical to that used by George [14], it is recommended to refer to the original document by
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George [14] for a thorough analysis of the sample size and confidence limits of the data from

each of the data sources.
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5. Proposed enhancements to the selected models of the human

operator

5.1.Introduction

The research community has accumulated substantial data throughout the years demonstrating
a significant difference among individuals in terms of control behavior. On the other hand, there
is a variety of widely used human operator models, which were built based on such diverse data.
These models allow the prediction of the control behavior of a generic operator. However, they
are less effective in modeling control behavior of a particular individual. The explanation here is
such that most of the conventional operator models were designed and built based on the
assumption, which originates in the pioneering work by Tustin [1], that human operator working
in a closed loop man-machine system can be modeled as a linear system. Therefore, in the case
of the structural models of the human operator, all subsystems are modeled as linear, time
invariant functions. All individual-specific non-linear aberrations, observed during experiments,
are usually accounted for by injecting a band-limited white noise (remnant), which has a limited
ability to discriminate among different subjects. This study is aimed toward building a set of
enhancements, which can be successfully incorporated into existing linear models of the human
operator in order to identify and quantify the non-linear component of the control behavior of a
given individual.

Zacharias and Levison [23] developed, implemented, and validated a compensatory tracking
task for use in identifying changes in operator control strategy. Yoshihiko, et al. [24] developed a
neuro controller based algorithm to determine the skill level of an operator performing an
inverted pendulum stabilization control task. On the other hand, there has been virtually no
research done to quantify the person-dependent, non-linear component of the control that would
allow discriminating among different operators regardless of their skill level.

The first enhancement, which is referred to as Testing Element of Control (TEC), is aimed
at modeling the subcognitive adaptation mechanism of human behavior. It is hypothesized that
such a mechanism is employed by the human operator in order to become familiarized with the
system behavior, or in other words to adapt to the system response, in order to produce adequate
control. Here, TEC is represented by a simple artificial neural network, which feeds off the

tracking error and its derivative to produce a “personalized” augmentation of the linear
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component of the control signal. It is very important to note that TEC does not completely
account for all non-linearities in human control behavior. On the contrary, it is proposed to

introduce TEC in addition (Figure 5.1) to the classical remnant into the man-machine system.

Remnant

L’Qe d Yp 'Yc

A

TEC

Figure 5.1. Block-diagram of a closed loop man-machine system with TEC and remnant
added.

The development of this enhancement is inspired by the observation of “testing” inputs,
which are introduced by an actual operator in order to learn the behavior of the system. The main
hypothesis here is that different operators utilize this “system familiarization” technique
differently, i.e. testing control inputs may be introduced at different frequencies, different rate
and power by different operators.

The other enhancement is given in the form of an equiripple filter, which conditions the
power spectrum of the cumulative control signal before it is fed into the controlled plant. The
idea behind using such a filter is based on the observation of the actual control activities of
different operators: there may be a significant variation in levels of power at any given
frequency of the control signal depending on a given individual. The proposed enhancement
allows shaping the simulated control signal power spectrum in order to match it with the
spectrum profile of an actual control signal of a given individual.

This chapter describes in detail the theory behind these enhancements to the operator

models as well as provides detail of implementation in the Matlab environment.
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5.2.Testing Element of Control (TEC) algorithm

As has been pointed out earlier, remnant takes into account effects associated with
nonlinearities present in the man-machine system. It can also account for the uncertainties in the
system, which might not be associated with processing of the input signal. Remnant is an
essential feature of any man-machine system, where a human operator may also periodically
introduce some “testing” control signals for better, more accurate control of the system and/or to

adjust his/ her control strategy.

It is a well-known fact that every individual can perform the same task in a manner
different from the others. Such individual differences can be manifested in the amount of non-
linear control operators generate. In other words, control behavior of different operators may
have different power spectrum content (Figure 5.2), i.e. different operators would excite different
frequencies. The observed differences can be attributed to different testing control inputs being
introduced by different operators. The conventional implementation of the remnant in the form
of a band-limited white noise does not allow discriminating between different testing control
elements inherent to different subjects. This research, on the other hand, takes a different
approach to modeling the non-linear element of control behavior of a human operator. It is
proposed to distinguish TEC from other non-linearities. It is also proposed to model the TEC
with the use of the soft-computing technique such as artificial neural network. In Chapter 3 it is
indicated that one of the main features of ANN is its learning capability, which is directly used
by the proposed methodology. The main hypothesis here is that one can design and train the

artificial neural network to model the TEC of a particular individual.

One may argue that it would be more appropriate to use fuzzy inference systems (FIS) to
serve the purpose, since it (FIS) carries on the reasoning mechanism, inherent to decision making
process. Indeed, George [6] has demonstrated that FIS have great potential when modeling
operator behavior, however, there is an assumption, which makes ANN more attractive than FIS
for the current application. A human operator working in a closed loop with a plant while
performing a high frequency control/tracking task is making his/her control movements in a
more reactive/subcognitive mode, based on his/her training, experience and acquired reflexes,
rather than by engaging in the decision making process. Therefore, it becomes quite problematic

to extract the expert knowledge, which forms the basis for the if-then rules of any FIS. ANN, on
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the other hand, inherits the human expertise by definition since it is trained based on the actual
control activity data. The following subsections describe in detail the peculiarities of

implementation of ANN.
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Figure 5.2. Actual control signal power spectrum of different operators
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5.2.1. Neural network architecture
Chapter 3 provide some theoretical background on ANN. This section, however, illustrates
how this theory can be applied to model the TEC behavior of a given operator working in a

closed loop man-machine system.

Figure 5.3 presents a general diagram of the network that has been implemented in this
study. There are three major layers of the network: input, hidden and output layers. The input
layer is responsible for preconditioning the input data and distributing it among the nodes of the
hidden layer. The hidden layer contains four nodes. Three nodes are neurons, whereas the fourth

node is a constant and is often called the “bias” of the layer. More details on this are given later
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in the text (5.2.3). The third layer consists of the output neuron and the post-processing block,
which rescales the output signal. All connections inside the network have weights associated
with them resulting in total of 13 weights. As will be shown in Chapter 6, these weights will be
automatically tuned by the proposed automated parameter identification technique, in order to

achieve optimum performance for each individual.

5.2.2. Inputlayer
There are two inputs used by the network. According to the general architecture of the
man-machine system, the human operator adjusts his/her behavior based on the perceived
tracking error. Therefore it was logical to use the tracking error signal e(#) as a primary input to
the ANN. George [14] demonstrated that the usage of the rate of change of the tracking error
improves the accuracy of results. Therefore, since the task is similar, é(z) was included as an

input.

Before the input signals are passed on to the hidden layer, they must undergo some
preconditioning. The pre-processing blocks map the input signals onto the [0,1] interval. The

system of Eq. 5.1 defines the mapping procedure. The parameters of such pre-conditioning:

a,,a,,b,,b, - are derived in order to ensure that the actual tracking error signal and its derivative,

obtained for multiple subjects, are properly mapped onto the [0,1] interval.

{ull(t):al'e(t)+b1 (5.1)

uy () =a,-é(t) +b, ’

Table 5.1 contains values of parameters a and b for different data sets used in this study.

5.2.3. Hidden layer
After the input signals have been rescaled, they are passed on and distributed among the
nodes/neurons of the hidden layer. Each neuron performs two functions: summation and
activation. In order to keep the number of unidentified parameters as low as possible it was
decided to use a simple sigmoid activation function as opposed to Gaussian, or bell-shape
functions. The shape of the sigmoid activation function and its mathematical expression were

given in Chapter 3.
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Figure 5.3. Architecture of the ANN used to model the control strategy element of the
remnant

In order to make the ANN more flexible, i.e. the activation functions could slightly adjust
their center relative to zero, an additional node is added to the layer. Such a node is referred to as
a bias node. The value of the bias node is kept constant in the proposed architecture of the
network and is equal to one. When this node is multiplied by the associated weight of the

corresponding layer w,, it provides a bias to each sigmoid activation function in the layer. The

bias node models the tendency of a natural neuron to be either excitatory or inhibitory in nature.

The mathematical expression of the output signal u,,(¢) for the i-th neuron in the hidden

layer is given by the system of Eq. 5.2. The first expression performs summation of all incoming
signals multiplied by the associated weighting coefficients. The second expression applies

activation function.
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X, (8) = agy - Wy Huy () Wy, () wy,

1 ; (5:2)
uy (1) = Tro @
Where a,, is the bias node of the hidden layer and w,, (with k varying between zero and
two) are the corresponding weighting coefficients.
5.2.4. Outputlayer

The output layer contains only one neuron, which summarizes the output signals from the

neurons of the hidden layer and passes them through its activation function (Eq. 5.3).

3
Xy (1) = a1y - Wyyo + zuzk () W,y
k=l , (5.3)

1
uy, (¢) = 140

Where a,, is the bias node of the output layer and w,,, (with k varying between zero and
three) are the corresponding weighting coefficients. The resulting output of the ANN u/, (7) is
then obtained by passing the signal u,, through a rescaling procedure (Eq. 5.4) similar to that

preceding input layer, but in reverse order, i.e. it performs the post-processing rescaling of the

signal from [0,1] interval onto the desired range of the control signal. The signal u,, is then

multiplied by the gain K .

{u;ec (t) =Crl, (t) +d (5-4)

utec (t) = KV ’ utlec (t)

Table 5.1 contains values of parameters ¢ and d for different data sets used in this study.
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Table 5.1. Values of parameters of Pre and Post processing for different sets of

experimental data.

Parameters MCL data set UAY data set
[a;5,] [1.6;0.58] [0.004;0.5]
[a,:b,] [0.3;0.46] [0.0022;0.5]
[e;d] [7.5;-3.75] [300;—-150]

5.2.5. Training the network

In any type of application, the artificial neural network has to be properly trained. Improper
training manifests itself in a network producing poor results, i.e. modeling of individual testing
elements of control will be inefficient. Usually, training of the network is accomplished by
running the network over a large set of data, and using a back-propagation algorithm to fine-tune
the weighting coefficients of the network. In this research, however, training of the network in its
conventional way is avoided completely. Since the ultimate goal of this research is to develop
means by which one can model individual behavior of any given operator, it is logical to train the
ANN to mimic control strategy of every individual separately. In other words, each operator has
his/her unique set of weighting coefficients. In order to properly train the network using a
conventional scheme, one would need a large data set for every individual. The available
experimental data does not contain the required amount of information: single run per subject is
available only. It will be shown, however, that using the proposed automated parameter
identification technique (Chapter 6) permits the optimization of the ANN, so that it mimics
individual differences in control behavior of operators without the necessity of training over a
large number of runs. On the other hand, since the available experimental data is limited to one
run per subject, it is difficult to determine whether the proposed automated parameter
identification technique mitigates the risk of overtraining the network. Such analysis would
require a large number of test runs for each individual and should be performed as an essential

part of future research.
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5.2.6. Implementation

The artificial neural network designed to model the testing element of the control behavior
was implemented and used in the MATLAB SIMULINK environment. Figure 5.4 contains a set
of block diagrams of the model. It can be seen that the SIMULINK environment allows building
the model of the network in a comprehensive, easy to read manner. One can clearly see the
architecture of the network and easily modify its parameters if necessary. The overall block-
diagram (a) has the same architecture as in Figure 5.3. All essential components, such as
preprocessing blocks, neurons of the hidden layer, bias nodes, neuron of the output layer and
post-processing block are clearly visible. Block diagram (b) illustrates architecture of the first
neuron of the hidden layer. One can see the weighting coefficients being applied to the incoming
signals, which are then summarized and put through the activation function of that particular
neuron. Part (c) contains the block diagram of the output layer neuron, which has a similar

architecture to that of the neuron in the hidden layer.
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Figure 5.4. Block diagrams of the MATLAB SIMULINK implementation of the ANN used
to model the testing element of the control behavior: a) overall block-diagram; b) hidden
layer neuron structure; c) output layer neuron structure
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5.3.Filtering
This section of the chapter contains the description of the filtering algorithm, which can be
parameterized and further optimized to improve the fit of an individual’s control data. The main
hypothesis here is that every individual subconsciously conditions the control signal before it is
passed through the control limb and into the plant (Figure 5.5). Such conditioning is manifested
in different power spectra for each subject (Figure 5.1). Therefore, a customizable filter was
introduced into the structural model of the human operator to shape the control signal so it

matches the amplitude of the power spectrum of an actual control data.

Tracking error Control action

Reference signa

Human
Operator > Filtering
Model

Plant

\/

Figure 5.5. Man-machine system with the signal conditioning filtering block incorporated

The following is the mathematical description and implementation of the proposed filtering

algorithm.

5.3.1. Mathematical background

Signal processing theory provides sufficient mathematical apparatus to build the required
filter. The Parks-McClellan [25] algorithm is used to design linear phase equiripple filters, which
were chosen to be used in the current research. This design method allows a finite impulse
response (FIR) filter to be designed to a frequency response specification consisting of an
arbitrary number of passbands and stopbands, in each of which a specified amount of ripple can
be tolerated. This feature is especially important, since one might want the flexibility in adjusting
only a certain section of the spectrum of the control signal, rather than boosting or attenuating the
entire spectrum at once. The Parks-McClellan algorithm delivers such flexibility. The essence of
the algorithm is in using the Remez exchange routine to solve the Chebyshev approximation
problem. Remez routine [26] is an iterative algorithm, which looks for a polynomial to satisfy the
min-max optimization problem. The latter can be formulated as follows: derive a set of
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conditions for which it can be proved that the design solution for the linear phase finite impulse

response (FIR) filter is optimal, i.e. the maximum approximation function is minimized (5.5)

min Lmax |E (w)
over coeff.|  weS

J, (5.5)

Where E(w) is the approximation error function over the passband and stopband, and

coefficients over which optimization occurs are the coefficients of the linear phase FIR filter.
Thomas Parks and James McClellan [25] wrote a FORTRAN program, which implements the
Remez algorithm. The Parks-McClellan algorithm is available in many computer based
mathematical platforms including MATLAB. For more details on the min-max problem, please

refer to the source [25].

5.3.2. Implementation

The main goal here is to be able to shape the power spectrum density (PSD) of the
simulated control signal so it mimics the actual human operator control signal. Figure 5.6
contains a typical simulated control signal vs. actual control signal obtained during experiments
using the MCL software. The simulated signal was obtained by running the Hess structural
model using the known actual reference signal. It can be clearly seen that some of the control
frequencies, especially in the higher frequency range are substantially underestimated. In order to
compensate for such discrepancy and “boost” some of the frequencies a filter was introduced

into the structural model as it is shown in Figure 5.7.
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Figure 5.7. Simplified Hess structural model of the human operator with the equiripple

FIR filter added

The filter itself is built by the MATLAB function firpm(n,f,a), which calls the Parks-

McClellan algorithm. Before this function is called, one must specify an array / of normalized

edge frequencies of the desired filter. For the MCL data sets such an array was composed of four

sub-ranges, which were picked based on observation of the actual and simulated control signal

frequencies. For example, the first sub-range [0 0.008] encompasses and isolates the first power

bin from the entire spectrum, since it usually estimated quite accurate even by the original
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version of the model, i.e. when no enhancements applied. Therefore, if the rest of the spectrum
needs to be adjusted, one would be able to do this without affecting the spectrum in the first bin.
The edge frequencies come in pairs: the starting and the ending frequency for every sub-range.

The resulting array is given by (5.6):

f= [0 0.008 0.008 0.03 0.03 0.05 0.05 1], (5.6)

I I 1l v

Frequencies outside the specified sub-ranges are considered to be transition or “don’t care”
frequencies. Graphically, array / is shown on Figure 5.5 by vertical dashed lines. UAV data
analysis and modeling utilizes an array with only one sub-range f =[0 0.01]. Unfortunately, in
this case, it was not possible to include more sub-ranges, since the power spectrum of the control
behavior in the UAV experiments is very narrow and located in the lower frequencies area

(Figure 5.8). As a result, the sought filter boosts/attenuates the entire spectrum.
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Figure 5.8. PSD of a typical actual control signal recorded during UAV experiments

Array a, then must contain the same number of values, which correspond to the desired

values of the frequency response of the filter specified at the edge frequencies. In current
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research, values of array a are subject to optimization, since they are considered to be subject

dependent.

Once all parameters of MATLAB function firpm(n,f,a) are set, it returns an array of n+1

coefficients of the filter, which is implemented in SIMULINK (Figure 5.9).
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Integer Delay 16 Integer Delay 6 Integer Delay 7 Integer Delay 8 Integer Delay 9 Integer Delay 10 Integer Delay 11

Integer Delay 17 Integer Delay 12 Integer Delay 13 Integer Delay 14 Integer Delay 15

Figure 5.9. Block diagram of the FIR filter designed to shape the simulated control signal

As can be seen from the diagram, this is an 18" order FIR filter. During preliminary
research it was determined that lower order filters produce less accurate results, whereas filters of
the higher order may lead to instances when the filter does not converge. These observations are

associated with the steepness of the slope of the filter frequency response at the edge frequencies

/.
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5.4.Integration of enhancements into selected models of the human

operator
This section of the chapter discusses how the proposed enhancements are integrated into
selected models of the human operator. Figure 5.10 is a block diagram of the Hess structural

model with both enhancements in place (dotted boxes).
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Figure 5.10. Hess structural model with TEC and Equiripple filter incorporated

Note that the testing element of control (TEC), which is modeled by the ANN is injected
into the system before the cumulative signal is passed through the neuromuscular dynamics
block. The filtering mechanism, however, is implemented right before the plant dynamics block.
Following the same architecture, enhancements can be incorporated into the Hosman descriptive

model (Figure 5.11) and optimal control model (Figure 5.12).
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Figure 5.11. Hosman descriptive model with TEC and Equiripple filter incorporated
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Figure 5.12. OCM with TEC and Equiripple filter incorporated
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5.5.Summary

One of the goals of this research is to develop a set of tools, which would allow
distinguishing between different operators by observing the individual’s behavior. This study
introduced two enhancements to existing models of the human operator which are designed to
emphasize the individual differences in performance among operators. The first enhancement is
built based on the hypothesis that different operators utilize individual-specific testing-type
control inputs when familiarizing with, and performing any given control task. In order to model
such control behavior it was proposed to use an artificial neural network, which is a
physiologically inspired computational structure and capable of modeling the cognitive
processing of an individual human operator. Another proposed enhancement is driven toward
modeling an individual “fingerprint” of the power spectrum profile of the control behavior of
every human operator. This enhancement took the form of a customizable filter, which can be
optimized to mimic the shape of the individual power spectrum profile of an actual human

operator.

In the next chapter of this manuscript one will be able to find the quantitative analysis of
the efficiency of the proposed enhancements as well as the description of the automated
parameter tuning algorithm, which is designed to automatically tune parameters of the structural
human operator model and its enhancements in order to closely model the individual control

behavior of various human operators.
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6. Automated Parameter Identification Technique: theory and

application

The primary scope of the research presented in this manuscript is to learn how to
discriminate among different operators. This chapter presents the automated parameter
identification (APID) technique, which was developed and used to identify subject specific
parameters of the selected human operator models, such as: the Hess structural model, the
Hosman descriptive model, OCM, and the modifications thereof. In the beginning of the Chapter
the reader will find details of theory and implementation of the genetic algorithm optimization
engine of the proposed APID. The description is followed by details of application of the APID
to identify parameters of the selected models of a human operator. Subsection 6.2 discusses
several issues associated with identifying parameters of the Hess structural model. A simplified
metric is introduced to evaluate the effectiveness of the proposed model enhancements. The
chapter is then completed by presenting results of application of APID to the selected models

and their configurations. Results are accompanied by analysis and discussions.

The proposed APID can be described as an automated optimization algorithm (Figure 6.1),
which is searching for values of the identified parameters resulting in a maximum match (fitness)
between the actual and modeled operator control signals. The APID uses a genetic algorithm
based optimization engine. Such choice is dictated by several factors, which include: high rate of
convergence; ability to deal with highly non-linear systems; ability to optimize a large number of

parameters, which may or may not be related to each other.
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Figure 6.1. General architecture of the proposed APID

6.1.Bit-Climbing Genetic Algorithm

6.1.1. Architecture

Chapter 3 described basics of genetic programming using the simple genetic algorithm
(SGA) as an example. This section describes in detail one of the implementations of a classical
genetic algorithm, namely the bit-climbing algorithm (BCA), which was chosen to be used by
APID. It was developed by Davis [19] and can be described as a modified hill-climbing
algorithm with certain features adapted from the classical genetic algorithm. The BCA uses
binary representation of the string of estimated parameters and/or variables similar to the
classical GA. However, unlike classical genetic algorithms, it requires only a single chromosome
for operation. The name “bit-climber” is inspired by the fashion in which the algorithm
manipulates individual bits of the chromosome. Davis [19] discovered that BCA converges to a
solution from 3 to 23 times faster than a traditional GA, while maintaining an acceptable
accuracy. Since computational efficiency is crucial for this research it was decided to use the

BCA instead of SGA or any other traditional GA.

The bit-climbing algorithm begins with constructing the initial chromosome. The BCA
uses only a single chromosome, rather than a generation of chromosomes. On the other hand, the

BCA chromosome is composed of identified parameters, put in a binary string, similar to the
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classical GA. The number of identified parameters varies for each model. More details on this
are presented in the following subsection. The initial chromosome is generated arbitrarily, i.e.
there is no a-prior or “best guess” knowledge of the values of the identified parameters. Each
identified parameter occupies 10 or 11 bits of the chromosome, depending on the desired
accuracy. If, for example, the chromosome contains seven identified parameters and all
parameters occupy 10 bits - it will consist of a total of 70 bits. Once the initial chromosome is
generated the iterative process begins by “flipping” (changing values from zero to one and vise
versa) bits of the chromosome in some arbitrary order. At each bit flip the fitness of the
chromosome is calculated. Every time the new chromosome produces a “better” fitness, the old
chromosome is replaced with the new one and the bit flipping continues. When all bits are tested,
a new iteration proceeds with flipping bits. This iteration continues a pre-allotted number of
times or until no improvement in fitness is observed. Finally, the iteration stops and the “best”

chromosome is returned. Figure 6.2 contains the flowchart of the bit-climbing algorithm.

Each iteration of BCA optimization is followed by the post-processing binary to decimal
conversion, which may involve division by a factor of a 100. Hence, if a given parameter
occupies 10 bits in the chromosome, it can take on values between 0 and 10.23 with the precision
of up to a second digit after the decimal point. In order to allow parameters to take on negative
values, post-processing can include subtraction of a constant. The TEC model utilizes ANN,
weighting coefficients of which can be negative. Figure 6.3 illustrates the post processing

associated with identification of weighting coefficients of the TEC artificial neural network.
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Figure 6.2. Bit-Climber Algorithm (BCA) flowchart
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Figure 6.3. ANN weighting coefficients identification post-processing

Appendix B contains a complete list of identified parameters with the associated range over

which identification occurs.

The BCA optimization routine (the outer loop of the BCA) is repeated for 10 iterations,
thus ensuring the convergence of the algorithm to a solution. It was observed, however, that the

BCA algorithm usually converges within first three iterations.

6.1.2. Fitness evaluation
This section discusses the theory and application underlining the metrics used to evaluate
fitness of the chromosome generated by the BCA. In genetic programming, fitness score can be
defined as an objective measure of how close the solution is to its maximum or minimum. The
term solution used here means the optimum combination of identified parameters of a given
model. Therefore, fitness of the chromosome is evaluated by comparing actual and simulated
control signals in the power spectrum domain. The following paragraph discusses details of

computing power spectral density of the available control signals.

Power Spectral Density (PSD) of a control signal was chosen as an evaluation space for the
control behavior since it allows quantifying the operator control activity in terms of the
frequencies at which an individual operates as well as how much energy is spent at each
frequency. Figure 5.2 of chapter 5 clearly demonstrated that PSD is an appropriate tool to use in

order to detect and identify control behavior of different operators.
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The theory of signal processing stipulates, that it is possible to estimate the PSD of a finite
length signal data set with the help of the Fast Fourier Transform (FFT). The aim of spectral
estimation is to express the distribution (over the frequency range) of the power in a signal. The

spectral density of a fixed random process x, is related to the correlation sequence by the

discrete Fourier transform and is given by:

S (0) = i R.(x)e ", (6.1)

X=—00

Where R_ is the autocorrelation sequence and @ is the specified frequency point. Eq. 6.1

can be rewritten as a function of the actual frequency / as follows:

27 jifx

S.(N)=3 Re ~ . 62)

Where f, is the sampling frequency.
The PSD is then defined as:

S. ()
P =2 6.3
2 (f) T (6.3)

N

Porat [27] offers one of the possible implementations for the routine to compute PSD.

In order to reduce the error in spectral estimates, the method of averaging of the estimates
over multiple segments of data is used. Such method is also known as “windowing.” The original
time history of the control signal is divided into a series of overlapping segments. Each segment
is then weighted by the type of window used. In this analysis the Hamming window was used.
This choice was dictated by the fact that it is superior to a strict rectangular window due to lesser
side-lobe leakage. The length of each windowed segment was chosen to contain 1024 data
points. Overlapping regions, on the other hand, contained only 32 data points. The Fourier
transforms are then calculated for every weighted segment of data, which is further averaged
over the resulting ensemble of PSD estimates. The resulting “smooth” spectrum estimate is then

defined as:
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Where ISX( f) is the power spectrum computed for each data segment and U is the
correction factor associated with the energy loss and is equal to 0.612; n_is the number of

overlapping segments and is given by:

) -

Where 7, - time duration of the spectral window; 7 - length of the extended time-

rec

history that had been filled with the trim values; x,_ - overlap fraction [0;1] (the lower value

frac

corresponds to “no overlap” and the upper value corresponding to 100% overlap)

The fitness of a chromosome is computed by calculating the root mean square error

(RMSE) between the two power spectrum estimates (6.6):

()P (1)
) JZ( a(f)n ) 66

Matlab implementation of the proposed APID algorithm as available in the dissertation by
Zaychik [28].

6.2.1dentified parameters

To demonstrate effectiveness of the APID, it was applied to the 13 different configurations
of three different models of the human operator. Model configurations differ by the usage of the
models of the TEC and EF, and, therefore, the number of identified parameters varied
significantly throughout configurations. The Hess structural model alone contains seven different
parameters including parameters of the proprioceptive feedback, neuromuscular dynamics,
cognitive processing time delay, while the Hosman descriptive model and OCM have only two.
In order to reduce the number of identified parameters while maintaining a certain level of
performance accuracy, a sensitivity analysis has been performed. The main goal of this analysis

was to determine to which parameters the Hess structural model performance is most sensitive.
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The degree of sensitivity has been evaluated based on how close the Hess structural model
matches the actual operator performance data, while several or all of its parameters are being
varied. A more analytical approach involved analyzing the behavior of the poles of the

characteristic equation of the overall transfer function of the Hess structural model.

It is considered that, in using the developed model to discriminate between operators, it is
preferable to manipulate as few parameters as possible. Therefore, it is important to determine
which parameters or combination of parameters results in the most variability among different
subjects. This variability, which in this manuscript is referred to as Inter Subject Variation (ISV),

of a particular parameter x can be evaluated as the standard deviation of that parameter o

expressed in percentage (6.7).
= =% .00, (6.7)
X

Where x is the mean of the parameter over a given subject population.

It is also very important to consider computational efficiency: the fewer the parameters the

faster the identification algorithm converges.

The sensitivity of the Hess structural model was tested based on how close it can
approximate the frequency response function obtained from an actual operator data set.
Comparison was performed in a fashion similar to that used to calculate fitness score in the
SGA-based PID algorithm, i.e. by calculating the root-mean square error between the actual and

simulated operator control activities.

The sensitivity analysis involved testing parameters of the model individually and in
groups (resembling certain structural components of the model) in an attempt to match individual
control data sets obtained during MCL experiments. For a detailed description of these
experiments refer to Chapter 4 of this manuscript. Table 6.1 contains values of the ISV along

with the averaged values of the fitness score associated with the parameter(s) being varied.

When varied individually, best performance (lower fitness score and higher inter-subject
variation) was obtained with parameters K,,K, and K,. When varied in groups, parameters of

the proprioceptive feedback resulted in one of the lowest fitness scores as well as exhibited the

largest ISV. One can also see that the case when all seven parameters were varied simultaneously
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produced the lowest fitness score, along with the highest ISV values for each of the parameters.
This observation, however, can be interpreted as follows. The average values of parameters 7,
and 7 were determined to be quite small and equal to 0.001 and 0.2 respectively. Calculated ISV
of these parameters was, on the other hand, very high: 316.2 and 114.4 respectively. These

suggest that 7, and 7 have little to no effect on the overall performance of the model. Therefore

it was decided to exclude them from the identification process and keep them constant at all

times for all subjects. Parameters of the neuromuscular system @, and { when varied separately

and in groups produced one of the highest fitness scores with the minimum inter subject
variation. It may be concluded here that neuromuscular dynamics of the control inducing limb
vary little among different subjects. It was proposed to keep them constant as well. This simple

analysis suggests that the parameters K ,K, and K, of the Hess structural model have the most

influence on models performance as well as exhibit maximum variation among different control
operators. Therefore, they can be used in the parameter identification study described in this

manuscript.

In order to answer more rigorously the question what parameters of the Hess model have
the most effect on its performance it was decided to perform the zero-pole analysis of the model.
Based on the location and dynamics of poles the conclusion regarding what parameters of the

Hess model have the most effect on stability and performance of the Hess model can be drawn.

Table 6.1. Standard deviation of identified parameters

Parameters varied Standard deviation of identified parameters Fitness score
K, K, K, T 4 @, ¢
K, 18.63 0.0385
K, 15.26 0.0385
K, 18.28 0.0385
T, 3.58 0.0513
T 1.21 0.0489
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o 7.8 0.0475

¢ 1.27 0.0513
< 84.87 | 181.1 0.0451
K1 , K2 , Tl 38.35 | 51.65 0 0.0385
K .r 13.48 111.7 0.0385

e

K, ,K,K,,T,0,, 6¢ 81.48 | 60.57 | 26.26 | 316.2 | 114.4 | 41.01 | 48.45 0.0244

The overall open-loop transfer function (OLTF(s)) of the Hess model is computed and
given by (6.7).

K, (s’ —6s+12)@ (s +T)

OLTF(s)=K-—; 5 2 27
s(s +6s+12)[(s +2§a)ns+a)n)(s+Tl)+Kls(K2+1)conJ

(6.7)

While deriving this transfer function the cognitive processing delay was linearized by the
2™ order Pade approximation. Furthermore, the visual perception block was omitted from this
analysis for the non-linearity simplification. Plant dynamics were modeled by the first order

integrator. Figure 6.4 contains the root-locus diagram of the resulting OLTF (s) .
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Imaginary Axis

Figure 6.4. Root locus of the open loop transfer function

Inspection of the diagram reveals two dominant poles, which cross into the right hand side
of the complex plane when the open loop gain K =1.54. After close examining of this pair of

complex conjugate poles, it was determined that they depend on K ,K,.K, and o, as well as

terms of higher power. Such as & 3,K1%,Tl3 . Since the average values for the damping ratio and

the muscle spindles time constant are less than one, terms with higher powers of these
parameters will have insignificant effect on the behavior of the dominant poles. It can be

concluded here that only changes in K,,K|,K, and @, will seriously affect the stability of the

system.

By taking into account both parts of the sensitivity analysis, it can be concluded that

parameters K ,K,K, have the most influence on the Hess structural model performance and

behavior and, therefore, can be used in order to be able to distinguish between different

operators. In other words, those parameters may vary substantially from subject to subject.
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The Hosman descriptive model (Figure 6.5) has only two parameters to vary, namely w,,

and w__ . Note that there is no vestibular system path used in this model, since there has been no

rate

motion system involved in both MCL and UAV experiments.
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Figure 6.5. The Hosman descriptive model
In the optimal control model (Figure 6.6) there are two parameters being varied as well,

namely the variances of the neuromuscular noise ¥, and observation noise V.
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Figure 6.6. OCM

The models of the testing element of the control (TEC) and the equiripple filter (EF),
described in Chapter 5, can be characterized by 14 and 4 parameters respectively. Table 6.2
summarizes configurations of the models tested for the MCL set of data. For the UAV data set,

the configurations are essentially the same with one identified parameter added, namely the gain
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of the feed forward path K, , which accounts for the pursuit nature of the control task (Figure

4.9)
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Table 6.2. Identified parameters of the selected models and their configurations: MCL data

Hess Parameters of the Parameters of the testing Parameters of the equiripple filter Parameters of
Hess model element of control model the remnant
structural
model K, | K | K,| K. | w...Wwy; | lev lev, | lev, | lev, | T | K,
Original Hess X X X
Hess with X X X X X X X
TEC
Hess with EF X X X X X X X X X
Hess with X X X X X X X X X X X
TEC and EF
Hosman Parameters of Parameters of the testing Parameters of the equiripple filter Parameters of
.. the Hosman element of control model the remnant
descriptive
model
model
Wl Wl K. | Wy oo -Wy3 | lev, | lev, | lev, | lev, | T | K,
Original X X
Hosman
Hosman with X X X X X X
TEC
Hosman with X X X X X X X X
EF
Hosmanwith | X | X X X X X X X X | X
TEC and EF
oOCM Parameters of Parameters of the testing Parameters of the equiripple filter
the OCM element of control model
v, |V, K | W -Wy; | lev, | lev, | lev, | lev,
Original X X
ocM
OCM with X X X X
TEC
OCM with EF
OCM with X X X X
TEC and EF
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Table 6.3. Identified parameters of the selected models and their configurations: UAV data

Hess structural Parameters of the Hess model Parameters of the testing element of Parameters of | Parameters of
model control model the equiripple remnant
filter
K, | K, | K,| K, |K, Wiio - Was lev, T | K,
Original Hess X X X X
Hess with TEC X X X X X X X X
Hess with EF X X X X X X X
Hess with TEC X X X X X X X X X
and EF
Hosman Parameters of the Parameters of the testing Parameters of Parameters of remnant
desc”.p tive Hosman model element of control model the equiripple
filter
model
Watt Wrate K ¥/ K r Wl 10 - WZ 13 levl Tn K n
Original Hosman X X X
Hosman with TEC X X X X X X X
Hosman with EF X X X X X X
Hosman with TEC X X X X X X X X
and EF
OoCM Parameters of the OCM Parameters of the testing element of Parameters of
control model the equiripple
filter
Y v, K, K, Wio -+ Wai3 lev,
Original OCM X X X
OCM with TEC X X X X X
OCM with EF X X X X
OCM with TEC X X X X X X
and EF
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6.3.Metrics for evaluation
This section of the chapter discusses the issue of evaluating the performance of each
model. It is clear that metrics are necessary in order to assess which model yields the most
accurate approximation of the actual operator control activity. Researchers such as Hess,
Hosman, Kleiman et al., have admitted that one of the major problems of operator modeling is
how to judge the “similarity” of the simulated and actual data sets. The comparison of the results

is sometimes performed qualitatively, rather than quantitatively. For example [29]:

... the quality of the fit was determined by eye, i.e. no formal numerical
criterion was employed.

A somewhat quantitative metric has been used by Hess [30] to evaluate the simulator
fidelity by using the handling qualities sensitivity function (HQSF). The HQSF is derived as the
magnitude of a cumulative transfer function of the Hess structural model of the human operator.
Such an approach was employed when Hess used his structural model to predict the Cooper
Harper handling quality ratings. The Cooper Harper handling qualities ratings scale (Figure 6.7)
was developed by Robert Harper and George Cooper [31]. The scale divides the handling
qualities space into 10 ratings: 1 being very good (the aircraft/simulator is controllable without
the need for pilot compensation) to 10 being very bad (controlling the aircraft/simulator requires
significant pilot compensation and control will be lost during some portion of required
operation). These ratings are established based on the reports by individual pilots. Such an
approach, even though it provides a quasi-quantitative metric, cannot be applied to evaluate the
performance of the models for the current study for the following reasons: handling qualities are
not among the primary objectives of the current research and the linearization process associated

with computing HQSF is inapplicable when artificial neural networks are applied.
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Figure 6.7. Cooper-Harper Handling Qualities ratings scale. Adopted from Cooper [30].

Neusser [7] in his work on implementing a neurocontroller for lateral control of an
automobile compared the performance of the neurocontroller augmented vehicle against the
driver operated vehicle by calculating the error between the two and expressing it in terms of

percentage.

Summarizing the above, one may conclude, that quantitative comparison of models is not a
trivial task, which is worth exploring in the future. In this study, however, an attempt is made to
move a step ahead toward building quantitative metrics for comparing human operator models.
As has already been described previously, the proposed APID employs a selection process,
which is based on the fitness score of a particular configuration of the model. The fitness score,
in turn, is based on the differences between the power spectrum of the modeled operator

behavior and the real operator behavior. In an attempt to quantify the fitness score space a
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benchmark score is introduced. The benchmark score is produced by executing the precision

model, which is an extension of the McRuer crossover model.

The benchmark will allow for a rough assessment of the model’s data fitting capability:
when normalized with respect to the precision model fitness score, models with fitness scores
greater than the benchmark level will be discarded, models with fitness scores equal or lower
than benchmark will be considered as competitive. Figure 6.8 illustrates this approach where in

this illustration model A would be discarded.

Normalized fitness

Precision

Figure 6.8. Sample diagram illustrating the benchmark fitness score at 1 produced by the
precision model as compared to fitness scores of other models

6.4.Application results.

To achieve the goals of this research, an automatic parameter identification technique was
developed along with two enhancements to the selected models of the human operator, which
capture idiosyncrasies of individual control behavior. This section contains results, which were
obtained by applying this methodology to two sets of data, namely the MCL data and the UAV
data. These results illustrate for both data sets, which model, and/or configuration of the model
yielded the closest approximation of the actual control behavior of an individual. Moreover, a

cross-reference analysis is performed to determine which model, and/or configuration of the
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model, has a higher potential to discriminate among different operators. The data set obtained
during experiments at NASA is used in Chapter 7 to demonstrate the effectiveness of a simulator

motion system in providing cues which produce appropriate pilot behavior.
6.4.1. Fitness analysis

6.4.1.1. MCL data set
This section describes the results of applying APID to the Hess Structural Model, the
Hosman Descriptive Model and the Optimal Control Model. Each model was considered with
and without proposed enhancements, thus resulting in four different configurations for each
model. Utilizing the metrics discussed earlier, each configuration was compared against the
Precision Model. Figure 6.9 contains histograms for a sample group of subjects from the MCL

data set. The full set of histograms for the MCL data set is available in Appendix C.

The first and the most obvious observation here is that original OCM demonstrated the
poorest results. It produced fitness scores higher than the Precision Model for all subjects in the
sample. Addition of EF and TEC resulted in a substantial improvement of the performance,
driving the fitness scores below the precision model benchmark, thus making the enhanced OCM

more suitable for this task than the original version of OCM.
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Figure 6.9. Fitness score comparison for a sample group of four subjects form the MCL
data set: a) Hess structural model, b) Hosman descriptive model, c) OCM

It can also be seen that all three models exhibit a similar trend of improving (reducing) a

fitness score with the addition of the equiripple filter (EF) and the testing element of control

(TEC) algorithm. Figure 6.10 provides quantitative evidence for this statement. It illustrates

exactly by how much the fitness score of a particular model was improved (decreased) with the

addition of each of the enhancements, as compared to the fitness score produced by the original

version of a given model.
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Figure 6.10. Improvement (percent) of fitness score associated with the addition of an
equiripple filter (EF) and/or model of testing element of control (TEC). MCL data set
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A generalized conclusion drawn here is that there is an overall positive effect from the
introduction of the model enhancements. The TEC and EF+TEC model configurations resulted
in an average improvement of the fitness score by 42 %. According to the diagram above,
introduction of the model enhancements had the most effect on the OCM model. Section 6.4.2
compares the fitness scores across the entire subject population thus answering the question

which model had the best fitness scores for each data set (MCL and UAV).

Section 6.4.3 discusses statistical significance of the obtained results. The inter-subject
variation is calculated for each of the identified parameters and is presented as a function of the

model enhancements.

6.4.1.2. UAV data set
This subsection of the chapter discusses results obtained for the UAV data set. Figure 6.11
contains histograms for a sample group of subjects from the UAV data set. The general
observation here is that for the majority of subjects, the original versions of the Hess structural
model, Hosman descriptive model and OCM resulted in fitness scores higher than that by the
precision model. Further addition of the EF and TEC resulted in general improvement of the
fitness. More detail on this is presented in the next subsection of the chapter. The full set of

histograms for the UAV data set is available in Appendix D.
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Figure 6.11. Fitness score comparison for a sample group of four subjects form the UAV
data set: a) Hess structural model, b) Hosman descriptive model, ¢c) OCM

The effect of introducing model enhancements is evaluated by computing the relative
improvement in fitness of the selected models of the human operator. Figure 6.12 graphically
illustrates the improvement effect expressed in terms of percentage relative to the original fitness

score. This result was obtained by averaging over the entire population of the test subjects.

The main conclusion that can be drawn here is that there is an obvious positive effect from
introduction of the model enhancements. However, equiripple filter alone had no effect on the
OCM performance at all. In the case of the Hess and Hosman models, the fitness scores were
improved on average by 10 % and 40 % respectively. The most impact on the performance of all
models was obtained by the introduction of the testing element of control algorithm. The fitness

score improvement averaged at least 36%.
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Figure 6.12. Improvement (percent) of fitness score associated with the addition of an
equiripple filter (EF) and model of testing element of control (TEC). UAV data set

6.4.2. Cross-reference analysis
The goal of this subsection is to determine by statistical analysis, which model and/or the

configuration of the model is best suited to achieve the following goals:

- produce closest approximation of individual control activity data (lowest fitness

scores);

- result in maximum variation among subjects (ISV) expressed in terms of variation of

identified parameters;
- achieve the above two with the minimum number of identified parameters;

A comparison is made across the models: Hess vs. Hosman vs. OCM, as well as across
their configurations for both MCL and UAV data sets. Figure 6.13 contains a histogram, which
compares percentages of subject population for which a particular model configuration resulted
in the lowest fitness score when analyzing the MCL data set. There are four categories
compared: the original version of the model, original model with equiripple filter added (EF),

original model with the testing element of control algorithm added (TEC), and, finally, with both
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enhancements added (EF + TEC). It can be seen that in the first two categories, the Hosman
descriptive model produced the lowest fitness score for the majority of subjects: 63 % and 64 %
respectively. However, in categories TEC and EF+TEC, the obvious leadership is with the Hess
structural model: 52 % and 68 %. This observation makes Hess and Hosman models strong

candidates to become the “best model” to be used for the MCL data analysis.

80

70

M Original
mEF

mTEC

EF + TEC

Percentage of subject population

Hess Hosman OoCM

Figure 6.13. MCL data set: distribution of the model configurations, which resulted in the
best fit of the actual control behavior

It can also be seen that only in the category of original versions of the models OCM could
produce fitness scores lower than those produced by models by Hess and Hosman for only a few

subjects.
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Figure 6.14. UAYV data set: distribution of the model configurations, which resulted in the
best fit of the actual control behavior

Similarly, Figure 6.14 compares results for the UAV data set. It can be seen that the Hess
structural model dominated in the first two categories: original version of the model and with EF
added. In the TEC category Hosman descriptive model demonstrated better results, whereas in
the EF+TEC category models by Hosman and Hess performed equally. In the meanwhile, it can
be seen that the OCM model was able to produce acceptable results only for 10% of the subject
population and only when both enhancements were added. It may be concluded here that the

OCM model is the least suitable to be applied when modeling the UAV pilot control behavior.

Appendix E contains a complete set of tables with the fitness score values obtained for both
MCL and UAV data sets. It can be seen that for the MCL data set, the original configuration of
the OCM model produced fitness scores in excess of the precision model for 58% of subject
population. All other models and corresponding configurations resulted in fitness below the
benchmark score set by the precision model. The UAV data set produced an interesting result.
The original version of the precision model resulted in better approximation of the individual
control data than any other model. With the addition of the EF and TEC, The situation started to
shift in favor of the Hess structural model and Hosman descriptive model. One might make a

conclusion here that according to both MCL and UAYV data sets, the most suitable models to be
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used here are the Hess structural and Hosman descriptive models. OCM has proved itself less

efficient when modeling operator’s control behavior.

6.4.3. Statistical Analysis
An attempt is made in this section to answer the question regarding which model and/or
model configuration results in maximum inter-subject variation of identified parameter(s).
Therefore, it was essential to look at some of the parameters of individually tuned models from
the statistical point of view. Inter subject variation (ISV) was computed for each of the identified
parameters of the selected operator models. Results are presented in the form of graphs, rather
than error bars on histograms. The primary reason for that is to be able to demonstrate the

dependence of ISV on the model configuration, i.e. the number of identified parameters.

Figure 6.15 illustrates the inter-subject variation (ISV) of identified parameters of the Hess
structural model, the Hosman descriptive model and the OCM as a function of the configuration

of a model obtained from the MCL data set.
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Figure 6.15. Inter-subject variation of selected parameters of the a) Hess structural model
b) Hosman descriptive model ¢) OCM obtained for the MCL data set
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The general observation that can be made here is that there is no universal answer whether
the number of identified parameters seriously affects the inter-subject variation of those

parameters. Parameters of the proprioceptive feedback K, and K, of the Hess structural model

demonstrated steady decline in ISV with the increase of the number of identified parameters,

whereas gain K, varied the least with EF added, and varied the most in the original as well as

with TEC and EF+TEC configurations of the model. The parameters of the Hosman descriptive

model: w, and w,,, - did not reveal a unanimous tendency to increase or decrease ISV as a

rate
function of the model configuration. Observation and neuromuscular noise variations of the
OCM exhibited a general trend to increase the ISV with the increase of the number of identified

parameters.

Figure 6.16 contains plots of the ISV of various parameters of the selected model obtained
for the UAV data set. Note, that for the UAV data set, there has been another parameter added,

namely K, , the gain in the feed forward path, which accounts for the pursuit nature of the

control task. It can be seen, that this parameter varies quite consistently in the Hess and OCM
models. Its ISV averages around 60%. It also demonstrates the largest variation in case of the
original Hosman model. The least amount of variation is registered in case of the Hosman model

with the equiripple filter added. Parameter w,, demonstrated a consistent increase in ISV with

the increase in the number of identified parameters. In the meantime, the other parameter of the

model, w

rate >

demonstrated no variation at all. As a matter of fact, the average identified value of

that parameter for the UAV data set is equal to 0 for the original version of the model, 0.013
when EF and TEC were added, and 0.019 with EF and TEC functioning simultaneously. It is an
interesting result, which can be interpreted as follows: in this particular tracking task, operators

do not rely on the tracking error rate of change when developing a control action.

It is difficult to draw any conclusion regarding the dependency of other parameters on the

number of identified parameters. More research is needed in this regard.
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Figure 6.16. Inter-subject variation of selected parameters of the a) Hess structural model
b) Hosman descriptive model ¢) OCM obtained for the UAV data set
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6.4.4. Consistency of results

It is important to discuss briefly the consistency of the presented results. The bit-climbing
algorithm, which lies at the heart of the automated parameter identification technique described
in section 6.1, is a multi-iteration process, which is repeated a predetermined number of times. In
order to evaluate the consistency of the results, the APID algorithms was repeated 25 times for
each subject, followed by averaging and computing standard deviation of the fitness score. The
following table 6.4 contains values of standard deviation of the fitness scores, expressed in terms

of percentage.

Table 6.4. Standard deviation (%) of the fitness score as a function of the model
configuration

Original EF TEC EF + TEC
Hess 1.8 6.9 9.27 10
s
= Hosman 1.6 13.11 15 14.4
]
@)
= OCM 0 0.49 6.44 2.05
Hess 16.2 8.36 21.36 18.94
s
= Hosman 0.16 12.2 17.55 32.33
>
<
- OCM 0 0 26.67 19.9

One can see clearly the general tendency of the variation to increase with the increase in
number of identified parameters. The OCM demonstrated the most consistent results: the
original version of the model as well as with EF added produced little to no variation of the
fitness scores. The other observation is that the results obtained for the MCL data set in general
are more consistent than those for the UAV data. This is interesting and a somewhat unexpected
result, since the UAV pilots are the most homogeneous group of subjects. All UAV pilots
participated in the experiments are active duty pilots and, therefore, the skill level among
subjects was not expected to vary significantly. The MCL group of operators was extremely

diverse and included both novice operators as well as highly experienced ones. On the other
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hand, the UAV control task is much more complex as compared to the MCL, since it requires
control in multiple degrees of freedom, whereas during the MCL experiments, subjects were

using only single control inceptor.

6.5.Summary
It has been demonstrated that genetic programming can be successfully used to identify
parameters of the existing models of the human operator. The proposed automated parameter
identification technique was able to successfully identify a variety of parameters, thus making it

possible to closely model control behavior of an individual.

Also this chapter has demonstrated that the proposed enhancements to the existing models
can be successfully implemented in real applications. The effectiveness of the testing element of
control algorithm as well as the equiripple filter was evaluated based on the MCL and UAV data
sets. It was shown, that implementation of the TEC algorithm results in a minimum of 40%

improvement of the fitness scores for the MCL data and 38% improvement for the UAV data set.

The comparison analysis demonstrated that the Hess structural model along with the
Hosman descriptive model are more suited to model the control behavior of an actual operator in
the described control tasks (MCL and UAV). These conclusions, however, should not discourage
the reader from using the OCM in the future. The effectiveness of the OCM has been empirically
previously demonstrated in the variety of applications. Augmenting the OCM by the proposed
model enhancements has improved the performance of the model for both MCL and UAV data

sets.

The inter-subject variation (ISV) of the identified parameters has also been examined. It

was determined, that several parameters, such as K, of the Hess structural model, w,, of the
Hosman descriptive model and V, of the OCM tend to increase the ISV with the increase of the

number of identified parameters. Other parameters of the Hess structural model, such as

parameters of the proprioceptive feedback K, and K, demonstrated the opposite behavior with

the increased complexity of the identified model. It was also determined that the ISV of

identified parameters may also vary with the control task: different results were obtained for the
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MCL and UAYV data sets. These observations call for more research in this direction in the

future.

The issue of the consistency of the results has also been investigated. The general
conclusion here is such that fitness scores tend to vary more with the increase in the number of
identified parameters. Results obtained for the MCL data set were, in general, more consistent
(maximum variation was found to be 14.4%) than those for the UAV data set (maximum
variation is 32.33%). Even though the observed variation in the results did not exceed 33 %, this

observation calls for more research in the future.
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7. Motion cueing and pilot modeling.

Recent research by Cardullo, et al. [5] significantly expanded the original Hess structural
model by adding the vestibular paths as well as the models of the motion system and cueing
algorithms. Figure 7.1 illustrates expanded Hess model for both rotational and translational

channels.
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Figure 7.1. Expanded Hess model [5] with motion feedback for a) rotational channel, b)
translational channel
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The highlighted boxes indicate the added motion feedback paths. Depending on which
degree-of-freedom is being modeled, the expansion utilizes models of otoliths or semicircular
canals (SCC), which model motion perception in the translational and angular channels
respectively. The motion feedback paths are then complemented by the motion platform
dynamics and motion cueing algorithm. Platform dynamics is modeled by a second order transfer

function (7.1):

2
Q)

mp (7.1)

2 2
s+ 2.§mpa)mps +o,,

Where the natural frequency o,,=31.4 (rad sec) , and damping ratio £, =0.7 . The
washout algorithm is modeled by the classical high-pass filter (7.2):

2
A

) 7.2
s +28 o, s+, (7.2)
With the natural frequency o,, =1.02 (ra% ec)’ and damping ratio ¢,, =1.0
The angular channel model utilizes the model of the SSC as proposed by Telban [21]:
L =573 805 : (7.3)
w (1+80s)(1+5.73s)

A

where @ is the angular velocity and @ is the perceived angular velocity, both in radians per
second. The model for the otoliths, used in the translational channel, was also developed by

Telban [21] and is given by:

F, (4s+.4)
F (085> +5.016s+1) °

(7.4)

where F),is the perceived specific force and F is the actual specific force resulting from the

translational motion.
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This chapter illustrates the applicability of the proposed automated parameter identification
technique (APID) to the problem of modeling operator control in the presence of motion
feedback using the Hess structural model. In the first part of the Chapter a “generic” pilot is
modeled based on applying the McRuer crossover model. It is demonstrated how the Hess
structural model benefits from incorporating the motion system feedback by performing analysis
based on modeling a generic pilot data. Then the Hess structural model is tuned to match the
generic pilot control activity data. Subsequently, motion system feedback is included. Finally,
resulting change in the simulated human operator control behavior is analyzed. In the second
portion of the chapter, a similar approach is utilized while considering the actual pilot behavior,
which was recorded during experiments at the NASA LaRC VMS Facility. Experiments at this
facility included the use of a platform motion system. For the detailed description of the

experiments, please refer to Chapter 4.

7.1.Generic pilot

7.1.1. Methodology

The analysis procedure employed in this chapter is based on comparing the performance of
the Hess model with and without motion system feedback. The term performance used here can
be described as the ability of the model to approximate the control behavior of a pilot. As stated
above, the control behavior of a generic pilot is obtained by running the man-machine system
with the McRuer crossover model of the human operator. The choice of the latter is justified by
the fact that it has been empirically demonstrated that the pilot adjusts his/her behavior to
compensate for the plant dynamics and can be modeled by the crossover model (Section 2.1) in
the vicinity of the crossover frequency. The automated parameter identification technique is
applied to the Hess structural model in order to match the performance of a generic pilot. The
motion system feedback is then applied and pilot’s performance is recorded. To evaluate the
effectiveness of the motion system feedback, two models (with and without motion) are

compared using power spectral density (PSD) analysis. The analysis in this section of the chapter

is performed for two types of plant dynamics, namely % and %z . The proposed methodology

can be summarized in the form of a step-by-step procedure.
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1. Design the reference signal. For the first section of the chapter it is proposed to use
the reference signal identical to that used during experiments with the MCL
software. As stated previously the reference signal was composed of nine sinusoids
of different frequencies and amplitudes (Table 4.1). Figure 7.2 illustrates time

history of such a reference signal.

Figure 7.2. Reference signal in a form of a sum of sinusoids

2. Obtain the generic pilot control behavior by feeding the reference signal through
the man-machine system (Figure 7.3) with the crossover model and recording

generic pilot control signal u, .

Reference signal

Operator Output
(frequency sweep)
crossover u,
Em— y >
Y, s

Figure 7.3. Man-machine system used to obtain a generic pilot control behavior (% plant

dynamics)
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Apply APID to identify parameters of the Hess structural model (Figure 7.4), so it
matches the operator control signal u, recorded at the previous step. Note, that at
this point no augmentations, such as filter and remnant are used with the model. It is
assumed that a generic operator performs in a strictly linear fashion in the vicinity
of the crossover frequency (crossover model) and there is no need to ascertain an
individual control strategy or inject any type of noise in order to account for other

sources of non-linearities in the system. Therefore, only the following parameters of
the Hess model are tuned: K,,K, and K, .

Introduce models of the motion system and the motion cueing algorithm along with
the vestibular system feedback path as shown in Figure 7.5. Generate the pilot
control behavior signal u_, using the reference signal from Step 1 and parameters
identified in Step 3.

Compare signals u, and u,, obtained in steps 3 and 4 respectively. Perform
comparison in the frequency domain. Draw conclusions regarding the effectiveness

of the motion system/washout algorithm based on the observation of change in

power spectrum of the simulated control behavior signal.
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Figure 7.4. Hess structural model (% plant dynamics). MATLAB SIMULINK block

diagram
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7.1.2. Results and discussions
According to step 2 of the proposed methodology it is necessary to obtain generic pilot
control behavior by running the crossover model of the human operator. Figure 7.6 contains a
representative portion of the human operator control signal time histories recorded for the

reference signal used during experiments with the MCL software.
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Figure 7.6. Time histories of the generic pilot control signal produced by the Crossover

model for: a) % plant dynamics; b) %2 plant dynamics

It can be seen that the control signal obtained for the %z plant dynamics has higher

frequency content as well as can be characterized by larger amplitude of oscillation.

The next step of the proposed methodology regulates application of the APID to the Hess
structural model in order to match the control behavior of a generic operator. Once that is

accomplished the motion system feedback is added (Figure 7.5) and the simulated control signal

is recorded once again. The value of the gain K, used in this section of the chapter is equal to

0.1 as it was originally proposed by Cardulo, et al. [5].

Figures (7.7 and 7.8) contain four sets of power spectral density graphs computed for three

signals:

after its parameters have been identified by the APID.
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- The control behavior signal of the generic pilot produced by the Hess structural model

with the motion system feedback added.

Close inspection of plots in Figure 7.7 yield an expected result: control signal produced by
the Hess structural model (black dotted curve) lies practically on top of the generic pilot control
behavior signal produced by the crossover model (blue solid curve). This observation supports
the statement that the Hess structural model behaves similar to crossover model in the vicinity of

the crossover frequency. Addition of the motion system feedback with the gain K, being equal

to 0.1 [14] results in suppression of power at higher frequencies. The first power bin, however,

has been reproduced quite accurately.

Virtually the same observation is made for the case of lateral channel. Varying gain K,

does not improve the model fit. Moreover, further increase of the gain may result in overall

system instability. Power spectral profile of the control signals (Figure 7.8) obtained for plant

dynamics %2 is quite different from that in Figure 7.7. The entire shape of the PSD profile has

changed: the frequency content and power levels of the spectrum are much higher. This can be
related to the observation, which was made earlier in the text regarding the increased amplitude
and frequency of the generic pilot control signal. It is a well known fact that higher order
dynamics are more difficult to control. It can also be seen that the original version of the Hess

model (black dotted curve) no longer approximates the control signal by the crossover as closely
as in the case of % dynamics. While the highest frequency bin is approximated quite well, in
the mid frequency range — the power levels are suppressed, and the power level of the first bin

exceeds that of the control signal by the crossover model. Introduction of the motion system

feedback does not seriously affect the performance of the model by Hess (red dashed curve).

The power level in all bins is lower than that of the crossover model except for the last one,
where motion system feedback resulted in an increase of the power level. The same observations

hold true for the lateral channel as well.

Table 7.1 summarizes the above discussion in a quantitative form. It contains numerical

values of the identified parameters of the Hess structural model as well as values of the fitness
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scores, which were computed to demonstrate the effect of introducing the motion system

feedback into the Hess structural model.
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Figure 7.7. PSD of the control behavior signals of the generic human operator simulated by
the Crossover Model, Hess Structural Model, Hess Structural Model with the motion
system feedback. Graphs showed for a) longitudinal mode b) lateral mode. Plant dynamics
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Table 7.1. Fitness scores produced by the original Hess structural model with (Exp.) and
without (Orig.) the motion system feedback for different degrees of freedom and different
plant dynamics models.

Plant Simulated Model Identified parameters of the model Fitness
dynamics DOF
K, K, K, K,
% Longitudinal Orig. 102 543 5.26 X 0.444
Exp. 102 5.43 5.26 0.1 4.89
Lateral Orig. 102 5.43 5.26 X 0.444
Exp. 102 5.43 5.26 0.1 5.63
%z Longitudinal Orig. 76.6 2.56 10.19 X 298.42
Exp. 76.6 2.56 10.19 0.1 434.92
Lateral Orig. 76.6 2.56 10.19 X 298.42
Exp. 76.6 2.56 10.19 0.1 469.84

It can be concluded here that there is no positive (improving) effect observed from
introduction of the motion system feedback into the Hess structural model. This, however, can be
explained by a simple fact, that the data on the generic pilot control behavior was obtained by
running the off-line model of the human operator with no motion added. Therefore, addition of
the motion system feedback is not useful. The following section of the chapter discusses the
effects of motion system feedback when modeling the actual pilot behavior, which was recorded

during experiments at the NASA LaRC VMS with motion system on.

7.2.Actual pilot
In this section of the chapter an attempt is made to evaluate the effectiveness of the motion

system feedback using actual data obtained at the NASA Langley Research Center (LaRC) VMS
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(Chapter 4). As opposed to the previous section of this chapter, the initial parameter
identification of the Hess Structural Model occurs with respect to the actual control behavior of a
pilot, which was recorded during experiments at NASA. Experiments that took place at the
NASA Langley VMS Facility simulated the landing approach of a large civil transport aircraft
under different control system delay conditions. In this study only the basic landing approach is
considered, with no additional delay in the system. Table 7.2 contains trim conditions of the

simulated aircraft.

Table 7.2. Landing approach trim conditions. NASA LaRC VMS.

Altitude 1300 ft BARO, 697 ft AGL
Airspeed 135 kts
Heading angle 180 deg
Distance to runway 2 nautical miles
Flaps Full, Gear down
EPR 1.19
Glide slope ON
Localizer ON

The control task that’s being investigated here can be described as compensatory tracking
of the roll rate of the aircraft in the presence of a lateral wind disturbance. The pilot’s task was to
null the roll response of the aircraft due to the lateral wind. During experiments, the wind was
simulated changing its direction clockwise as shown in Figure 7.9.a. As the wind moves to the
side of the aircraft it induces a sideslip angle of the aircraft. The latter causes the aircraft to roll
due to dihedral effect. The side wind exerting some lateral force on the vertical tail of the aircraft
can contribute to the overall rolling motion of the aircraft (Figure 7.9.b.). The lateral component
of the wind can be recorded and used as a disturbance signal, which acts upon the aircraft. The

human operator in this case perceives the rolling rate of the aircraft and attempts to null the
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effect of such a disturbance by controlling the aircraft and counteracting the wind induced rolling

motion.
Tail
Side wind
a)
) [
Direction of E o

rotation of win

VY

Head-on wind

Side wind

b)

Figure 7.9. a) Graphical representation of the wind change pattern during the simulated
landing approach; b) Side wind acting on the vertical tail and causing the aircraft to roll
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Figure 7.10 contains the block-diagram of the resulting man-machine system.

[ Lateral Roll rate of the Aileron Eﬁfl(l:r':ftte di;t?oe
component of aircraft due to [ deflection aileron
the wind side wind deflection
) @,
L Aircraft, Pilot »  Aircrafi, >

Figure 7.10. Block diagram of a pilot-aircraft closed loop control system used to model the
stabilization task in the roll channel

7.2.1. Derivation of the aircraft model
In order to simulate the actual control behavior of a pilot during the lateral directional

control of the aircraft it was decided to utilize a more sophisticated model of the aircraft, rather
than a simple % or %2 dynamics. Roskam [32] offers a comprehensive description of the

lateral directional dynamics of a wide fuselage jet aircraft. A complete transfer function relating
aileron deflection 0, to the roll angle ¢ is given by Eq. 7.5.
A ¢s2 +Bys+C

¢
z_ , 7.5
S As*+Bs’+Cs’+Ds+E (7-5)

Where coefficients of the numerator and denominator are the functions of the lateral-
directional dimensional stability derivatives of an aircraft and are given by the systems of Eq.

(7.6) and (7.7) respectively:
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A=U(1- 4B,
B=-Y,(1-A4B)~U(L,+N, + AN, +BL)

C=UL,N,-LN,)+Y,(L,+N,+AN,+BL,)-
—Y,(Ly+ Nyd + Ny A)+U(LyB + Ny +N; )=

V(LB + N, + N, ) (7.6)
D=-Y,(L,N,-LN,)=Y,(L;N,=NyL -N, L)~

—gcos(O)(Ly + Nyd + Ny A)+(U =Y )(LyN,-NyL,-N; L,)

E=gcos(0) (LN, —N,L, _NT,,Lr)

A, =U(L; +N; 4)
B,=U(N,L —L; N,)~Y,(L, +N; A)+
, (7.7)

+Y; (Ly+Nyd + Ny A4)
Cy==Y,(Ng L, —L; N)+Y; (LNy+ LNy =N, Ly)+

+HU _K)(NﬁL5u +NT/,Lr _LﬂN(su)

1 . . .
Where 4, =— and B =-—= respectively. Table 7.3 contains expressions for the

zZZ 4

dimensional lateral-directional stability derivatives of an aircraft.

Table 7.3. Lateral-directional dimensional stability derivatives ( Roskam, [32])

y, = 2% (f7 ) L =% (V.
p m sec’ S sec?
v _ qSbC,, f ) N o qSbC, (y N
PomU sec A .’ sec
SbC 2
Yr :ua (ﬁsec) N = a5b Cn,, , ( ! )
2mU ) sec
qSC Sh*C
o= e N = ()
a m sec T21U sec
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qu C, q5bC, 1

L,= / ec) No, = 7 ( sec? )

qu G,
L = ’ (/ec)

. . . 1
Where the parameter ¢ is the dynamic pressure and is equal to g = 5 pr2
Table 7.4 contains values of the dimensionless lateral-directional stability derivatives as
well as geometrical parameters of an aircraft and flight conditions.

Table 7.4. Lateral-directional dimensionless stability derivatives (Roskam, [32]) and
parameters of the aircraft

Parameter Value Description (dimensions)
S 5500 Wing area ( f*)
b 196 Wing span ( f)
U 227

Velocity (/)

m 564000 Mass (slug )
P 0.002389 Air density (slug ¢ )
I 13.7-10°
Moments of inertia (slug - ft*)
I, 30.5-10°

Yy

120




I, 43.1-10°
I, 0.83-10°
-1.08

Vp
Cy 0
Cy,. 0
C))o'a O
C/ﬂ -0.281
C -0.502
C 0.195 Lateral-directional dimensionless

I, :

stability derivatives
Cz; 0.503
0.184

np
C, -0.222
C, -0.36

i 0

Tp
C, 0.0083

For this study, however, the use of a reduced order aircraft transfer function relating aileron

deflection O, to the resulting roll rate ¢ was deemed to be sufficient (Eq. 7.8). Such a transfer
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function can be obtained as a result of “rolling” approximation of the lateral directional dynamics
of the aircraft. The transfer function is derived under the assumption that there is no other lateral
motion modes, such as dutch roll or spiral mode, being excited.

o __ L

S s(s —aLp) ’ 79

a

Substituting parameters from tables 7.2 and 7.3, Eq. 7.8 can be rewritten as:

Aircraft, = ﬁ _0.0107

= (7.9)
5. s(s+0.0046)

According to the block diagram shown on Figure 7.10 another model of the aircraft
( Aircraft, ), which would relate the roll rate of the aircraft to the side-wind, is required.

Obtaining such a model involved using the interactive large civil transport aircraft model

provided by NASA Langley. The interactive model has a simple GUI (Figure 7.11).

(@ simGur

.

-
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(=B )

Simulation Models
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B Il &P g | = M R
LINEAR
OPERATE: HOLD TRIM PRINT MODEL STEP
— :
Time:‘ 0.00C Run Number: ‘jo'
| L. i ==
Name Type Case Number Cpu Cockpit
testrun B757BASE 1 0 DYNAMIC_CHECK_COCKPIT|

< (1 | »

Figure 7.11. Large civil transport aircraft model GUI (courtesy of NASA Langley)

It allows simulating the behavior of the aircraft in response to various pilot inputs and/or

external disturbances, such as turbulence. The interface of the model allows choosing from a
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variety of predetermined control inputs, such as step, pulse doublet, sine wave etc. In addition to
that, it is possible to feed any prerecorded, properly sampled external input as desired by the
researcher. The modeled aircraft can be trimmed to virtually any flight conditions, including
landing approach, cruise on low altitude, cruise on high altitude and so on. Recorded parameters
match those recorded during actual simulation runs at the VMS research facility at NASA LaRC.
The availability of this simulator allowed the derivation of the sought “side wind to roll rate”
model by performing a standard parameter identification analysis based on the input-output data.

The derivation process can be described as a four step process:

Step 1. Trim aircraft to the initial conditions corresponding to the landing approach

conditions used during experiments at NASA.

Step 2. Feed the side wind external disturbance into the large civil transport aircraft model.
Figure 7.12 graphically illustrates the side wind profile used during this derivation process. It is

identical to that used during experiments at NASA.
Step 3. Record the roll rate response of the aircratft.

Step 4. Using Auto Regressive with eXternal (ARX) input model estimator, fit the available
input/output data
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Figure 7.12. Lateral component of the wind acting upon the aircraft

With the procedure described above, it was possible to derive the following transfer
function relating the lateral component of the wind acting upon the vertical tail of the aircraft to
the roll rate of the aircraft (7.10):

é 0.2554s” —14.45% +272.65 —25.72

Aircraft, = = , 7.10
o s*+84.37s° +452.25> +1510s + 628.8 ( )

wind

7.2.2. Methodology
The methodology used in this section to evaluate effectiveness of the motion system
feedback is similar to that proposed in the previous section of the chapter where the analysis was
based on the behavior of a generic pilot. First, APID is applied to identify parameters of the
original version of the Hess model, in order to get as close as possible to the actual control
behavior of a given pilot. In the second step the motion system is added. The resulting change in
performance is evaluated by comparing PSD data of the actual and simulated control signals.

During the third step of the proposed methodology, APID is applied to the expanded version of
the Hess model, where gain K is identified along with other parameters of the Hess structural

1

model. The performance of the optimized expanded version of the model is then evaluated again
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by comparing the PSD data of the simulated control signal against that obtained in the previous
step. Since here the parameter identification occurs with respect to the actual pilot data, it was
also necessary to repeat the evaluation procedure with the Hess Structural Model enhanced by

the TEC algorithm.

7.2.3. Results and discussions
Figure 7.13 contains PSD data of four signals: the blue solid line corresponds to the actual
control activity of a pilot. The dotted black line represents the power spectral density of the pilot
control behavior simulated by the original Hess structural model. Parameters of the model were
optimized by the APID in an attempt to closely model the pilot control behavior. It can be seen,
that the model performed quite poorly throughout the entire frequency range: the major power

bin was underachieved substantially.
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Figure 7.13. PSD of the actual control signal (blue solid) vs. simulated control signal by
original Hess (black dotted), Expanded Hess (magenta dot-dashed) and Expanded Hess
tuned by APID (red dashed). TEC is not present
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Magenta colored dash-dotted line corresponds to performance of the Hess model with the
motion feedback added into the system. Note, that the gain K used in the model is equal to

150, which is much greater than the original value proposed by George [14]. If the original value

of 0.1 is used, then there is hardly any evidence of presence of the motion system feedback. At
the initial stages of the investigation it has become clear that the gain K, must be increased in
order to achieve some effect on the performance of the model. As one can see from the graph,
the increase in gain K, resulted in a noticeable change of the power spectral profile of the

control signal: the power level around the main power bin of the actual control signal started to

elevate. In the mean time, there have been no significant alterations of the power profile in the
remainder of the spectrum. This observation suggests that inclusion of gain K, into a string of

parameters identified by APID may improve the overall performance of the model. The fourth
curve on the graph (red dashed curve), corresponds to the case when parameters of the Hess
structural model were identified along with the gain of the motion system feedback. It is clear
from the graph, that improvement was significant. The frequency (2.5 rad/sec) of the major bin
of the actual pilot control signal was estimated very closely. Moreover, the power level was
matched quite accurately as well. In the mean time, there has been no change in power spectral
profile past 0.5 rad/sec — it remained slightly elevated compared to the actual control signal.
Table 7.4 contains numerical values of identified parameters of the Hess model for three cases
considered. One can see only a slight improvement of the fitness score when the motion system

feedback was added. The major improvement of the fitness score followed after APID had been

applied to re-identify parameters of the Hess model including K .

Since this section of the chapter concentrates on simulating the behavior of a given pilot, it
was critical to repeat the evaluation procedure with the Hess structural model being enhanced by

the TEC model. Figure 7.14 contains plots of PSD of the following signals:

- Solid blue — actual pilot control activity

- Black dotted — control behavior simulated by the Hess model enhanced by TEC.
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- Magenta dash-dotted — control behavior simulated by the Hess model enhanced by TEC
with the motion system feedback. Gain K, in this case was not part of the

identification process and was set equal to 150.

- Red dashed — control behavior by the Hess model enhanced by both TEC and motion
system feedback, with K being identified by APID along with other parameters of the

model
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Figure 7.14. PSD of the actual control signal (blue solid) vs. simulated control signal by
original Hess (black dotted), Expanded Hess (magenta dot-dashed) and Expanded Hess
tuned by APID (red dashed). TEC is present

It is clear from the graph that the Hess structural model enhanced by both TEC and motion
system feedback is capable of a very close approximation of actual pilot control activity. Table

7.4 contains numerical values of identified parameters of the model as well as the fitness scores.
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The lowest fitness score was achieved by the “Hess + TEC + motion system feedback”
configuration of the model, when K, was identified by PID. The side by side comparison of the
model configurations with and without TEC shows that the model with TEC performed better

(fitness scores were lower) in all three cases. This observation supports the statement that

addition of TEC allows closer approximation of the individual control behavior of a pilot.

Table 7.5. Fitness scores produced by the original Hess structural model with and without
the TEC model with and without the motion system feedback.

Model of Model Identified parameters of the model Fitness

the TEC | configuration

Ke Kl KZ Km
present

NO Orig. 16.2 8 2.08 X 0.0490
Exp. 16.2 8 2.08 150 0.0483
Exp.’ 7 3.35 0.95 976 0.0263
YES Orig. 0.41 1.92 2.56 X 0.0386
Exp. 0.41 1.92 2.56 150 0.0389
Exp.” 0 2.23 1.92 559 0.0157

Exp - APID included X, .

It is difficult not to notice that when APID was applied to identify parameters of the

expanded version of the Hess structural model it had identified gain K, to be equal to zero for

this particular pilot. Technically, it means that the visual information path in the Hess structural
model is nulled. This can be interpreted as if this particular pilot is not relying on the visual
information at all while performing this (roll-rate stabilization) control task. The feedback
information then consists of the proprioceptive and motion vestibular modalities. In an attempt to
make any conclusion regarding such observation, APID was applied to control data from seven

pilots, which had participated in experiments at NASA. Two model configurations were
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considered: with TEC and without TEC. Table 7.5 contains values of identified parameters as

well as fitness scores produced by the identified models.

Table 7.6. Identified parameters of the expanded (with motion system feedback) version of
the Hess structural model with (X) and without (O) TEC.

Pilot # TEC Identified parameters Fitness
K, K, K, K,

1 (0] 7 3.35 0.095 976 0.0263
X 0 2.23 1.92 559 0.0157

2 (0) 3.3 2.23 0.72 463 0.0120
X 0.33 7.68 5.12 0 0.0048

3 (0] 29 0.95 0.69 316 0.0325
X 0 2.54 0.18 225 0.006

4 (0) 3 0.84 1.76 416 0.0191
X 0.89 8.13 2.56 64 0.0135

5 (0] 5 2.56 0.32 511 0.0368
X 0.76 7.79 2.03 7 0.0108

6 (0] 3.7 1.28 2.56 879 0.0258
X 1.29 9.59 2.16 0 0.0118

7 (0] 9.7 6.39 0.85 1020 0.0125
X 0.29 5.19 2.63 255 0.0054
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It is possible to make a few observations from this table:

1. Fitness scores of the human operator model with the TEC are at least 50% better

(lower) that those with no TEC.

2. The visual system gain K, dropped in value when TEC was introduced for all

pilots. Two pilots were identified to have K, =0, suggesting that those pilots were

not relying on visual information at all in this particular control task. This
observation, however, comes in contradiction with the common knowledge that the
visual information predominates among all sensory modalities of the human

operator.

3. The motion system feedback gain K, is lower for the case when TEC was in the

system. Two pilots were identified to have K, =0, thus suggesting that they are

not relying on the vestibular system feedback while performing a roll-rate
stabilization task. This is true for the low frequency tasks. It is possible the pilot is
relying mostly on vestibular sensation of the roll rate. The visual information has
low gain in that case.

4. Considering the small size of subject population it is difficult to make any

conclusion regarding the behavior of gains K, and K, as a function of TEC.

Based on these observations it is possible to conclude that a set of experiments should be
devised to prove or disprove conclusions made regarding the use of visual system information as

well as vestibular system when controlling the roll-rate of the aircraft.

7.3.Summary
In the first section of this chapter it was demonstrated that the use of the motion system
feedback designed by Cardullo, et al. [5] does not necessarily have a positive effect on the
models performance when simulating control task, which does not involve motion of course.
This conclusion was drawn based on the results obtained when simulating the control behavior of

a generic pilot without motion feedback. The latter was simulated by the Crossover Model. Two
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plant dynamics were considered. In both cases, introduction of the motion system feedback

resulted in overall decrease of the models performance.

The second section of the chapter concentrated on modeling control behavior of a certain
individual. The actual data used during evaluation was obtained at the NASA LaRC VMS
research facility. Experiments were conducted with the active motion system. It was
demonstrated that the Hess Structural Model is capable of close approximation of the actual
control activity when it is enhanced by the motion system feedback. Addition of the motion

system feedback resulted on average in 50% increase in model performance.

Addition of the Testing Element of Control into the model resulted in even closer
approximation of the actual control behavior of a pilot. Results obtained for several pilots
suggest that some pilots may ignore the visual modality when performing a stabilization control
task in the angular channel. Conversely, some pilots tend to ignore the vestibular modality when

performing the same task. In order to prove these results further investigation is needed.
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8. Conclusions and future research

8.1.Conclusions

A number of human operator models have been developed over more than 60 years of
operator modeling history. Structural models such as the Crossover Model, the Hess structural
model, and the Hosman descriptive model despite being quite successful in modeling an average
(generic) pilot behavior, share the same drawback — they do not account for a non-linear
behavior of an actual operator. The OCM model is a quasi-linear algorithmic model of the
human operator which still lacks the behavioral component. The inter subject differences
manifest themselves in the magnitude and frequency content of the non-linear component of the
control behavior. Conventionally, the non-linear component of the control behavior in any man-
machine system is accounted for by injecting remnant. Remnant, however, does not discriminate
between the sources of the noise in the system. The primary goal of this study was to develop a
set of algorithmic tools that would overcome this gap in simulating human behavior, and allow

modeling of the control behavior of a given individual.

The most significant of all the novel aspects of this research is referred to as the testing
element of control algorithm or simply TEC, which is capable of representing individual control
strategy of different operators, which contributes to the overall non-linear element of control
behavior. The TEC algorithm evolves from an artificial neural network, which is a biologically
inspired computational tool capable of mathematical representation of human behavior. It was
postulated in this study that every individual can be identified by his/her unique set of TEC
parameters. Results presented in chapter 6 demonstrate a significant improvement in model’s

ability to model an actual operator control behavior with TEC incorporated into it.

Another model enhancement developed in this study can be applied to further improve the
ability of a given model to simulate an individual control behavior of an operator. As
differentiated from TEC it takes on the form of a filter, which can be customized according to the
subject specific control data. The filter itself is an equiripple filter (EF) designed using the Parks
McClellan algorithm. EF is intended to improve the shape of the power spectral density of the

simulated control behavior so it matches that of an actual operator.
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In addition to the model enhancements, this study utilized a novel automated parameter
identification technique (APID), which was designed specifically to aid in identification of
parameters of a given model of the human operator and its enhancements. APID identifies
parameters of a given model of the human operator, which result in the closest approximation of
actual operator control behavior. The uniqueness of the proposed APID is in using a genetic
algorithm optimization engine to achieve this goal. The choice was dictated by the versatility and
computational efficiency of genetic algorithms. There is also no obvious restriction on the
number of identified parameters as well as there is no explicit requirement for them (parameters)

to be related or influence each other.

Preliminary analysis was oriented toward determining to which parameters the Hess

structural model are most sensitive in terms of performance. It turned out that gain coefficients of

the proprioceptive feedback K,and K, as well as the visual signal processing gain K, have the

dominant effect on the performance of the model and, as a consequence, on the ability to
represent individual behavior of different operators. The effectiveness of TEC and EF was
demonstrated by applying them to the selected models of the human operator, such as: the Hess
structural model, Hosman descriptive model and the optimal control model. Models enhanced by
TEC and EF demonstrated an average improvement in performance of 42 % and 36 %
respectively for the MCL and UAV data sets respectively. Results obtained for the MCL data set
indicated that the Hosman descriptive model was able to closely model individual behavior of
the majority (63%) of subjects while being applied “alone”, i.e. with no enhancements. After the
model enhancements are applied, the Hess structural model produced better results for 52% and
68% of subject population (TEC and TEC+EF cases respectively). In the case of the UAV data,
the Hosman model outperformed other models with TEC and TEC+EF being applied: 40 % and
30% respectively. A consistency analysis of the results was performed to demonstrate the
effectiveness of the proposed APID. The increase in variation of identified parameters associated
with the increase in the number of identified parameters was documented. The maximum
variation recorded is with the Hosman descriptive model applied to the UAV data set with both
TEC and EF included and is equal to 32.33 %. That particular model configuration contains 17
parameters identified by APID. It was also determined, that results tend to vary more for the case

of the UAV data. This, however, can be attributed to the fact, that the control task simulated by
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the UAV test is far more complex than that modeled by the MCL. Moreover, original versions of
the selected human operator models used in this study are capable of modeling only a single
degree of freedom control task. Whereas the UAV airspeed control task involves control in at
least two DOF: pitch stick and throttle. Analysis presented in this study concentrated only on the

pitch stick control.

Chapter 7 used data from previous experiments conducted at NASA Langley and was
aimed at evaluating the effectiveness of motion system’s system feedback in the Hess structural
model. The motion system feedback, developed by Cardullo, et al. [5], includes a model of the
motion system itself, the washout algorithm and models of the human vestibular system. When
the evaluation procedure was applied to control data of the generic pilot, obtained by running the
Crossover Model, no improvement of the models performance was observed. Note, however,
generic pilot control activity was obtained by running the crossover model of the man-machine
system with no motion included. The second part of the analysis was performed based on
experimental data obtained at the NASA Langley Visual Motion Simulator with the active
motion system. The evaluation procedure involved applying APID to identify model parameters,
which result in the closest approximation of the actual control behavior. It was demonstrated that
after enhancing the Hess structural model with the motion system feedback and applying APID,
the models performance was improved by 50%. The evaluation was repeated with the Hess
structural model augmented by the TEC algorithm. In this case the fitness score of the model
without the motion system feedback was improved by 21%. After the APID was re-applied, the
fitness of the model was improved by 67 %. The results obtained during this research
demonstrate that incorporating motion into simulation improves operator behavior as

demonstrated by the models.

The observed results suggest that applying APID to the expanded (motion system feedback
included) version of the Hess structural model can potentially answer the question whether the

motion system is necessary for a particular simulation or not.
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8.2.Future research
The research results presented in this study have demonstrated that the proposed
enhancements to the existing models allow discrimination among different subjects. Proposed
techniques bear great potential for future implementation in many areas of research &
development and industry. However, there are still a lot of obstacles to overcome. In the

following paragraphs, some of the directions for future research are discussed.

Computational efficiency is still a major issue. All programming in this study has been
performed in MATLAB and the MATLAB SIMULINK environment. The computational
efficiency expressed in terms of time it takes to complete a single iteration of APID is directly
proportional to the number of identified parameters. In the case of the Hess structural model
enhanced by both TEC and EF, the time it takes APID to complete a single iteration is on the
order of one hour. Therefore, in order to be able to apply it in real time, it is considered to be one
of the priorities to improve the computational efficiency of the APID. There are several possible
solutions to this problem. First of all, it seems useful to depart from MATLAB and reprogram
everything in C/C++ or Visual Basic.NET. This is especially important since one of the potential
implementations of the proposed APID is to apply it in real-time systems. The ability to obtain
information regarding the control behavior of an operator in real time has security and safety

implications.

Further on, research should also concentrate on improving the model enhancements
themselves. The neural network of the TEC has potential to be improved. Different types of
activation functions can be used. The number of hidden layers and neurons can be varied as well.
The proposed APID has the potential for improvement as well. The observed statistical decrease
in consistency of identified parameters associated with the increase in the number of parameters

to be identified should be addressed in future research.

The application investigation with the NASA data in chapter 7 has demonstrated that APID
can be successfully applied in order to answer a very important question regarding the need for
motion cueing systems in at least some applications. The results may provide more insight on
what perception modalities are used by the pilot. To validate the results obtained in this research
a set of experiments should be designed. These experiments should involve a properly designed

control task, which should not be too complex so it does not require multi degree of freedom
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control behavior. Experiments should also include motion/no-motion conditions as well as
varying quality of the visual information. The latter is important to validate results regarding the

usage of the visual information channel in the Hess structural model.
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Appendix A. Human operator model block diagrams
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Figure A. 1. Block diagram of the Hosman descriptive model adapted to the pursuit control
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Figure A. 2. Block diagram of the OCM adapted to the pursuit control task
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Appendix B. Full set of identified parameters

Table B. 1. Full set of identified parameters

Model Identified parameters
Name Bits in the Identification range
chromosome
Hess structural model K, 10 [0;10.23]
K, 10 [0;10.23]
K, 10 [0;10.23]
Hosman descriptive model w., 10 [O ; 10.23]
Wt 10 [0510.23]
OCM v, 10 [0:10.23]
v, 10 [O ; 10.23]
Equiripple filter lev, 10 [010.23]
lev,” 10 [0;10.23]
lev,” 10 [0;10.23]
lev,” 10 [0;10.23]
Testing element of control Wiio 11 [-10.23 ; 10.24]
Wiy 1 [-10.23 ; 10.24]
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11

Wiz [-10.23 ;10.24]
Wizo 1 [-10.23 ; 10.24]
Wiy 1 [-10.23 ; 10.24]
Wiz 11 [-10.23 ;10.24]
Wiso 1 [-10.23 ;10.24]
Wiy 1 [-10.23 ;10.24]
Wiz 1 [-10.23 ;10.24]
Wai 1 [-10.23 ;10.24]
Way 11 [-10.23 ;10.24]
Wa 11 [-10.23 ; 10.24]
Wais 11 [-10.23 ; 10.24]
K, 10 [0;10.23]
Remnant K, 10 [0;10.23]
T, 10 [0 10.23]
Pursuit tracking gain K, 13 [0;8191]

Parameters marked with the asterisk are available only for the MCL data.
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Appendix C. Fitness score comparison histograms: MCL data set
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Appendix D. Fitness score comparison histograms: UAV data set
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Appendix E. Fitness scores.

Tables are using the following tri color markup scheme:

- Red color indicates that a particular fitness score exceeds that of the precision model
and, according to the evaluation metrics discussed in section 6.3., the associated model

configuration must be discarded.

- Green color indicates that the associated model configuration produced fitness score

lower than that of the precision model.

- Yellow color marks up the lowest fitness score in a given model configuration

category.

Fitness scores are normalized with respect to the fitness score produced by the Precision model

of the human operator.

Table E. 1. MCL data set. No enhancements

Hosman
0.778719424
0.86889935
0.944344466
0.617672103
0.956396599
0.849695284
0.908153641
0.768062804

0.923157147

0.908505147
0.973386452
0.193642789

0.147764407
0.56187046

0.221060625

0.559392133
0.546546296

0.14095901
0.107873466
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Table E. 2. MCL data set. Enhanced by EF

Hosman + EF OCM + EF

0.321458777
0.449989554

0.578181337

0.407225701
0.373860125
0.528022191
0.596806051
0.391280546

0.698746552

0.590324531

0.62120845

0.127219703
0.118865343
0.485704503

0.19946522

0.463859358
0.506513227

0.09640633
0.076003908
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Table E. 3. MCL data set. Enhanced by TEC

Hess + TEC | Hosman+ TEC| OCM + TEC
0.403613112

0.408592879
0.356621486
0.48771914

0.562408238
0.393001677

0.453163832

0.474329665

0.413695717

0.476454099

0.376059525
0.113235619
0.108430982
0.398698931

0.158589065
0.337991888

0.339822224
0.090609854
0.060245587
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Table E. 4. MCL data set. Enhanced by TEC and EF

Hess + EF + [Hosman + EF +| OCM + EF +
TEC

0.32743947

0.309497893

0.351822942

0.385723925
0.443660515

0.119685677

0.437049095
0.535621498

0.090768405
0.373216337

0.167807026

0.321035576
0.317768585
0.080227087
0.065552807
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Table E. 5. UAV data set. No enhancements.

Hess Hosman OCM

0.912374164
0.875647567

Table E. 6. UAV data set. Enhanced by EF.

Hess + EF | Hosman + EF | OCM + EF
0.987815606

0.915077312

0.862668416
0.916039664

Table E. 7. UAV data set. Enhanced by TEC

Hess + TEC [Hosman + TEC |IOCM + TEC
0.772462126| 0.736275202

0.601364644

0.991662894( 0.971553024

0.893417062
0.61818819] 0.474818047]0.508949505
0.529272035
0.789818183
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Table E. 8. UAV data set. Enhanced by TEC and EF.

0.414044395

0.791828051
0.75349376
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