NASA-JSC Wireless Sensor Network Activities Update

Raymond Wagner
Richard Barton

CCDSS Wireless Working Group Face-to-Face
Darmstadt, Germany

April 16, 2012
Agenda

• Update on ZigBee Pro, ISA100.11a co-existence studies

• Update on JSC Modular Wireless Instrumentation (“SSIART-NASA”)

• Update on JSC High-Speed Wireless Instrumentation Needs
Update on ZigBee Pro, ISA100.11a
Co-Existence Studies
802.15.4, 802.11 Co-existence

802.11b/g/n
ch .1

802.11 b/g/n
ch .6

802.11 b/g/n
ch .11

802.15.4
ch .11

802.15.4
ch .17

802.15.4
ch .26
Two representative interference patterns:

- Wi-Fi ch. 6 interferes with ZigBee ch. 17 near its center frequency
- Wi-Fi ch. 4 interferes with ZigBee ch. 17 in its sideband
ISA100, 802.11 Coexistence Investigated

• One representative interference pattern:

–Wi-Fi ch. 6 interferes with ISA100.11a ch. 17/18 near its center frequency, ch. 16/19 in its sideband
ZigBee, ISA100 Performance Evaluation Methodology

• Primarily concerned with performance under RF interference conditions:
 – measure message delivery rate (related to goodput)
 – configure 5 nodes in star topology (primarily tests MACs)

• IEEE 802.11g router used as interference source:
 – traffic generated between laptop (wireless to router) and workstation (wired to router) using Iperf
 – flows considered: 0 Mbps, 5 Mbps, 10 Mbps, 20 Mbps
 – also considered maximum single-flow (~ 30 Mbps)

• Maximum-length packets sent using each protocol at several periodicities:
 – Packet lengths: 76B
 – Packet periodicities: 1 s/packet, 5 s/packet, 10 s/packet
 – Experiment duration: 1 hour
 – Averaged over 3 trials
 – ~ +3 dBm output power selected for both WSN platforms
ZigBee, ISA100 Performance Evaluation Hardware

• JSC WSN node (ISA100.11a):
 – Nivis VN210 radio, TI MSP430-F5438 microcontroller

• TI MSP430 Experimenters Board (ZigBee Pro):
 – TI CC2530 radio (ZigBee Pro stack), TI MSP430-F5438 microcontroller
 – looks identical to custom ZigBee JSC node from application code point of view
 – low-cost stand-in for custom hardware
Testbed Environment

JSC wireless habitat test bed:

- Provides representative, crewed environment for controlled studies
- Good isolation from external RF environment, high level of internal multipath
- Allows interferers to be selectively introduced
Test Hardware Layout

legend:
• GW – WSN gateway
• N1-N5 – WSN nodes
• WFR – Wi-Fi router
• WFC – Wi-Fi client
ZigBee – Direct Interference

![Graph showing delivery rate (%) vs. Wi-Fi Interference (Mbps) for different packet transmission rates (10 s/packet, 5 s/packet, 1 s/packet).]
ZigBee – Sideband Interference

![Bar chart showing delivery rate (%) against Wi-Fi Interference (Mbps) for different packet rates.](chart.png)
ZigBee – Direct Interference
(outliers removed)

![Graph showing delivery rate (%) vs. Wi-Fi Interference (Mbps) for 10 s/packet, 5 s/packet, and 1 s/packet.]
ZigBee – Sideband Interference
(outliers removed)
Comparison Summary

<table>
<thead>
<tr>
<th></th>
<th>Cost</th>
<th>Network Setup</th>
<th>Throughput</th>
<th>Latency</th>
<th>Interference Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZigBee Pro</td>
<td>~$10/unit</td>
<td>instant-on</td>
<td>higher</td>
<td>variable</td>
<td>low-to-moderate</td>
</tr>
<tr>
<td>ISA100.11a</td>
<td>~$120/unit</td>
<td>centralized optimization</td>
<td>lower</td>
<td>bounded</td>
<td>high</td>
</tr>
</tbody>
</table>

ZigBee – Direct Interference
(-3 dBm)

![Bar chart showing delivery rate (%) vs. Wi-Fi interference (Mbps) with various packet intervals.
- Gray bars represent 10 s/packet.
- Black bars represent 5 s/packet.
- Dark gray bars represent 1 s/packet.

The chart illustrates the decrease in delivery rate as Wi-Fi interference increases, with different packet intervals showing varying levels of interference impact.]
ZigBee – Sideband Interference
(-3 dBm)

![Graph showing delivery rate (%) vs. Wi-Fi Interference (Mbps) with three different packet intervals: 10 s/packet, 5 s/packet, and 1 s/packet. The graph compares the delivery rate under varying levels of Wi-Fi interference.]
Conclusions

• Completed first head-to-head comparison of ZigBee Pro, ISA100.11a presented in the literature

• Found that both ZigBee and ISA100.11a have their places
 – ZigBee: inexpensive, fast network formation, better throughput, good at lower interference levels
 – ISA100.11a: better latency guarantees, more robust at higher interference levels

• Uncovered occasional ZigBee Pro node disconnections
 – sometimes intermittent, sometimes permanent
 – ~1% of time at +3 dBm output power
 – ~15% of time at -3 dBm output power
 – correlated most strongly with high interference, but happened on occasion at lower interference levels
Forward Work

• Further characterize ISA100.11a performance:
 – performance with two or more 802.11 interferers?
 – maximum achievable throughput in closed environment?

• Further characterize ZigBee Pro performance:
 – maximum achievable throughput in closed environment?
 – what causes orphaning?

• Compare ZigBee multi-hop routing approach (AODV) with ISA100 (graph)

• Explore effects of 802.11n interference
Update on JSC Modular Wireless Instrumentation ("SSIART-NASA")
JSC Modular Instrumentation (MI) Architecture

- **Power Module**
 - battery
 - energy harvesting (e.g., solar, vibration)
 - mains (wired)

- **Communication Module**
 - handles data transport to C&DH system
 - forms common network with other nodes
 - can be wired or wireless

- **Controller Module**
 - manages data acquisition
 - processes sensed data as needed
 - formats data for transport to C&DH

- **Sensor Interface Module**
 - provides application-specific sensors, sensor conditioning
 - only custom-designed component
JSC MI Components

ZigBee Pro radio
(TI CC2530 ZNP)

ISA100.11a radio
(Nivis VN210)

processor
(TI MSP430-F5438,
MSP430F5438a)

power
(9V wall, AA battery x2)

photos by Mary Lynne Barends, NASA-JSC
Modular Instrumentation Stack

side view
(with sensor package)

scale view
(with sensor package)

photos by Mary Lynne Barends, NASA-JSC
Interface Specification:

• board dimension user-defined
• mounting hole locations pre-defined
• data connector location, pin assignments defined
• power connector location, pin assignments defined
• I/O connector types, locations user-defined
Modular Instrumentation Mechanical Interface

Board Clearance:

• Power, Data bus connector dimensions define board clearances
• Mounting hole locations pre-defined
• Data connector location, pin assignments defined
• Power connector location, pin assignments defined
• I/O connector types, locations user-defined

Expected Total Height = 1.982 in
Oversized Components:

- L-shaped adaptor can provide greater inter-board clearance
Oversized Components:

- Extending boards past nominal footprint can provide unconstrained vertical component space

Expected Total Height = 1.982 in
Update on JSC High-Speed Wireless Instrumentation Needs
Deep Space Habitat (DHS) Project

- **Project description**
 - Define and mature a DHS element that will enable human exploration beyond earth orbit (BEO)
 - Focus and Infuse habitat-related exploration technologies
 - Transition habitat-related products into the Habitat Demonstration Unit (HDU) prototype for integrated systems and mission testing

- **Current wireless capability**
 - ISA100.11a low-power, low data-rate WSN
 - Currently used for environmental monitoring and control
 - Primarily temperature and pressure data
 - EPCGlobal, Gen 1, Class 2 RFID
 - Inventory, tool, and sample tracking

- **Projected high data-rate wireless applications**
 - High frequency phenomena
 - Impact/leak detection and localization
 - Vibration/load monitoring during launch and docking
 - Structural health monitoring (shape and vibration)
 - Power transient monitoring
 - Non-destructive evaluation (NDE)
 - Real-time audio and HD video streams
 - Medical monitoring (very high priority)
 - Real-time telemedicine
 - Mobile crewmember monitoring
 - Increased security requirements to ensure privacy and data integrity
Project Morpheus

• **Project description**
 – Morpheus is a vertical test bed vehicle demonstrating new green propellant propulsion systems and autonomous landing and hazard detection technology

• **Current wireless capability**
 – 900 MHz, low data-rate command and telemetry ground link
 – 2 redundant UHF links for abort commanding

• **Projected high data-rate wireless applications**
 – Monitor high frequency phenomena on-board
 • Vibration/load monitoring during flight
 • Power transient monitoring in control systems
 – Real-time HD video streams
 – Stream full-bandwidth telemetry during flight
 • Enables real-time transient and diagnostic monitoring
 • Archive data to prevent total loss of data on vehicle malfunction
 – Wireless sensors for Autonomous Landing and Hazard Avoidance Technology (ALHAT)
Backup
ZigBee – Direct Interference

<table>
<thead>
<tr>
<th>Interference Bandwidth:</th>
<th>Seconds Between packets</th>
<th>Test 1:</th>
<th>Test 2:</th>
<th>Test 3:</th>
<th>Average:</th>
<th>Std.Dev. of Tests:</th>
<th>Std. Dev. of Nodes:</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>100.00</td>
<td>100.00</td>
<td>80.17</td>
<td>93.39</td>
<td>11.45</td>
<td>25.60</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>80.13</td>
<td>99.82</td>
<td>99.00</td>
<td>92.99</td>
<td>11.14</td>
<td>25.54</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>83.39</td>
<td>94.31</td>
<td>94.35</td>
<td>90.68</td>
<td>6.32</td>
<td>5.88</td>
</tr>
<tr>
<td>max</td>
<td>1</td>
<td>73.50</td>
<td>56.65</td>
<td>76.32</td>
<td>68.82</td>
<td>10.64</td>
<td>18.99</td>
</tr>
<tr>
<td>0</td>
<td>5</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>10</td>
<td>5</td>
<td>99.81</td>
<td>99.94</td>
<td>99.78</td>
<td>99.84</td>
<td>0.09</td>
<td>0.34</td>
</tr>
<tr>
<td>20</td>
<td>5</td>
<td>97.92</td>
<td>99.39</td>
<td>96.75</td>
<td>98.02</td>
<td>1.32</td>
<td>2.09</td>
</tr>
<tr>
<td>max</td>
<td>5</td>
<td>58.50</td>
<td>69.56</td>
<td>71.25</td>
<td>66.44</td>
<td>6.92</td>
<td>12.83</td>
</tr>
<tr>
<td>0</td>
<td>10</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>20</td>
<td>10</td>
<td>97.83</td>
<td>98.89</td>
<td>97.33</td>
<td>98.02</td>
<td>0.79</td>
<td>1.95</td>
</tr>
<tr>
<td>max</td>
<td>10</td>
<td>71.22</td>
<td>74.89</td>
<td>72.22</td>
<td>72.78</td>
<td>1.90</td>
<td>4.70</td>
</tr>
</tbody>
</table>
ZigBee – Sideband Interference

<table>
<thead>
<tr>
<th>Interference Bandwidth:</th>
<th>Seconds Between packets</th>
<th>Test 1:</th>
<th>Test 2:</th>
<th>Test 3:</th>
<th>Average:</th>
<th>Std.Dev. of Tests:</th>
<th>Std. Dev. of Nodes:</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>1</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>100.00</td>
<td>99.98</td>
<td>99.98</td>
<td>99.99</td>
<td>0.01</td>
<td>0.02</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>99.26</td>
<td>98.74</td>
<td>96.93</td>
<td>98.31</td>
<td>1.23</td>
<td>1.88</td>
</tr>
<tr>
<td>max</td>
<td>1</td>
<td>81.32</td>
<td>69.45</td>
<td>81.78</td>
<td>77.52</td>
<td>6.99</td>
<td>14.05</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>10</td>
<td>5</td>
<td>100.00</td>
<td>100.00</td>
<td>99.97</td>
<td>99.99</td>
<td>0.02</td>
<td>0.04</td>
</tr>
<tr>
<td>20</td>
<td>5</td>
<td>90.44</td>
<td>96.28</td>
<td>98.58</td>
<td>95.10</td>
<td>4.19</td>
<td>4.42</td>
</tr>
<tr>
<td>max</td>
<td>5</td>
<td>74.50</td>
<td>77.39</td>
<td>75.39</td>
<td>75.76</td>
<td>1.48</td>
<td>4.13</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>20</td>
<td>10</td>
<td>97.06</td>
<td>95.83</td>
<td>98.56</td>
<td>97.15</td>
<td>1.36</td>
<td>2.36</td>
</tr>
<tr>
<td>max</td>
<td>10</td>
<td>71.39</td>
<td>66.11</td>
<td>69.56</td>
<td>69.02</td>
<td>2.68</td>
<td>10.75</td>
</tr>
<tr>
<td>Interference Bandwidth:</td>
<td>Seconds Between packets</td>
<td>Test 1:</td>
<td>Test 2:</td>
<td>Test 3:</td>
<td>Average:</td>
<td>Std.Dev. of Tests:</td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td>-------------------------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>----------</td>
<td>-------------------</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>99.93</td>
<td>99.95</td>
<td>99.96</td>
<td>99.95</td>
<td>0.015</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>99.94</td>
<td>99.92</td>
<td>99.94</td>
<td>99.93</td>
<td>0.012</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>99.72</td>
<td>99.96</td>
<td>99.74</td>
<td>99.81</td>
<td>0.133</td>
<td></td>
</tr>
<tr>
<td>max</td>
<td>1</td>
<td>99.43</td>
<td>99.92</td>
<td>99.37</td>
<td>99.57</td>
<td>0.302</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>99.97</td>
<td>99.97</td>
<td>99.98</td>
<td>99.97</td>
<td>0.006</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>5</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100.00</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>5</td>
<td>99.97</td>
<td>99.94</td>
<td>100</td>
<td>99.97</td>
<td>0.030</td>
<td></td>
</tr>
<tr>
<td>max</td>
<td>5</td>
<td>99.97</td>
<td>100</td>
<td>100</td>
<td>99.99</td>
<td>0.017</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100.00</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>99.88</td>
<td>99.83</td>
<td>99.94</td>
<td>99.88</td>
<td>0.055</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>10</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100.00</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>max</td>
<td>10</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100.00</td>
<td>0.000</td>
<td></td>
</tr>
</tbody>
</table>
802.15.4, 802.11b/g/n Co-existence

802.11n (40 Mhz)
ch .6

802.11b/g/n
ch .1

802.11 b/g/n
ch .6

802.11 b/g/n
ch .11

802.15.4
ch .11

802.15.4
ch .17

802.15.4
ch .26

2.405 2.410 2.415 2.420 2.425 2.430 2.435 2.440 2.445 2.450 2.455 2.460 2.465 2.470 2.475 2.480
WSNs in the Wild

ISA100.11a node
Modular Instrumentation Stack

4 board stack
(incl. sensors)

3 board stack