Highly Accurate Quartic Force Fields, Vibrational Frequencies, and

Spectroscopic Constants for Cyclic and Linear C;H;"

Xinchuan Huang,™ Peter R. Taylor,”” and Timothy J. Lee ***
*SETI Institute, 189 Bernardo Ave., Suite 100, Mountain View, CA 94043, USA

"Victorian Life Sciences Computation Initiative and Department of Chemistry,
University of Melbourne, Vic 3010, Australia

‘NASA Ames Research Center, Moffett Field, CA 94035-1000, USA

Corresponding Author Email:  Timothy.J.I.ee @nasa.gov

Title Running Head: Rovibrational Spectroscopic Constants for C;H;" from Ab Initio Theory

' MS 245-6, Xinchuan.Huang-1(@nasa.gov

* 187 Grattan St, prtaylor@unimelb.edu.au

? MS 245-1, Timothy.J.Lee@nasa.gov, Corresponding author.



Abstract

High levels of theory have been used to compute quartic force fields (QFFs) for the cyclic and
linear forms of the C;H;" molecular cation, referred to as ¢c-C;H,;" and 1-C;H;". Specifically the
singles and doubles coupled-cluster method that includes a perturbational estimate of connected
triple excitations, CCSD(T), has been used in conjunction with extrapolation to the one-particle
basis set limit and corrections for scalar relativity and core correlation have been included. The
QFFs have been used to compute highly accurate fundamental vibrational frequencies and other
spectroscopic constants using both vibrational 2"-order perturbation theory and variational
methods to solve the nuclear Schrodinger equation. Agreement between our best computed
fundamental vibrational frequencies and recent infrared photodissociation experiments is
reasonable for most bands, but there are a few exceptions. Possible sources for the discrepancies
are discussed. We determine the energy difference between the cyclic and linear forms of C;H;",
obtaining 27.9 kcal/mol at 0 K, which should be the most reliable available. It is expected that
the fundamental vibrational frequencies and spectroscopic constants presented here for c-C;H;"
and 1-C;H," are the most reliable available for the free gas-phase species and it is hoped that
these will be useful in the assignment of future high-resolution laboratory experiments or

astronomical observations.



1. Introduction

The two lowest energy forms of C;H;" are cyclopropenyl cation and propargyl cation, though
the energy difference between these is large — with the cyclic form being approximately 26
kcal/mol lower in energy.' Cyclopropenyl cation is the smallest aromatic carbocation, which
explains its stability, but it should be noted that even with this large energy difference, it is
common to find both isomers when they are produced in the gas-phase, suggesting that they form
from different mechanisms. There has been considerable experimental and theoretical work on
both isomers, and we refer the interested reader to Refs. 1-9 and references therein. Here, we
discuss a few of the earlier works that relate to this study, but first we note that for convenience
we shall refer to cyclopropenyl cation as c-C;H;" and propargyl cation as 1-C,H,*, and when
referring to both isomers we use C;H,".

Our interest in c-C,H;" stems from astrochemistry. Cyclopropenylidene, c-C,H,, which
possesses a large dipole moment, has been shown to be ubiquitous in the interstellar medium
(ISM),'”"* and its main formation pathway has been proposed to be due to dissociative
recombination of an electron with c-C;H;"."*'* Hence there has been considerable interest in
detecting c-C;H;" in the ISM for more than two decades. However, c-C;H;" possesses D;,
symmetry, resulting in no permanent dipole moment, and thus is not detectable via microwave
(rotational) spectroscopy. Furthermore, there is no experimental high-resolution rovibrational
spectrum available to analyze astronomical observations. In fact, until recently there was no gas-
phase spectrum of its vibrational frequencies, but instead only matrix isolation spectra or spectra
from salts.'>'® That changed in 2002 when Dopfer et al** used infrared photodissociation (IRDP)
experiments to observe the C-H stretching region of C;H;" complexed with various ligands. In

2010, Ricks et al’ improved upon these experiments by measuring the gas-phase infrared (IR)



spectrum of the isomers of C;H;" that were associated with one Ar atom. The results of these
latter two studies are generally consistent with the matrix isolation experiments, though many
more bands were assigned in the Ricks et al IRPD experiment, going down to approximately
1100 cm™. One inconsistency that was noted by Ricks et al, however, was that the assignment
for the doubly degenerate CH stretching mode, v,(e'), at 3182 cm™ was about 44 cm™ higher than
theory. They attributed this to problems in scaling factors for the theoretical calculations, and
suggested that further theoretical work was needed. Thus one of the purposes of the present
study was to provide theoretical predictions of the fundamental vibrational frequencies of both
C,H;" wherein scaling is not required.

Determination of an anharmonic force field and fundamental vibrational frequencies has
actually been reported for c-C;H;* in two 1989 studies by Lee et al® and by Xie and Boggs.” Lee
et al computed a full quartic force field (QFF) at the Hartree-Fock level of theory to determine
anharmonic corrections via second-order rovibrational perturbation theory which they then
appended to harmonic frequencies computed at the second-order Mgller-Plesset (MP2)
pertubation level of theory. They reported an array of spectroscopic constants from their
anharmonic analysis including anharmonic constants, vibration-rotation interaction constants,
and quartic and sextic centrifugal distortion constants for c-C;H;" and its deuterated
isotopologues. One interesting issue they uncovered was the fact that the standard formula used

1719 can be incorrect when

to compute the spectroscopic constants for symmetric top molecules
there is a non-totally symmetric, non-degenerate vibrational mode, as there is for c-C;H,". The
issue was discussed in some detail and Lee et al confirmed the modifications they made to the
standard symmetric top formula by slightly perturbing the mass of one atom thereby slightly

breaking the D3, symmetry and forcing the SPECTRO program® to use an asymmetric top

analysis. Xie and Boggs used the MP4(SDQ) level of theory (fourth-order Meller-Plesset



perturbation theory including single, double, and quadruple excitations, but excluding the more
expensive triple excitations) to construct a partial potential energy surface that included diagonal
force constants through sixth-order, but only second-order off diagonal force constants (in a local
internal coordinate system). They then used an approximate variational approach to solve the
nuclear Schrodinger equation. A detailed comparison of the two studies was presented in the
Lee et al paper. In short, for the levels of theory used, both studies gave reasonable agreement
with the matrix isolation experiments available at the time and with each other, though it is
interesting to note that Lee et al obtained 3178 cm™ for v4(e’) while Xie and Boggs obtained
3149 cm’™.

The higher energy isomer, 1-C3Hs", has also received considerable attention from both theory
and experiment. It was observed in both of the IRPD experiments mentioned above,”” and it has
also been studied recently at high levels of theory by Botschwina and Oswald.® Botschwina and
Oswald used an explicitly correlated method, CCSD(T)-F12x (x=a,b),”"** which is based on the
singles and doubles coupled-cluster method that includes a perturbational correction for triple
excitations, denoted CCSD(T).” They computed a five dimensional potential energy function,
involving the totally symmetric modes, which included up through sixth-order diagonal constants
and up through fourth-order off diagonal force constants, and solved the nuclear Schrodinger
equation variationally. The five dimensions included the symmetric CH, stretch, the free
acetylenic CH stretch, the CH, scissor mode, and the two CC stretching modes (a correction was
applied to the antisymmetric CH, fundamental to account for the neglect of anharmonic
coupling). Botschwina and Oswald found generally good agreement with the IRPD experiment
of Ricks et al.

More recently Botschwina and Oswald used the CCSD(T)-F12x (x=a,b) levels of theory to

examine the equilibrium structure and harmonic vibrational frequencies of Ar complexes of both



c-C,H," and 1-C,H,*’ They located three distinct minima for Ar complexes of both isomers,
though one of the C, minima for 1-C;H;" was noticeably lower in energy than the other two
minima. For the c-C;H;" isomer, all three minima were relatively close in energy. The results of
this latter study reaffirmed Botschwina and Oswald’s assignment of the 3238 cm™ band in Ricks
et al’s IRPD experiments to the acetylenic CH stretch vibration in 1-C;H;".

The accuracy of state-of-the art ab initio predictions for fundamental vibrational frequencies
has improved considerably in the last twenty years, and it is common now to determine
fundamental vibrational frequencies to within a few wavenumbers (cm™) of high-resolution
experiments (for example, see Refs. 24-27). To this end, theoretical spectroscopists predicted
more than a decade ago™ that state-of-the art ab initio predictions were becoming reliable
enough that it should be possible to assign an astronomical spectrum using only ab initio
predictions and without high-resolution laboratory experimental data for difficult species, such as
small molecular anions and cations. This has now occurred only a few years ago when

Cernicharo et al®

reported detecting the small molecular anion C;N° in the C-rich star
IRC+10216 and based their assignment on the ab initio calculations of Aoki* and Botschwina
and Oswald.”!

Thus our goal in the present study is to compute highly accurate QFFs for the c-C;H;" and I-
C,H;" molecules, and to predict their rovibrational spectroscopic constants to very high accuracy.
These data are of interest to astronomers now more than ever given that the Herschel Space
Observatory is in operation and collecting high-resolution data, the NASA Stratospheric
Observatory for Infrared Astronomy (SOFIA) has begun its series of initial science flights, and
the James Webb Space Telescope (JWST), often referred to as the replacement to the Hubble

Space Telescope, will launch later in this decade. Further, the Atacama Large Millimeter Array

(ALMA) is set to start early science operations in late 2011. Some of the instruments for these



telescopes operate at longer wavelengths and thus are not useful for rovibrational spectroscopy
of ¢-C;H;*, but they may be able to detect deuterium and "’C isotopologues due to their increased
sensitivity, which is especially interesting for isotopologues of c-C,;H,". The parent isotopologue
has no permanent dipole moment, hence it cannot be observed via rotational spectroscopy, but
isotopologues that do not retain D;, symmetry will exhibit a small permanent dipole moment
since the center of nuclear charge and center of mass of the molecule will no longer be the same
(and the molecule rotates about its center of mass). For 1-C;H,", the lowest energy vibration may
be within range for instruments on all of the above telescopes, but since 1-C;H;" possesses a
permanent dipole moment, the parent isotopologue as well as all deuterium and "C
isotopologues may be detectable. However, a full spectroscopic analysis of all deuterium and
C isotopologues of ¢-C;H;* and 1-C;H;" is beyond the scope of the present study, and will be
reported separately.”

The Theoretical Approach is described in the next section, followed by Results and

Discussion. Our Conclusions are presented in the final section.

2. Theoretical Approach

A. Details of the Electronic Structure Methods
We first describe details of the electronic structure calculations, including details of the
corrections that have been included. In general, we follow the approach we have developed in

*** in which we extrapolate CCSD(T) energies to the one-particle basis set limit,”

recent years
followed by addition of corrections for scalar relativity’® and core correlation. The valence
CCSD(T) calculations were performed in conjunction with Dunning’s correlation consistent

basis sets.”’” We will denote the cc-pVXZ (X=T, Q, or 5) basis sets as TZ, QZ, or 5Z. A

correction for scalar relativity is evaluated at the CCSD(T)/TZ level of theory using the Douglas-
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Kroll approximation.”® As we pointed out previously,” the scalar relativity integrals lose
precision when going beyond the TZ basis set, which is problematic for computing QFFs. Core
correlation was included as a correction by performing CCSD(T) calculations, with and without
the core correlated, using the Martin-Taylor basis set designed for this purpose.*

QFFs have been determined according to the prescription described previously.”** For both c-
C;H;" and 1-C;H;", a reference geometry was determined at the CCSD(T)/5Z level of theory with
corrections for core correlation and scalar relativity taken into account. A grid of displacement
geometries centered on this reference structure (and based on the symmetry internal coordinates
discussed later) was then used for all calculations. The number of unique geometries was 1961
and 2479 for c¢-C,H," and 1-C;H;*, respectively. As indicated, CCSD(T) energies are
extrapolated to the one-particle basis set limit using a three-point formula that experience has
shown to be reliable.””** The scalar relativity and core-correlation corrections are added, and
the energies are used in a least squares fit of a QFF for each molecule. For c-C;H;*, the 1961
unique energies were augmented to a redundant set of 3837 energies that was used to fit 460
unique coefficients in the QFF. The sum of the squared residuals was 1.31 x 10" a.u.>. For I-
C,H,’, the 2479 unique energies were augmented to a redundant set of 4565 energies that was
used to fit 572 unique coefficients in the QFF (sum of the squared residuals = 2.61 x 10" a.u.?).
The final QFF for each molecule was then obtained by an analytical transformation to the exact
minimum (i.e., to where the gradient terms are exactly zero). We note that it has been shown that
some molecules with C-C multiple bonds exhibit erratic behavior for bending frequencies,

including molecules like acetylene, ethylene, and benzene,”*

although cyclopropenylidene does
not show this behavior.* The problem is associated with ensuring that the one-particle basis set

is properly balanced with respect to saturation in the lower angular momentum functions (i.e., s

and p functions) and inclusion of higher angular momentum functions. Though we report only



our best QFF here for both ¢c-C;H,;" and 1-C;H;*, we have examined in detail several QFFs for
both isomers and found that neither suffers from this issue. All electronic structure calculations

were performed with the MOLPRO 2006.1 program.*

B. Details of the Coordinate Systems and the Vibrational Methods
For both molecules, the QFFs were determined in symmetry internal coordinates. For 1-C;H,",
we use the following definition of symmetry internal coordinates:

S,(A)=R,(C-H);

S,(A)=(R, +R,,)/2;

Sy(A) = (R,[C = C]+R,[C = C])/N2;
Sy(A) = (R,[C=C|-R,[C=CD/2;
S«(A)=6,(LH,CH,);

So(B) = (R, - R,)/\2;

S.(B,) = LINI(C = C = C = Four);
Sy(B,) = LINI(C = C = H = Fou);
S,(B,) = (LH,CC - LH,CC)/2;
S,(B,)=LINI(C=C=C - ru);
S,(B,)=LINI(C-C=H-ru);
S,(B,)=t(H, -C-C-H,)

where the simple internal coordinates for I-C3H;" are given in Fig. 1. Note that S; and Sy are in-
plane bending modes and S;¢ and S;; are out-of plane bending modes. The definition of LINI(a-

b-c-d) and ©(a-b-c-d) are taken from the INTDER program:*®

LINW(a-b—c—d)=sin"'[ea - (s x era)];

t(a-b-c—d)=sin"[en(ew x ect)/(sing,, -sing,.,)]

where the e are unit vectors defined as e,, = e, — e,. The reference vectors rin and 7. were

defined as follows:



Fin = Ra x (ﬁla Xﬁlb)

;out = ;éz X;in = Féz X(;éz X(Elu X Elb))

Fig.1 also gives the planar equilibrium and ground state (GS) vibrationally averaged structures
for both c-C;H;" and 1-C;H;", as well as the GS vibrationally averaged rotational constants. The
vibrationally averaged quantities are the “position average,” i.e., r,, computed from 2"-order
perturbation theory. Symmetry relationships for the quadratic, cubic, and quartic force constants
are given later.

For c-C;H;", we use the exact same definition of symmetry internal coordinates as given by
Lee et al.® They are repeated here for convenience:

Si(a,)=(R, +R, +R,)/3,

Sy(a)=(r+n+ ”3)/\/55

Si(ay)=(o +a;+0; —a, —a, _aa)/\/g,

Sia(e) = (21 =1, = 1) /6,

Seu(e) = (2B, = B, = B5) /6,

Se,(e)=(a,+a, +a, +a, -2a, - 20:6)/\/5,

$y(@,") = (1 +72 +75) /43,

Ss.(€") =2y, -y, - )/3)/\/69

Su(e) = (1, 1) /2,

Ssp(e) = (B, = By) /N2,

Sep(e)=(a, +a;-a, -a,)/?2,

Sw(€) = (1, =75)/42,
where the simple internal coordinates R, r, o, 8 are the bond lengths and bond angles defined in
Fig. 2, and vy refers to the out of plane bending angle for a given C-H bond with respect to the
plane defined by the three C atoms (see Fig. 2).

Fundamental vibrational frequencies were computed using either a vibrational variational
method (VAR) or second-order perturbation theory (PT).'”"* The MULTIMODE program®*’ was

used for the VAR calculations, while the SPECTRO program® was used for the PT calculations,
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and for computing other spectroscopic constants. For 1-C;H,*, the QFF was analytically
transformed into a simple-internal, Morse-cosine coordinate system for the vibrational
variational calculations. The benefits of using Morse coordinates for the stretches when using a
QFF in vibrational variational calculations can be traced back to Meyer et al** and Carter and

150

Handy*’ more than 20 years ago. Later in 1994, Dateo et al* first defined the Morse § parameter

solely on the computed force constants (i.e. p=-F;/(3F;)) instead of optimizing it with respect to
experimental data. We follow this § definition, which requires that the transformed diagonal
cubic force constant for the stretch vanish. For c-C;H;, it is necessary to use a symmetry
adapted Morse-cosine coordinate system (for the stretches and bends) because it is a ringed
system. In addition, instead of the out-of-plane coordinates (S,, S, Ss,), we use the sine of these
coordinates. Rather than transforming the symmetry internal coordinate QFF into the symmetry
adapted Morse-cosine-sine coordinate system, we refit the QFF. We note that transformation of
the QFF into a Morse-cosine coordinate system is important (and in the case of c-C,H;", a
Morse-cosine-sine coordinate system), otherwise some fundamental vibrational frequencies, in
particular stretching frequencies, can be too high by tens of cm™. As discussed in Ref. 50, the

Morse-cosine coordinate system serves to build in the correct limiting behavior for the potential

function.

3. Results and Discussion

A. Equilibrium Structures and Harmonic Frequencies

The equilibrium structure, equilibrium rotational constants, and harmonic frequencies for c-
C,H;" and 1I-C,H," are presented in Tables 1 and 2, respectively. The equilibrium structures
obtained in this work have somewhat shorter bond distances relative to those published
recently® using CCSD(T*)-F12a, and the HCH angle determined here for 1-C;H,* is about 1°

11



larger. We note that the longer C-C bond in 1-C;H;", R, (see Fig. 1), is intermediate between a
typical double and single bond length, but it is much closer to that in ethylene rather than ethane.
Conversely, the corresponding harmonic frequency w, is intermediate between a typical double
bond and a single bond, but its value is closer to that for ethane rather than ethylene. Previous
authors have referred to this C-C bond as a “single bond,” so we adopt that terminology here, but
we note that it is intermediate between a single and double bond, which also means that there
will not be free rotation of the terminal CH, group about this bond. The shorter C-C bond is very
much like a typical triple bond both in its bond length and harmonic frequency.

The harmonic frequencies obtained here for 1-C,H," are in reasonable agreement with those
given by Botschwina and Oswald®, though our stretching harmonic frequencies are generally a
few cm™ higher, consistent with the shorter bond lengths obtained in the present work. We note
that we use a different convention for the symmetry labeling of the modes relative to Refs. 5 and
8 — essentially the B, and B, labels are reversed. That is, following the convention that Herzberg
used for C,, planar molecules, B, is used for in-plane antisymmetric modes and B, is reserved for
out-of-plane vibrations, and that is the convention adopted here. For c-C,H,*, the harmonic
frequencies given in Table 1 are in reasonable agreement with the MP2 values from Ref. 6 and
the MP4(SDQ) values of Ref. 7, given the differences in levels of theory.

As indicated previously, the energy difference between c-C;H," and 1-C,H," is about 26
kcal/mol, but the levels of theory used in the present study should yield a much more definitive
value. The energy that we obtain at the minimum is -115.7647467662 E, and -115.717377491
E, for c-C;H,* and 1-C,H,", respectively. The electronic energy difference is thus 10,396.4 cm™.
The anharmonic zero-point energies given by 2"-order PT are 9841.5 cm” and 9208.0 cm™,
which includes the E, term (the polyatomic equivalent of the a, Dunham coefficient for

diatomics).”’ The corresponding MULTIMODE zero-point energies are 9823.7 cm™ and 9189.1
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cm’, for c-C;H;* and 1-C,H;", respectively. The 0 K energy difference we obtain is 27.9
kcal/mol, which is slightly larger than what has been reported experimentally.' While the
experimental value is not at 0 K, it also has a few kcal/mol uncertainty — see Ref. 1 and
references therein for more details. The 27.9 kcal/mol OK value obtained in the present work

should be the most reliable available.

B. Fundamental Vibrational Frequencies and Spectroscopic Constants

The GS vibrationally averaged structure and rotational constants, and the fundamental
vibrational frequencies obtained for c-C;H," in the present work are presented in Table 3. Other
spectroscopic constants obtained from 2" order perturbation theory are presented in Table 4
(anharmonic constants) and Table 5 (vibration-rotation interaction constants, and quartic and
sextic centrifugal distortion constants). For the variational calculations, we used four mode
coupling and five mode coupling in order to demonstrate the convergence. Comparison of the
fundamental vibrational frequencies for the two columns labeled VCI 4MR and VCI SMR shows
that indeed there is excellent convergence, with the largest difference being only 1.5 cm™ for v.,.
4MR/5MR refer to the number of modes coupled in the potential energy expansion formula,
while 4-mode coupling was adopted in all Coriolis integrations. For most vibrational modes, the
difference is 1.1 cm™ or less, and for three of the modes the difference is less than 1 cm™. Based
on these comparisons and experience, we would estimate that the variational fundamentals are
converged to better than 1.0 cm™ for the VCI 5MR values. Comparison of the VCI 5MR results
with the fundamentals obtained from 2"-order perturbation theory shows good agreement with
the two approaches, with the differences being consistent to what we usually find for tightly
bound molecules that do not possess a large amplitude motion. Specifically, the largest

difference is 3.8 cm™ for v,, but this mode is affected by a Fermi type 1 resonance with 2v,. For
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most of the vibrational modes the difference is less than 3 cm’, again showing that 2"-order
perturbation theory is a good approximation for solving the nuclear Schrodinger equation for a
tightly bound molecule.

Our best results should be the VCI SMR fundamentals. Comparison of these to the available
experimental data shows reasonable agreement for the matrix isolation values where we might
expect differences of up to 20 cm™ or so due to a matrix shift. In fact, the largest differences
between the matrix isolation results and our VCI 5MR values are only 9.6 and 12.0 cm™ for v,
and vg, which are both determined indirectly (see Refs. 15 and 16 for details). Comparison of the
VCI 5MR results to the IRPD values from Ricks et al’ shows very good agreement for vs, but for
v, we obtain a value that is 47.2 cm™ lower than their assignment at 3182 cm™. Thus our best
estimate for v, is consistent with previous theory and calls into question their assignment.
Further, the value we obtain for v,, 3134.8 cm’, is more consistent with the assignment from
Dopfer et al.>* One of the reasons we performed the variational calculations in the present study
was to be certain that we had v, described properly since our 2"-order perturbation theory results
did not agree with the assignment from Ricks et al. Given the levels of theory used in the present
study and the fact that we have ruled out any possible resonance issues in solving the vibration
problem, we can definitively conclude that the 3182 cm™ band observed by Ricks et al is either
not representative of the free gas-phase spectrum for c-C;H," or it is due to a different vibrational
mode or species. We have examined the variational CI results for possible combination bands or
overtones in the variational calculations that might explain the band at 3182 c¢cm’, but none
appear for either c-C,;H;" or I-C;H;*, at least not within 10 cm™. There is a doubly degenerate
band involving three quanta, 2v+vs, that is very close to 3182 cm™, but this seems unlikely. It
may be that the band observed at 3182 cm™ is shifted somewhat due to complexation with the Ar

atom, or it may be due to a different species.
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Given the levels of theory used in the present study, the spectroscopic constants presented for
c-C;H;" in Tables 4 and 5 should be highly accurate, and it is hoped these will be useful in the
future assignment of high-resolution rovibrational spectra from either laboratory experiments or
astronomical observations.

The vibrationally averaged structure and rotational constants, and the fundamental vibrational
frequencies obtained for 1-C;H;" in the present work are presented in Table 6. These are
“position averaged” values (i.e., r,) computed with 2"-order perturbation theory. Other
spectroscopic constants obtained from 2" order perturbation theory are presented in Table 7
(anharmonic constants) and Table 8 (vibration-rotation interaction constants, and quartic and
sextic centrifugal distortion constants). Comparison of the VCI 4MR and SMR results contained
in Table 6 shows that the variational calculations are converged to better than 1 cm™, similar to
the situation for ¢-C,H,". In fact, the largest difference is only 0.8 cm™ for v,. Comparison of
the VCI SMR and 2"-order perturbation theory fundamental vibrational frequencies for 1-C;H,"
shows reasonable agreement, though not as good as found for c-C;H;". The largest differences
occur for the C-H stretches v, and v, being 10.3 and 9.1 cm™', respectively. We note that vy is
involved with a significant Fermi type 2 resonance with v; + v, though the difference between
the two components of the resonance is fairly consistent between 2"-order perturbation theory
and VCI 5MR (35.7 versus 34.0 cm™). Differences between 2"-order perturbation theory and
VCI 5MR for the other fundamental vibrational frequencies are more in line with the differences
we found for c-C;H,". Interestingly, the agreement between 2"-order perturbation theory and
VCI 5MR for the 2v, overtone and the v,, + v, combination band is not nearly as good, which is
expected as one moves into the realm of less pure states and stronger coupling.

Agreement between our best VCI 5MR fundamental vibrational frequencies and those

obtained by Botschwina and Oswald® using the CCSD(T*)F-12a/VTZ-F12 level of theory is
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modest. The largest differences occur for v, (15 cm™) and v, (27 cm™). There are many
possible sources for these differences, with the most significant probably being the use of an
approximate (T) contribution by Botschwina and Oswald, their neglect of core correlation, and
their neglect of most coupling to non-totally symmetric vibrational degrees of freedom in solving
the variational nuclear Schrodinger equation.

Comparison of our best VCI SMR results with the experiments of Ricks et al shows reasonable
agreement for most of the assignments with a few exceptions. Our best value for v, agrees very
well, confirming the conclusion by Botschwina and Oswald’ that the 3238 cm™ band observed by
Ricks et al is essentially a free acetylenic C-H stretch. The agreement for v,, v;, and v, is also
very good, with differences all less than about 10 cm™. Agreement for the overtone band 2v, is
reasonable, being about twice the difference for the v, fundamental, and agreement for v is also
reasonable as the assignment by Ricks et al falls between the two components of the Fermi type
2 resonance between v, and v, + v,. Agreement for vs, v,,, and the combination band v, + v, is
more modest, however. Botschwina and Oswald® have already questioned the reliability of the
assignment for the totally symmetric mode vs. Given that the lowest energy structure found for
1-C;H;" * Ar has the Ar atom out of plane and over the C-C single bond, and that this structure is
quite a bit lower in energy than the other minima,’ it seems plausible that the C-C single bond
stretch v5 would be significantly impacted in the complex. This same reasoning could be applied
to v,o, which is described as a CH, out-of plane wag, and to the combination band v,, + v, since
V), 1s an out-of plane bending mode that involves the CCC backbone. Thus, the discrepancies
found between the assignments of Ricks et al and our VCI 5SMR results can reasonably be
attributed to shifts in the vibrational frequencies as a result of complexation for 1-C;H;".

For [-C,H,*, the effects of scalar relativistic corrections are small: ~ -5E-5 A on the C-H bond
lengths and ~-3E-4 A on the CC bonds; less than or equal to 0.4 cm™ on harmonic frequencies;
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and -6 to 0 cm™ for the vibrational fundamentals. As expected from previous experience, core-
correlation effects are much larger on the geometry (-1.3E-3 A for the CH bonds and -3E-3 A for
the CC bonds) and harmonic frequencies (+2 to +7 cm™), but only slightly larger for the
fundamentals (+2 to +8 cm™, except +10.7 cm™ for v,)). For ¢-C;H;*, the effects of scalar
relativity corrections are smaller than found for I-C;H,": -2.1E-4 A for R.c; -5.5E-5 A for rey;
0.0-0.5 cm™ for harmonic frequencies; and -1 to +2 cm™ for fundamentals (except +8 cm™ for
v,). However, core-correlation effects are larger: -5.4E-3 A for Rq; -1.4E-3 A for rey; +2 to +7
cm’ for harmonic frequencies; and +3 to +9 cm™ for fundamentals (except +0.3 cm™ for vy).
More details are available upon request.

Given the levels of theory used in the present study, the spectroscopic constants presented for
1-C;H,;" in Tables 7 and 8 should be highly accurate, and it is hoped these will be useful in the
future assignment of high-resolution rovibrational spectra from either laboratory experiments or

astronomical observations.

C. Quartic Force Fields

For completeness, the best QFFs computed in this work are given in Tables 9 through 12.
Specifically, Table 9 contains the quadratic and cubic force constants and Table 10 the quartic
force constants for c-C;H;*. Table 11 contains the quadratic and cubic force constants and Table
12 the quartic force constants for 1-C;H;". These are given in symmetry internal coordinates and
symmetry relationships between the force constants are given in the tables. The force constants

presented are based on the following quartic expansion:

=i )

i,j.k i,j.k.1

1 1 1
\% :EZJFAA. + gEFijkAiAjAk +oa YEAAAA,

17



where the summations are unrestricted. We note that for the force constant labels for 1-C;H;", we
have labeled modes 10, 11, and 12 as x, y, and z, respectively, in order to avoid confusion. So,

for example, the diagonal quadratic force constant for mode 10 is given as F,,.

4. Conclusions

Accurate CCSD(T) QFFs have been computed for the ¢-C,H;" and 1-C;H;" molecular cations.
Extrapolation to the one-particle basis set limit has been included as well as corrections for scalar
relativity and core correlation. Anharmonic spectroscopic constants have been determined from
2"order perturbation theory and fundamental vibrational frequencies have been evaluated from
2"order perturbation theory and from variational calculations. Agreement between 2"-order
perturbation theory and variational CI calculations for the fundamental vibrational frequencies is
very good. Agreement between our computed fundamental vibrational frequencies and recent
IRPD experiments is good with a few exceptions. The 3182 cm™ band assigned in one recent
IRPD experiment’ to v, for c-C;H," does not agree well with our calculations where we obtain
3134.8 cm™ (VCI 5SMR), but our value does agree well with other recent IRPD experiments.**
We have examined our VCI calculations for possible combination and overtone bands, but can
find only one band that could be a reasonable match and this requires three quanta. Hence we
conclude that the 3182 cm™ band may be a combination or overtone band that is perturbed
somewhat by the presence of the Ar atom, or it may be due to a different species. For 1-C;H;",
agreement between the IRPD experiments and our variational calculations for the fundamental
vibrational frequencies (plus one overtone and one combination band) is reasonable except for
Vs, Vo, and the combination band v,, + v,. However, a recent ab initio study’ that explored the

potential energy surface of 1-C,;H," interacting with an Ar atom shows one minimum quite a bit

18



lower than the others, and this structure would likely exhibit perturbations to vs, v,,, and the
combination band v,, + v,, so a plausible explanation for these discrepancies is given.

The fundamental vibrational frequencies and spectroscopic constants presented here for c-
C,H;" and 1-C;H;" should be the most reliable available for the free gas-phase species and it is
hoped that they will be useful in the assignment of future high-resolution laboratory experiments
or astronomical observations. Finally, we compute what should be the most reliable energy

difference between the c-C,H," and 1-C,H,", obtaining a value of 27.9 kcal/mol at 0 K.
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Figures and Tables

Figure 1.

Equilibrium structures, and vibrationally averaged structures (italic numbers) and

rotational constants of c-C3;H;" and 1-C3H; " determined from our best QFF. See text for details.
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Fig. 2. Internal coordinate definitions used for the c-C3H;" cation.




Table 1. Equilibrium structure (A / deg), rotational constants (cm™), and harmonic frequencies
(cm™) for ¢-C3H;", determined from our best QFF (CCSD(T)/cc-pV(T,Q,5)Z extrapolation +

core-correlation + scalar relativistic corrections). See text for more details.

Geometry Harmonic Vibrational Frequencies
Parameters Mode Symmetry and Description Freq
R(C-C) 1.3590363 ] a,’ (breathing, C-H str — C-C str) 33123
r(C-H) 1.0777461 Y a,’ (breathing, C-H str + C-C str) 1650.8
A.= B. 1.03260 w3 a,’ (in-plane internal torsion) 1058.2
C. 0.51630 Wy ¢’ (in-plane deformation) 3265.1
£C-C-H 150.0 s ¢’ (in-plane wagging) 1326.7
£LC-C-C 60.0 s ¢’ (in-plane scissoring) 946.0
W7 a," (symmetric out-of-plane bends) 764.5
g ¢"(asymmetric out-of-plane bends) 1023.4




Table 2. Equilibrium structure (A / deg), rotational constants (cm™), and harmonic frequencies
(cm™) for [-C;H;", determined from our best QFF (CCSD(T)/cc-pV(T,Q,5)Z extrapolation +
core-correlation + scalar relativistic corrections). See text and Fig.1 for more details and the
definition of R;-R4 and 6.

Geometry Harmonic Vibrational Frequencies

Parameters Mode Symmetry and Description Freq
R 1.085506 W a; (C-H str) 3367.15
R, 1.345571 Ny a, (CH; sym str) 3122.73
R; 1227265  ws a; (C=C str) 2131.15
Ry 1.072298 Wy a, (CH; bending) 1483.44
0, 120.355 s a; (C-C str) 1137.60
£C-C-H 180.0 s b, (CH; anti-sym str) 323242
£LC-C-C 180.0 7 by CH, group rocking 1039.76
g b, (CCH in-plane linear bend) 631.00
A 9.53209 W9 b (CCC in-plane linear bend) 292.51
B, 0.32329 W10 b, (CH; out-of-plane wag) 1120.50
C. 0.31269 W1 b, (CCH out-of-plane linear bend) 882.00
W b, (CCC out-of-plane linear bend) 254.71




Table 3. Vibrationally averaged structure (A / deg), rotational constants (cm™), and vibrational
fundamental frequencies (cm™) for c¢-C3Hi', determined from our best QFF. 2™-order
Perturbation Theory (2™ PT) and vibrational variational CI results, where nMR represents the
highest mode coupling level in the potential term expansions, are presented and compared to

experiment. See text for more details.

Zero-Point Structure and Rotational Constants
R,(C-C) 1.3658234 Ao=B, 1.02610
R,(C-H) 1.0806204 Co 0.51178

Anharmonic Vibrational Analysis
VCI VCI c

nd d
Mode 27-PT AMR SMR Exp Exp Exp
vi(a') _>33117716'76a 3174.8 31754 3183
va(ar') _>11662108'73b 1622.0 1622.1 1626
vs(ay) 1040.3 1039.3 1040.6 (1031)
3125+4°
va(e') 3131.7 3133.8 3134.8 3138 3182 3129°
3130¢
vs(e') 1299.6 1295.9 1296.2 1290 1293
ve(e') 924.2 925.9 927.0 927
vi(az") 756.6 755.6 757.1 758
vs(e”) 1004.5 1000.9 1002.0 (990)
ZPE 9841.5 9833.2 9834.0

* Fermi type 1 resonance with 2v,
® Fermi type 1 resonance with 2v;

‘ Refs. 15 and 16.
I Ref. 5.
°Ref. 2.
"Ref. 3.
£ Ref. 4.



Table 4. The x,, and g, anharmonic constant matrices for c-C3H;' determined from our best

QFF. All values are in cm™. See text for more details.

Mode 1 2 3 4 5 6 7 8

1 -18.820

2 -2.749 -3.596

3 -6.862 -3.610 -1.030

4 -75.767 -2.134 -5.084 -28.685

5 1.634 -12.513 -6.429 0.943 -6.667

6 -7.881 -2.876 -1.420 -6.993 -3.418 -1.647

7 -7.703 -3.452 0.727 -6.373 -0.076 -1.681 -1.811

8 -7.001 -2.323 3.143 -5.993 1.398 1.159 -1.541 0.077
Mode 4 5 6 8

4 9.532

5 -0.684 3.384

6 0.064 -0.361 0.762

8 -0.073 -0.287 -0.182 0.578




Table 5. Vibration-rotation interaction constants and quartic and sextic centrifugal distorsion

constants for c-C3H;". See text for more details.

Vib-rot Constant (MHz

Distortion Constant

Watson S reduction

Mode o® a’ (MHz) (Hz) (MHz) (Hz)
1 92.1 459 | Taaaa -0.291 Dyy, 0.183 | Dy 0.073 Hy 0.259
2 90.0 449 | Thoobb -0.291  Dpyp 0335 | Dy -0.122 Hxi -1.119
3 -13.8° 16.6 | Tocee -0.023 D 0.001 | Dg 0.055 Hgy 1.466
4 85.7 422 | Taab -0.291 Dy 0.956 d; 0.000 Hx  -0.605
5 -15.2 42.1 | Tasce -0.047 Dgp,  -0.179 d, 0.000 h; 0.000
6 137.8% 21.7 | Thobee -0.047 Dy -0.171 h 0.000
7 -109.8*  -10.9 Dyec 0.002 hs -0.038
8 23.7* 264 Dpec 0.002

Dy  -0.171
Dgpe  -0.342

# Modes for which Coriolis resonance has been taken into account.



Table 6. Vibrationally averaged structure (A / deg), rotational constants (cm™), and vibrational
fundamental frequencies (cm™) for 1-C;H;", determined from our best QFF. 2" order
Perturbation Theory (2™ PT) and vibrational variational CI results, where nMR represents the
highest mode coupling level in the potential term expansions, are presented and compared to

experiment. See text for more details and Fig. 1 for coordinate definition.

Zero-Point Structure and Rotational Constants

Ry 1.095770 6 120.284
R, 1.353993 Ao 9.40357
Rs 1.236271 By 0.31956
Ry 1.068242 Co 0.30861

Anharmonic Vibrational Analysis

2" PT Variational CI Exp ¢
4MR 5MR
vi (4) 3228.7 3238.9 3239.0 331233;
N 2997.0 2999.2 2998.7 3004
vs (4) 2084.0 2082.2 2082.2 2077
Vs (4) 1429.8 1433.7 1434 .4 1445
vs(4;) 1128.5 1131.9 1131.8 1222
v (B) 3061.9 3070.8 3071.0 3093
3097.6 3104.5 3105.0 3113
v7 (B)) 998.0 999.8 1000.6
v (B) 598.0 607.8 607.7
vo (B)) 294.0 294.2 294.8
Vio (B2) 1054.6 1057.9 1058.1 1111
vii (B) 859.7 861.8 861.9
Viz (B) 249.3 251.8 251.7
2vy 2836.9 2856.8 2857.8 2878
Vistvy 1676.4 1695.2 1695.5 1755f
Vstvs 3193.4 3202.0 3201.8 3311894}//3;‘;

* Fermi resonance Type 1 with 2v,
® Fermi resonance Type 2 with vi1+vy,
¢ Fermi resonance Type 2 with vi+v;

I Ref. 5.
°Ref. 2.
"Ref. 3.
£ Ref. 4.



Table 7. The matrix of anharmonic constants x,; for /-C3H3', determined from our best QFF. All

values are in cm™. See text for more details.

Mode 1 2 3 4 5 6 7 8 9 10 11 12
1 -54.889

2 -0.146 -27.831

3 -5.779  -1.751  -8.478

4 -1.230 -31.736  -3.781 -2.102

5 1.635 -2.248 -15.680 -3.110 -0.881

6 -0.335 -113.563  -0.901 -21.757 -1.314 -32.215

7 -1.719 -11.150 -2.502 -17.450 -2.595 -11.681 -3.844

8 -20.642  -2.628 -11.108 -6.735 -2.675 -2.796 -8.808 -5.238

9 -2.301  -0.575 -8.408 -2.241 3.420 -0.498 -1.749 -2.636 -0.679

10 -3.339 -10.399  -6.230 -5.004 -3.113 -20.36 -4.794 -16.356 -2.625 -9.210

11 -20.948  -1.829 0992 -2.515 -3.018 -1.529 -3.121 27.704 1.906 -13.415 -6.040

12 -2.493  -1.797 -5.193  -3.296 7.240 -1.374 -2.602 1.710 21.446 -9.393 -4.744 -2.569




Table 8. Vibration-rotation interaction constants and quartic and sextic centrifugal distorsion

constants for 1-C3H;". See text for more details.

Vib-rot constants (MHz)

Distortion Constant

Watson S reduction

Mode a® a® a’ (MHz) (Hz) (MHz) (Hz)
1 21277 25909 24454 | Tpa  -85.377 @ 4809.680 | D, 0.003  H, -0.001
2 4879.106 6.846  11.688 | Ty  -0.012 Dy 0.000 | Dy 0479 Hy 4.988
3 151243 55273  51.836 | Tewe  -0.010 D 0.000 | Dx  20.862 Hy, -2267.423
4 -3188.803 3755 11156 | ey -1.931 Dy -742911 | d;,  -0.000 Hy  7072.116
5 225.856  23.754" 24.150° | Twee  -0.007 Dy 5534 | d;  -0.000 A -0.000
6 3052.329 8.691  9.786 | Thpee  -0.011 Dy -1515.360 hs 0.001
7 -3310.921° 8912 6.571° D, -0.059 h3 0.000
8 336.274°  -12.094  -0.485 Dy 0.000
9 -2468.800°  -54.337 -24.327° Dy -0.001
10 3490.356" 0.795*  -5.110 D, 5.962
11 403.182° 2727 -6.288
12 1278.499°  -42.247* -62.886

# Modes for which Coriolis resonance has been taken into account.



Table 9. Complete set of non-zero quadratic and cubic force constants for c-C3H; ™ in a symmetry

internal coordinate system. See text for more details. Units of force constants are mdyn/A".rad™

appropriate for an energy unit of mdyn A (1 mdyn A =1 aJ).

Quadratic and Cubic Force Constants

Fi

Fa

Fa

Fs3
F44=Fapap
Fs4=Fspa
Fs5=Fspsp
Fe4s=Fepan
Fes=Febsu
Fes=Febeb
F7;
Fgs=Fgugp
Fin

Fani

Fau

F2»
Fi31

Fi3,

7.217432
-0.098532
5.798770
0.262156
5.800512
-0.009810
5.316006
0.017754
0.298226
0.414829
0.371862
0.490412
-22.5615
-0.1640
0.1680
-19.2136
-0.2589
-0.0596

F441=Fapap1

F44=F spar2
F444=-Faapap
Fs41=Fspab1
Fs4>=Fspap2
Fs44=-Fsapap=-F spa4p
Fs43=-Fspa3
Fss1=Fspsb1
Fs50=Fsbsb2
Fss4=-Fsps46=-Fspsp4
Fss5=-Fsps0s
Fe41=Febab1
Fe4=Fban2
Fe44=-Fapav=-F a4
Feap3=-Fepa3
Fes1=Fepsb1
Fes2=Fepsb2

Fes4=F 6bsba

-0.1448
19.1998
13.5720

0.2160
-0.1399
-0.0774
-0.1386
-13.225
-0.2622
-0.1110
18.9961
-0.0146
-0.0009

0.0073
-0.0602
-0.1032
-0.1790

0.1160

Fes5=-Fesbs6=-Febsvs
Fesp3=-Feps3
Fesvab=F 654
Fes1=Febeb1
Fes2=Fspeb2
Fe64=-Feb64b=-F gb6b4
Fes5=-Feb656=-F6b6bs
Fes6=-Febebs

Fn

F77

Fg74=Fsp740
Fg75=Fsp7s0
Fg76=Fsp760
Fgs1=Fspsp1
Fgs:=Fspsp2
Fg34=-Fgyg4p=-Fgug04
Fgss=-Fgpgs6=-Fgbsns
Fgs6=-Fsbg66=-F3bsb6

-0.4172
0.3817
-0.1160
-0.1679
-0.0729
0.0495
-0.2352
0.0959
-0.2385
-0.0827
-0.0760
0.3281
0.2836
-0.4132
-0.1193
-0.0776
0.3106
0.2418




Table 10. Complete set of non-zero quartic force constants for c-C3H;' in a symmetry internal

coordinate system. See text for more details.
appropriate for an energy unit of mdyn A (1 mdyn A = 1 al).

Units of force constants are mdyn/A".rad™

Quartic Force Constants

Fiin
Fain

Faon

Fani

Fy

Fasn

F33

F332

F3333

Frni

Fr721

F7722

F7733

F77403

F77503

F77603

F7777
Fas11=Fapav11
Fa421=Fapav21
Fa420=F spa022
F4433=F 404033
Fs411=Fspab11
Fs5421=Fspap21
Fs420=F spap22
Fs433=Fsp4033
Fss511=Fspsb11
Fss521=Fspsp21
Fs520=Fspsp22
Fss533=Fsps033
Fs544=Fspsp44

Fss4p46=F spsp4b4b

Fea11=Febav11
Fe421=Fpav21
Fe420=F gbap22
Fe433=Fgb4033
Fes11=Febsb11
Fes21=Febsb21
Fes520=Fgbsp22
Fes33=Fgbs033
Fe544=F gbsp4ab4b
Fesa04v=F 6bs5b44
Fe554=F 6bsbs5b4b
Fesbsp4=Febssan
Fes11=Febeb11

59.44
0.20
-0.45
-0.35
56.66
0.02
0.11
-0.00
0.04
-0.11
0.15
-0.10
0.67
-0.02
0.01
0.04
0.09
-0.37
-0.42
56.74
-0.00
-0.26
0.18
0.35
-0.02
20.59
0.50
-0.34
-0.14
-0.33
-0.34
0.05
0.02
0.05
0.01
-0.22
0.03
-0.16
0.04
-0.10
-0.13
-0.13
0.05
0.03

F7744=F774p4p
F7754=F 77504
F7755=F 775050
F7764=F 77604
F7765=F776bs0
F7766=F 776060
Fg741=Fgy74p1
Fg745=Fgu7412
Fg751=Fgp7501
Fg75:=Fgu7502
Fg761=Fgb76b1
Fg76:=Fgu76b2
Fgs11=Fgbgo11
Fgs21=Fgpgv21
Fgs20=Fgug022
Fgs33=Fgus033
Fg344=Fgb804b4b
Fsapar=F gpsb44
Fgs54=Fgb80504b
Fgss5=Fgugbsbsb
Fgssbab=F gbsns4
Fgssbsb=Fsnsbss
Fg364=Fgb806b4b
Fgs65=Fgb806b3b
Fgs66=F gb8b6b6b
Fgs6bab=F gbsb64
Fgsebsb=Fsvsss
Fgs6b6b=F 8b8b66
Fgs77=Fgug077
Fi441=-F 4pap41
Fa440=-F spap42

Fapaa3=-F spavan3

Fs4p31=-F sp431
Fs4p32=-F sp432
Fss51=-F spsps1
Fss550=-F 55052

Fspss3=-F spspsn3

Feap31=-F 6p431
Feap32=-F 6p432
Fesu31=-F 6ps31
Fesp32=-F 6ps32
Fes61=-F 6bebs1
Fes62=-Fsvebs2

Febs63=-Fsb6b6b3

-0.11] Fs554=F spsbsp4=3F sbs5b54=3F sp554b -0.50
-0.04| Fo444=F 6babavar=3F capa04=3F 6pab44 0.05
-0.02| Fes555=F6bsbsbsb=3F 6sbs65=3F 6bsbss 0.55
0.03] Fe664=F 6b66646=3 F6b6064=3 F 6b664b 0.19
0.03] Fe665=F 6b666650=3 F6b6b65=3F 6b665b 0.19
0.94| Fs441=-Fsab461=-F spab41 0.09
0.15]| Fs440=-F sapap0=-F spap42 0.21
-0.09| Fs4p43=F sp443=-F spabap3 0.04
-0.18| Fs541=-F spsp41=-F sps4b1 0.14
-0.10| Fss40=-F spsp42=-F 50542 0.02
-0.11] Fss43=Fsb543=-F sbsbap3 0.28
-0.08| Fe441=-F gapab1=-F 6paba1 -0.01
-0.08| Fea40=-F apar2=-F 6papa2 0.03
0.26| Fo4043=F 6p443=-F 6paban3 0.05
-0.11} Fgs51=-Fesps01=-Fepsbsi -0.10
0.62| Fss50=-Fgsb500=-Febsbs2 0.26
-0.14| Fgsp53=Febs53=-Febsbsn3 0.24
-0.01| Fe41=-Febeba1=-Fepsan1 -0.04
0.03| Fss42=-Fp6042=-F6b64p2 0.11
-0.45] Fee413=Fb643=-Fgb6b4n3 -0.02
-0.11} Fg651=-Febebs1=-Fepssb1 0.01
0.55| Fss50=-Fgpe052=-F6b6502 0.06
-0.03| Fg6s03=Feb653=-Febbsn3 0.08
-0.20| Fg744=-Fs74p4=-F sp7404 -0.05
0.43| Fg755=-Fg75056=-Fgb75b5 -0.76
-0.00| Fg766=-Fs76b66=-Fsb76b6 -0.68
0.22| Fsg41=-Fgu8461=-Fsbgb41 0.12
1.39| Fsga=-Fgp84p0=-Fgpgv42 -0.06
0.47| Fsgap3=Fsp343=-Fspsban3 -0.03
-0.30] Fggs1=-Fsbs501=-Fspspsi -0.41
40.12| Fggsr=-Fspsspo=-Fspsns2 -0.40
0.00]| Fsgs53=Fspss3=-Fspsbsb3 -0.22
0.14| Fsgs1=-Fgu8661=-Fsbsve1 -0.02
-0.08| Fgssr=-Fspssn2=-Fsnsvs2 -0.09
38.85| Fsgsn3=Fgu863=-Fsnsb6b3 -0.53
0.06| Fss41=-Fe5b401=-Fgbs4b1=-Febsba -0.06
-0.18| Fes40=-Fgspav2=-F 6p54p2=-F 6bs042 0.07
0.10]| Fes463=F5043=F 60543=-F 6b5b4b3 0.08
-0.03| Fs754=-Fg7504b=-F3b7546=-F sb75b4 0.02
-0.06| Fs764=-Fg76b4v=-F sv764v=-F sb76b4 0.03
-0.12| Fg765=-F376050=-F37656=-Fsb7605 -0.68
0.06| 12 Non-Symmetry-Unique Constants:
-0.08| Fr654=(Fe644-F655)/2 0.00
0.01] Fogss=(Fssaa-Fsss5)/2 0.01



Fes21=Febeb21
Fe620=Fgb6p22
Fe633=Fb6033
Fe644=F gb6bab4b
Fesavab=F 6b6b44
Fe654=F 6b6b5b4b
Fe655=F 6b6b3b3b
Fessb4b=F 6b6b54
Fessbsb=F sb6bss

0.24
-0.11
0.09
-0.09
-0.12
-0.02
0.07
-0.14
0.06

Fg74p3=-Fsp743

Fs7503=-Fsp753

Fs7663=-Fsp763

Fsg37=-Fspsps7

F4444=F 4pavavar=3F apapas

Fs555=F sbsb5056=3F sbsss

Fes66=F sb6b6066=3F 6b6b66
Fgs35=Fgu808086=3Fgb8nss

F5444=F spapanar=3F spabas=3F sapapa

-0.04
-0.11
-0.79
0.57
85.18
92.62
-0.16
0.43
0.55

Fog76=(Fsg66-F3377)/2

Fosb4b4=F 6b5404=(F6544-F654045)/2
Fesbs46=Febsvsa=(Fess54-Fesps04)/2
Fobssba=F 6b6546=(Fs654-F 665045)/2
Fgu8a04=(Fs844-Fsgap40)/2
Fgugsos=(Fssss-Fsssvsn)/2
Fguseb6=(Fsge6-Fsseben)/2
Fsbssas=F sbgsoa=(Fsg54-Fsgspap)/2
Fsbssab=F sbgeba=(Fs364-Fsg6ban)/2
Fsbgosb=F sbgebs=(Fsg65-Fsgebsn)/2

0.00
0.02
-0.09
0.06
-0.07
-0.50
-0.48
0.07
-0.01
-0.21




Table 11. Complete set of non-zero quadratic and cubic force constants for 1-C;H;" in a

symmetry internal coordinate system. See text for more details. Units of force constants are

mdyn/A".rad™ appropriate for an energy unit of mdyn A (1 mdyn A = 1 aJ). x/y/z represent the

10™, 11", and 12™ internal coordinates, respectively.

Fy
Fy
Fp
F3
F3,
Fi3
Fy
Fy
Fa3
Fua
Fs
Fs,
Fs3
Fs4
Fss
Fes
Frs
Foy
Fss
Fg7
Fgs
Fos
Fo;
Fog
Fog

6.029788
0.005712
5.540738
-0.119775
0.072319
11.885630
0.144706
0.074156
-2.970851
10.906522
0.001714
0.065407
-0.231773
-0.173960
0.682966
5.533706
-0.002072
0.283223
-0.004390
0.109569
0.227801
0.109515
-0.067911
-0.023718
0.514243

0.167448
0.000441
0.385229
0.000222
0.015043
0.238988
-34.5269
-0.0010
-0.0055
-22.3363
0.1236
0.0056
0.0869
-0.0602
-0.1223
-48.6285
-0.1359
-0.0008
0.1801
0.0147
-0.2336
13.1266
0.0753
-0.5212
-45.3965

Fasa
Fsiy
Fs2
Fs2,
Fs3
Fs3;
Fs33
Fs41

Fs4r
Fsu3

Fsas
Fss1
Fssy
Fss3
Fss4
Fsss
Fee1
Fes2
Fes3
Fes4
Fess
Fre1
Fr62
Fr63

Fre4

15.2311
0.0002
0.0047

-0.1527

-0.0050
0.1349
0.0086

-0.0043
0.1028
0.1047
0.2391
0.0024

-0.3928

-0.1270

-0.0076

-0.2658

-0.0068

Fr6s
Frn

Fi72
F773

Fr74
Fr7s
Fse1

Fss2
Fge3
Fges
Fges
Fs7i
Fs7
Fg73
Fg74
Fg7s
Fgs:
Fgs»
Fgss
Fgsa
Fgss
Fog
Fos2
Fos3
Fogs

-0.0249
-0.0363
0.0272
-0.9361
0.1170
0.0325
0.0002
-0.0015
0.0073
0.0128
-0.0053
-0.0002
-0.0025
0.1851
-0.2203
0.0052
-0.1404
-0.0192
-0.6080
0.7960
-0.0047
-0.0011
0.0428
-0.2622
-0.3053

Fogs
Fon

Fo7s
Fo73

Fo74
Foss
Fogi

Fos»
Fos3
Fogs
Foss
Foo

Foos
Foos

Fooq
Foos
Fxxl
Fxx2
Fxx3
Fxx4
FxxS
Fyxl
Fyx2
Fyx3
Fyx4

0.0962
0.0092
0.0408
0.1397
-0.0580
-0.0546
0.0010
0.0095
-0.0528
0.0503
-0.0134
0.0086
-0.2028
-0.1762
0.0320
0.3241
-0.0281
-0.0185
-0.3280
-0.0273
0.0040
0.0022
0.0098
0.1577
0.0810

-0.0131
-0.1937
-0.0120
-0.4253
0.1286
0.0064
-0.0026
-0.0063
-0.0961
0.0867
0.0082
-0.0032
-0.0007
0.0332
-0.0053
0.0068
-0.0031
-0.0768
-0.2289
-0.0271
0.4596
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1.08062 A
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