Highly Stable and Active Catalyst for Sabatier Reactions

Lyndon B. Johnson Space Center, Houston, Texas

Highly active Ru/TiO\textsubscript{2} catalysts for Sabatier reaction have been developed. The catalysts have shown to be stable under repeated shutting down/startup conditions. When the Ru/TiO\textsubscript{2} catalyst is coated on the engineered substrate Fe-CrAlY felt, activity enhancement is more than doubled when compared with an identically prepared engineered catalyst made from commercial Degussa catalyst. Also, bimetallic Ru-Rh/TiO\textsubscript{2} catalysts show high activity at high throughput.

This work was done by Jianli Hu and Kriston P. Brooks of Battelle Memorial Institute for Johnson Space Center. For further information, contact the JSC Innovation Partnerships Office at (281) 483-3809. MSC-24299-1

Better Proton-Conducting Polymers for Fuel-Cell Membranes

NASA’s Jet Propulsion Laboratory, Pasadena, California

Polyoxyphenylene triazole sulfonic acid has been proposed as a basis for development of improved proton-conducting polymeric materials for solid-electrolyte membranes in hydrogen/air fuel cells. Heretofore, the proton-conducting membrane materials of choice have been exemplified by a family of perfluorosulfonic acid-based polymers (Nafion7 or equivalent). These materials are suitable for operation in the temperature of 75 to 85 °C, but in order to reduce the sizes and/or increase the energy-conversion efficiencies of fuel-cell systems, it would be desirable to increase temperatures to as high as 120 °C for transportation applications, and to as high as 180 °C for stationary applications. However, at 120 °C and at relative humidity values below 50 percent, the loss of water from perfluorosulfonic acid-based polymer membranes results in fuel-cell power densities too low to be of practical value. Therefore, membrane electrolyte materials that have usefully high proton conductivity in the temperature range of 180 °C at low relative humidity and that do not rely on water for proton conduction at 180 °C would be desirable.

The proposed polyoxyphenylene triazole sulfonic acid-based materials have been conjectured to have these desirable properties. These materials would be free of volatile or mobile acid constituents. The generic molecular structure of these materials is intended to exploit the fact, demonstrated in previous research, that materials that contain ionizable acid and base groups covalently attached to thermally stable polymer backbones exhibit proton conduction even in the anhydrous state.

The sulfonic acid group in polyoxyphenylene triazole sulfonic acid is a strong acid capable of generating protons when presented with a suitable base. The triazole moiety offers at least three base sites for protonation. The polyoxyphenylene backbone is endowed with these three generic molecular structures that represent the proposed polyoxyphenylene triazole sulfonic acid-based compounds. The subscripts \(m \) and \(n \) denote integers. These compounds are denoted by their full names as (1) poly([1H-1,2,3-triazole-1,4-diy]-co-(oxyphenylensulfonic acid)), (2) poly([1H-1,2,3-triazole-1,4-diy]-co-bisphenylenesulfonic acid)-co-(oxyphenylensulfonic acid)), and (3) poly(oxyphenylensulfone)-graft-1-(1H-1,2,3-triazole-1,4-diy)-1-poly(ethylene oxide)-4-benzenesulfonic acid).

These Three Generic Molecular Structures are representative of the proposed polyoxyphenylene triazole sulfonic acid-based compounds. The subscripts \(m \) and \(n \) denote integers. These compounds are denoted by their full names as (1) poly([1H-1,2,3-triazole-1,4-diy]-co-(oxyphenylensulfonic acid)), (2) poly([1H-1,2,3-triazole-1,4-diy]-co-bisphenylenesulfonic acid)-co-(oxyphenylensulfonic acid)), and (3) poly(oxyphenylensulfone)-graft-1-(1H-1,2,3-triazole-1,4-diy)-1-poly(ethylene oxide)-4-benzenesulfonic acid).