Software

Key Decision Record Creation and Approval Module

Retaining good key decision records is critical to ensuring the success of a project or operation. Having adequately documented decisions with supporting documents and rationale can greatly reduce the amount of rework or reinvention over a project, vehicle’s, or facility’s lifecycle. Stennis Space Center developed and uses a software tool that automates the Key Decision Record (KDR) process for its engineering and test projects. It provides the ability for a user to log key decisions that are made during the course of a project. By customizing Parametric Technology Corporation’s (PTC) Windchill product, the team was able to log all information about a decision, and electronically route that information for approval. Customizing the Windchill product allowed the team to directly connect these decisions to the engineering data that it might affect and notify data owners of the decision. The user interface was created in JSP and Javascript, within the OOTB (Out of the Box) Windchill product, allowing users to create KDRs. Not only does this interface allow users to create and track KDRs, but it also plugs directly into the OOTB ability to associate these decision records with other relevant engineering data such as drawings, designs, models, requirements, or specifications.

This work was done by Bart Hebert and Elizabeth A. Messenger of Stennis Space Center; Colby Albansini of Computer Sciences Corp.; and Thang Le, William ORourke, Sr., Tim Stiglets, and Ted Strain of Sai Tech Inc. Inquiries concerning rights for the commercial use of this invention should be addressed to the Intellectual Property Manager at Stennis Space Center (228) 688-1929. SSC-00338

Debris Examination Using Ballistic and Radar Integrated Software

The Debris Examination Using Ballistic and Radar Integrated Software (DEBRIS) program was developed to provide rapid and accurate analysis of debris observed by the NASA Debris Radar (NDR). This software provides a greatly improved analysis capacity over earlier manual processes, allowing for up to four times as much data to be analyzed by one-quarter of the personnel required by earlier methods. There are two applications that comprise the DEBRIS tool: the Automated Radar Debris Examination Tool (ARDENT) and the primary DEBRIS tool.

The ARDENT application is intended to autonomously identify, characterize, and track debris objects. It allows the user to display a scene containing debris against an object database and view the debris data. The DEBRIS tool consolidates and extends the capability of several discrete applications developed early in the NDR technology maturation process; specifically, data viewing, annotation of candidate debris events, and various elements of trajectory analysis. This consolidation dramatically streamlines the analysis process and the amount of overhead in both time and effort needed to fully process the debris risk portion of the shuttle ascent.

The ballistic and radar signature products of these tools allow assessment of debris material type, shape, size, and release location — information that is used to determine threat to the current mission as well as flight safety for future missions. The analysis efficiencies afforded by these tools allow detailed threat assessment of tens of gigabytes of data within three days of launch.

This work was done by Anthony Griffith, Matthew Schottel, David Lee, Robert Scully, and Joseph Hamilton of Johnson Space Center; Brian Kent, Christopher Thomas, Jonathan Benson, and Eric Branch of the U.S. Air Force; and Paul Hardman and Martin Stuble of NAVAIR (Patuxent) Department of the Navy. MSC-24827-1