Large Ka-Band Slot Array for Digital Beam-Forming Applications
NASA's Jet Propulsion Laboratory, Pasadena, California

This work describes the development of a large Ka Band Slot Array for the Glacier and Land Ice Surface Topography Interferometer (GLISTIN), a proposed spaceborne interferometric synthetic aperture radar for topographic mapping of ice sheets and glaciers. GLISTIN will collect ice topography measurements data over a wide swath with sub-seasonal repeat intervals using a Ka-band digitally beam-formed antenna.

For technology demonstration purposes, a receive array of size 1×1 m, consisting of 160×160 radiating elements, was developed. The array is divided into 16 sticks, each stick consisting of 16×10 radiating elements, whose outputs are combined to produce 16 digital beams. A transmit array stick was also developed. The antenna arrays were designed using Elliot’s design equations with the use of an infinite-array mutual-coupling model. A Floquet wave model was used to account for external coupling between radiating slots. Because of the use of uniform amplitude and phase distribution, the infinite array model yielded identical values for all radiating elements but for alternating offsets, and identical coupling elements but for alternating positive and negative tilts.

Waveguide-fed slot arrays are finding many applications in radar, remote sensing, and communications applications because of their desirable properties such as low mass, low volume, and ease of design, manufacture, and deployability. Although waveguide-fed slot arrays have been designed, built, and tested in the past, this work represents several advances to the state of the art. The use of the infinite array model for the radiating slots yielded a simple design process for radiating and coupling slots. Method of moments solution to the integral equations for alternating offset radiating slots in an infinite array environment was developed and validated using the commercial finite element code HFSS. For the analysis purpose, a method of moments code was developed for an infinite array of subarrays. Overall the 1×1 m array was found to be successful in meeting the objectives of the GLISTIN demonstration antenna, especially with respect to the 0.042°, 1/10th of the beamwidth of each stick, relative beam alignment between sticks.

This work was done by Sembiam Rengarajan, Mark S. Zawadzki, and Richard E. Hodges of Caltech for NASA’s Jet Propulsion Laboratory. For more information, contact iaoffice@jpl.nasa.gov. NPO-47416

Development of a 150-GHz MMIC Module Prototype for Large-Scale CMB Radiation
NASA’s Jet Propulsion Laboratory, Pasadena, California

HEMT-based receiver arrays with excellent noise and scalability are already starting to be manufactured at 100 GHz, but the advances in technology should make it possible to develop receiver modules with even greater operation frequency up to 200 GHz. A prototype heterodyne amplifier module has been developed for operation from 140 to 170 GHz using monolithic millimeter-wave integrated circuit (MMIC) low-noise InP high electron mobility transistor (HEMT) amplifiers.

The compact, scalable module is centered on the 150-GHz atmospheric window using components known to operate well at these frequencies. Arrays equipped with hundreds of these modules can be optimized for many different astrophysical measurement techniques, including spectroscopy and interferometry.

This module is a heterodyne receiver module that is extremely compact, and makes use of 35-nm InP HEMT technology, and which has been shown to have excellent noise temperatures when cooled cryogenically to 30 K. This reduction in system noise over prior art has been demonstrated in commercial mixers (uncooled) at frequencies of 160–180 GHz. The module is expected to achieve a system noise temperature of 60 K when cooled.

An MMIC amplifier module has been designed to demonstrate the feasibility of expanding heterodyne amplifier technology to the 140 to 170-GHz frequency range for astronomical observations. The miniaturization of many standard components and the refinement of RF interconnect technology have cleared the way to mass-production of heterodyne amplifier receivers, making it a feasible technology for many large-population arrays.