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mixing, additional small-scale terms, one
in the momentum and one in the energy
conservation equations, were identified
as requiring modeling. These additional
terms were due to the tight coupling be-
tween dynamics and real-gas thermody-
namics. It was inferred that if these terms
would not be modeled, the high density-
gradient magnitude regions, experimen-
tally identified as a characteristic feature
of these flows, would not be accurately
predicted without the additional term in
the momentum equation; these high
density-gradient magnitude regions were
experimentally shown to redistribute tur-
bulence in the flow. And it was also in-
ferred that without the additional term in
the energy equation, the heat flux magni-
tude could not be accurately predicted;
the heat flux to the wall of combustion
devices is a crucial quantity that deter-
mined necessary wall material properties.

The present work involves situations
where only the term in the momentum
equation is important. Without this ad-
ditional term in the momentum equa-
tion, neither the SGS-flux constant-coef-
ficient Smagorinsky model nor the
SGS-flux constant-coefficient Gradient
model could reproduce in LES the pres-
sure field or the high density-gradient
magnitude regions; the SGS-flux con-
stant-coefficient Scale-Similarity model
was the most successful in this endeavor
although not totally satisfactory. With a
model for the additional term in the mo-
mentum equation, the predictions of
the constant-coefficient Smagorinsky
and constant-coefficient Scale-Similarity
models were improved to a certain ex-
tent; however, most of the improvement
was obtained for the Gradient model.
The previously derived model and a
newly developed model for the addi-

tional term in the momentum equation
were both tested, with the new model
proving even more successful than the
previous model at reproducing the high
density-gradient magnitude regions. Sev-
eral dynamic SGS-flux models, in which
the SGS-flux model coefficient is com-
puted as part of the simulation, were
tested in conjunction with the new
model for this additional term in the
momentum equation. The most success-
ful dynamic model was a “mixed” model
combining the Smagorinsky and Gradi-
ent models.  

This work is directly applicable to sim-
ulations of gas turbine engines (aeronau-
tics) and rocket engines (astronautics). 

This work was done by Josette Bellan and
Ezgi Taşkinoğlu of Caltech for NASA’s Jet
Propulsion Laboratory. For more informa-
tion, contact iaoffice@jpl.nasa.gov. NPO-
47040

Tropospheric Correction for InSAR Using Interpolated ECMWF
Data and GPS Zenith Total Delay 
This technique could be used in environmental remote sensing applications. 
NASA’s Jet Propulsion Laboratory, Pasadena, California 

To mitigate atmospheric errors caused
by the troposphere, which is a limiting
error source for spaceborne interfero-
metric synthetic aperture radar (InSAR)
imaging, a tropospheric correction
method has been developed using data
from the European Centre for Medium-
Range Weather Forecasts (ECMWF) and
the Global Positioning System (GPS). 

The ECMWF data was interpolated
using a Stretched Boundary Layer
Model (SBLM), and ground-based GPS
estimates of the tropospheric delay
from the Southern California Inte-
grated GPS Network were interpolated
using modified Gaussian and inverse
distance weighted interpolations. The
resulting Zenith Total Delay (ZTD) cor-
rection maps have been evaluated, both
separately and using a combination of
the two data sets, for three short-inter-
val InSAR pairs from Envisat during
2006 on an area stretching from north-
east from the Los Angeles basin towards
Death Valley. Results show that the root
mean square (rms) in the InSAR im-
ages was greatly reduced, meaning a sig-
nificant reduction in the atmospheric
noise of up to 32 percent. However, for
some of the images, the rms increased
and large errors remained after apply-

ing the tropospheric correction. The
residuals showed a constant gradient
over the area, suggesting that a remain-
ing orbit error from Envisat was pres-
ent. The orbit reprocessing in ROI_pac
and the plane fitting both require that
the only remaining error in the InSAR
image be the orbit error. If this is not
fulfilled, the correction can be made

anyway, but it will be done using all re-
maining errors assuming them to be
orbit errors. By correcting for tropos-
pheric noise, the biggest error source is
removed, and the orbit error becomes
apparent and can be corrected for. 

After reprocessing the InSAR images
using re-estimated satellite orbits, the
overall rms reduction (using both tro-

The Original InSAR Image (left), the GPS ZTD Difference Correction Map (center), and the corrected
InSAR Image (right). The black dots in the middle image correspond to the locations of the GPS sta-
tions.
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pospheric and orbit correction) span -
ned from 15 to 68 percent. With this tro-
pospheric correction, low-frequency er-
rors can be removed from InSAR
images. Additionally, results show that
for days with high-quality ECMWF data,
the SBLM ZTD correction performs as
well as the GPS ZTD correction. Finally,
the tropospheric correction enabled

orbit correction, and by correcting for
both errors, the quality of the InSAR im-
ages increased significantly. 

By correcting for the troposphere,
other errors become visible. The main
contributor to the remaining errors is un-
certainties with determining the satellite
orbit. Because the orbit error is now sepa-
rated from the tropospheric error, the

orbit can be corrected for more accurately. 
This work was done by Frank H. Webb,

Evan F. Fishbein, Angelyn W. Moore, Susan
E. Owen, Eric J. Fielding, and Stephanie L.
Granger of Caltech and Fredrik Björndahl
and Johan Löfgren of Chalmers University of
Technology for NASA’s Jet Propulsion Labora-
tory. Further information is contained in a
TSP (see page 1). NPO-46918

A solution has been developed to the
challenges of computation of derivatives
with respect to geometry, which is not
straightforward because these are not
typically direct inputs to the computa-
tional fluid dynamics (CFD) solver. To
overcome these issues, a procedure has
been devised that can be used without
having access to the mesh generator,
while still being applicable to all types of
meshes. The basic approach is inspired
by the mesh motion algorithms used to
deform the interior mesh nodes in a
smooth manner when the surface nodes,
for example, are in a fluid structure in-
teraction problem. The general idea is to
model the mesh edges and nodes as con-
stituting a spring-mass system. Changes
to boundary node locations are propa-

gated to interior nodes by allowing them
to assume their new equilibrium posi-
tions, for instance, one where the forces
on each node are in balance. 

The main advantage of the technique
is that it is independent of the volumet-
ric mesh generator, and can be applied
to structured, unstructured, single- and
multi-block meshes. It essentially re-
duces the problem down to defining the
surface mesh node derivatives with re-
spect to the geometry parameters of in-
terest. For analytical geometries, this is
quite straightforward. In the more gen-
eral case, one would need to be able to
interrogate the underlying parametric
CAD (computer aided design) model
and to evaluate the derivatives either an-
alytically, or by a finite difference tech-

nique. Because the technique is based
on a partial differential equation (PDE),
it is applicable not only to forward mode
problems (where derivatives of all the
output quantities are computed with re-
spect to a single input), but it could also
be extended to the adjoint problem, ei-
ther by using an analytical adjoint of the
PDE or a discrete analog.

This work was done by Sanjay Mathur of
Jabiru Software and Services, LLC, for Glenn
Research Center. Further information is con-
tained in a TSP (see page 1)

Inquiries concerning rights for the commer-
cial use of this invention should be addressed
to NASA Glenn Research Center, Innovative
Partnerships Office, Attn: Steve Fedor, Mail
Stop 4–8, 21000 Brookpark Road, Cleve-
land, Ohio 44135. Refer to LEW-18499-1.

Technique for Calculating Solution Derivatives With Respect to
Geometry Parameters in a CFD Code
John H. Glenn Research Center, Cleveland, Ohio

Acute Radiation Risk and BRYNTRN Organ Dose Projection
Graphical User Interface
This program estimates the whole-body effective dose, organ doses, and acute 
radiation sickness symptoms.
Lyndon B.  Johnson Space Center, Houston, Texas

The integration of human space ap-
plications risk projection models of
organ dose and acute radiation risk has
been a key problem. NASA has devel-
oped an organ dose projection model
using the BRYNTRN with SUM DOSE
computer codes, and a probabilistic
model of Acute Radiation Risk (ARR).
The codes BRYNTRN and SUM DOSE
are a Baryon transport code and an out-
put data processing code, respectively.
The risk projection models of organ
doses and ARR take the output from
BRYNTRN as an input to their calcula-
tions. With a graphical user interface

(GUI) to handle input and output for
BRYNTRN, the response models can be
connected easily and correctly to BRYN-
TRN. A GUI for the ARR and BRYN-
TRN Organ Dose (ARRBOD) projec-
tion code provides seamless integration
of input and output manipulations,
which are required for operations of the
ARRBOD modules.

The ARRBOD GUI is intended for
mission planners, radiation shield de-
signers, space operations in the mission
operations directorate (MOD), and
space biophysics researchers. BRYN-
TRN code operation requires extensive

input preparation. Only a graphical
user interface (GUI) can handle input
and output for BRYNTRN to the re-
sponse models easily and correctly.  The
purpose of the GUI development for
ARRBOD is to provide seamless integra-
tion of input and output manipulations
for the operations of projection mod-
ules (BRYNTRN, SLMDOSE, and the
ARR probabilistic response model) in
assessing the acute risk and the organ
doses of significant Solar Particle
Events (SPEs).

The assessment of astronauts’ radia-
tion risk from SPE is in support of mis-


