Transverse Pupil Shifts for Adaptive Optics
Non-Common Path Calibration

NASA’s Jet Propulsion Laboratory, Pasadena, California

A simple new way of obtaining absolute wavefront measurements with a laboratory Fizeau interferometer was recently devised. In that case, the observed wavefront map is the difference of two cavity surfaces, those of the mirror under test and of an unknown reference surface on the Fizeau’s transmission flat. The absolute surface of each can be determined by applying standard wavefront reconstruction techniques to two grids of absolute surface height differences of the mirror under test, obtained from pairs of measurements made with slight transverse shifts in X and Y.

Adaptive optics systems typically provide an actuated periscope between wavefront sensor (WFS) and common-mode optics, used for lateral registration of deformable mirror (DM) to WFS. This periscope permits independent adjustment of either pupil or focal spot incident on the WFS. It would be used to give the required lateral pupil motion between common and non-common segments, analogous to the lateral shifts of the two phase contributions in the lab Fizeau.

The technique is based on a completely new approach to calibration of phase. It offers unusual flexibility with regard to the transverse spatial frequency scales probed, and will give results quite quickly, making use of no auxiliary equipment other than that built into the adaptive optics system. The new technique may be applied to provide novel calibration information about other optical systems in which the beam may be shifted transversely in a controlled way.

This work was done by Eric E. Bloemhof of Caltech for NASA’s Jet Propulsion Laboratory. Further information is contained in a TSP (see page 1). NPO-48060

Qualification of Fiber Optic Cables for Martian Extreme Temperature Environments

NASA’s Jet Propulsion Laboratory, Pasadena, California

Means have been developed for enabling fiber optic cables of the Laser Induced Breakdown Spectrometer instrument to survive ground operations plus the nominal 670 Martian conditions that include Martian summer and winter seasons. The purpose of this development was to validate the use of the rover external fiber optic cabling of ChemCam for space applications under the extreme thermal environments to be encountered during the Mars Science Laboratory (MSL) mission.

Flight-representative fiber optic cables were subjected to extreme temperature thermal cycling of the same diurnal depth (or ΔT) as expected in flight, but for three times the expected number of in-flight thermal cycles. The survivability of fiber optic cables was tested for 600 cumulative thermal cycles from –130 to +15 ºC to cover the winter season, and another 1,410 cumulative cycles from –105 to +40 ºC to cover the...