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Chapter 1

ANALYSIS OF OPPORTUNITIES FOR
INTERCALIBRATION BETWEEN TWO SPACECRAFT∗

Carlos M. Roithmayr†, and Paul W. Speth‡
NASA Langley Research Center, Hampton, Virginia 23681, U.S.A.

Abstract

There is currently a strong interest in obtaining highly accurate measurements of
solar radiation reflected by Earth. For example, the Traceable Radiometry Under-
pinning Terrestrial- and Helio- Studies (TRUTHS) satellite mission has been under
consideration in Europe for several years, and planning is now under way for the Cli-
mate Absolute Radiance and Refractivity Observatory (CLARREO) spacecraft in the
United States. Such spacecraft will provide measurements whose high accuracy is
traceable to SI standards; these measurements will be useful as a reference for cali-
brating similar instruments on board other spacecraft. Hence, analysis of opportunities
for intercalibration between two spacecraft plays an important role in the planning of
future missions.

In order for intercalibration to take place, the measurements obtained from two
spacecraft must have similar viewing geometry and be taken within a few minutes of
one another. Viewing geometry is characterized in terms of viewing zenith angle, solar
zenith angle, and relative azimuth angle. Opportunities for intercalibration are greater
in number and longer in duration if the sensor with high accuracy can be aimed at
points on the surface of the Earth other than the nadir or sub-satellite point.

Analysis of intercalibration over long periods is rendered tractable by making sev-
eral simplifying assumptions regarding orbital motions of the two spacecraft about
Earth, as well as Earth’s orbit about the Sun. The shape of the Earth is also considered.
A geometric construction called a “tent” is introduced to facilitate analysis. It is help-
ful to think of an intercalibration opportunity as the passage of one spacecraft through
a tent that has a fixed shape and moves with the spacecraft whose measurements are
to be calibrated. Selection of points on Earth’s surface as targets for measurement is
discussed, as is aiming the boresight of a steerable instrument. Analysis results for a
pair of spacecraft in typical low Earth orbits are provided.

∗This material is declared a work of the U.S. Government and is not subject to copyright protection in the
United States. Approved for public release; distribution is unlimited.

†E-mail address: Carlos.M.Roithmayr@nasa.gov
‡E-mail address: Paul.W.Speth@nasa.gov
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1 INTRODUCTION

An understanding of the Earth’s climate and a means to predict its behavior requires, among
other things, highly accurate measurements of solar irradiance reflected by the planet into
space. The need to obtain such measurements using spacecraft is therefore widely rec-
ognized within the scientific community. One mission that has been under consideration
for some time in Europe is referred to as Traceable Radiometry Underpinning Terrestrial-
and Helio- Studies (TRUTHS), as discussed in Refs. [1]–[3]. In its 2007 Decadal Survey
report (Ref. [4]), the U.S. National Research Council recommends the Climate Absolute
Radiance and Refractivity Observatory (CLARREO) as one of four missions to be given
highest priority. Planning is now under way (Ref. [5]) for CLARREO, which is to be im-
plemented jointly by NASA and NOAA. One important purpose of missions such as these
will be to obtain measurements that can be used in a process referred to as intercalibration.
That is, measurements collected by a highly accurate instrument on one spacecraft will
be used to calibrate an instrument aboard another spacecraft. In this chapter we provide
some important mathematical relationships needed in studying the orbital conditions under
which intercalibration can occur. In addition, aspects of intercalibration measurements are
characterized in an example involving two spacecraft in typical low Earth orbits.

Throughout the discussion that follows, the satellite from which highly accurate mea-
surements are obtained is referred to as the primary spacecraft. The secondary spacecraft
is the one whose instrument is to be calibrated using measurements furnished by the pri-
mary spacecraft. Measurements from the two spacecraft must be taken a short time apart,
with similar viewing geometry, in order for intercalibration to occur. Roughly speaking, the
opportunity for intercalibration occurs above a point on Earth’s surface where the ground
tracks of the spacecraft intersect, provided they pass over the point within a few minutes of
each other. Because measurements involve reflected solar radiation, illumination of Earth
must also be considered.

Intercalibrating measurements of infrared radiation emitted by Earth is important in
studying climate, and in two respects the constraints to be met are more relaxed than those
associated with intercalibrating measurements of reflected solar radiation. Infrared radia-
tion can be measured whether or not Earth is illuminated, and a greater elapsed time be-
tween measurements can be tolerated. In this work, however, we confine our attention to
reflected solar radiation.

In designing the primary spacecraft for intercalibration, and planning its orbital opera-
tions, it is important to be able to characterize several aspects of the related measurements
over long periods of time. Information of interest includes the frequency, duration, and ge-
ographic distribution of opportunities for intercalibration, as well as viewing geometry for
the measurements. Moreover, if it is possible to aim the instrument of the primary space-
craft so as to minimize or eliminate differences in viewing geometry, it is beneficial to know
the details of how this can be accomplished.

The material in the chapter is organized as follows. Section 2 contains a presentation of
simplifying assumptions regarding orbital motion of the spacecraft, planetary motion, and
Earth’s shape. Two geometrical constructions introduced in Sec. 3 facilitate the study of
intercalibration opportunities; they are referred to as a “tent” and a “pyramid.” Section 3
also contains a discussion of solar illumination. A treatment of intercalibration measure-
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ments is provided in Sec. 4 where viewing geometry is described in terms of three viewing
angles, selection of a target point where viewing angles to the two spacecraft are identical
is discussed, and rotation angles needed to aim an instrument boresight at the target are
presented. A one-year example involving one spacecraft in a polar orbit and another in a
sun-synchronous orbit is the focus of Sec. 5. Finally, concluding remarks are made in Sec.
6.

2 SIMPLIFYING ASSUMPTIONS

Orbital motion, more than anything else, is what determines the times and positions at
which measurements taken by two spacecraft can be intercalibrated. Other important factors
include the orbital motion of Earth about the Sun, the orientation of Earth in an inertial
reference frame, and the position of a point on Earth’s surface that serves as a target for
the measurement taken by each spacecraft. Positions of such points are in turn determined
by the planet’s shape. Analysis of intercalibration is rendered tractable by making several
simplifying assumptions regarding orbital motion, as well as planetary motion and shape.

2.1 Spherical Surface of Earth

The shape of the Earth is more closely approximated by an oblate spheroid than by a sphere.
The equatorial radius is approximately 20 km greater than the polar radius. This difference
is ignored and Earth’s surface is regarded as a sphere of radius RE , the equatorial radius,
when calculating the latitude of a point on the surface, the altitude of a spacecraft above the
surface, and the viewing angles introduced in Sec. 4.1. These quantities are therefore char-
acterized as geocentric. Of course, accuracy can be improved by modeling Earth’s surface
as an oblate spheroid, and by calculating the geodetic counterparts to these quantities.

Earth’s oblateness causes gravitational perturbations to a spacecraft’s orbit that cannot
be ignored, as discussed presently in Sec. 2.3.

2.2 Circular Orbits of Spacecraft, Earth

The orbit of a spacecraft about the Earth, as well as that of the Earth about the Sun, are
assumed to be circular. The constant radius of the primary spacecraft’s orbit is denoted
by RC ; likewise, the radius of the secondary spacecraft’s orbit is indicated by RA. The
constant radius of Earth’s orbit about the Sun is denoted by RS .

An orbital parameter referred to as the argument of latitude, u, is the angle in the plane
of the orbit between the ascending node and the position vector of a spacecraft. The argu-
ment of latitude changes with the time t according to the relationship

u = nt+ u0 (1)

where u0 is the value of u at time t0, and where n is known as the mean motion. Mean
motions for the primary spacecraft, secondary spacecraft, and Earth, are given by

nC =
√

µE

RC
3 , nA =

√
µE

RA
3 , nS =

√
µS

RS
3 (2)
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where the gravitational parameters of the Earth and Sun have, respectively, numerical
values µE = 398600.436 km3/s2 and µS = 1.327124399355 × 1011 km3/s2. With
RS = 1.4959787066 × 108 km, the value of nS is determined to be 1.990984 × 10−07

rad/sec. In the case of Earth’s heliocentric orbit u denotes an angle referred to as true lon-
gitude rather than argument of latitude. The plane of Earth’s orbit, known as the ecliptic
plane, is the fundamental plane used in measuring the inclination of all heliocentric orbits;
therefore, the inclination of Earth’s heliocentric orbit is zero, an ascending node does not
exist, and argument of latitude is undefined.

By assuming Earth’s orbit is circular, one is ignoring a slight eccentricity (e = 0.0167),
and associated changes in angular speed and the distance from Earth to the Sun. Likewise,
spacecraft orbits can in fact become non-circular because of aerodynamic drag and gravita-
tional perturbations due to the Sun, the moon, and Earth’s non-uniform mass distribution.
Such perturbations, however, are typically dealt with through periodic maintenance of the
orbit using a spacecraft’s propulsion system.

2.3 One Orbital Perturbation: Earth Oblateness

In general, the oblateness of Earth has a pronounced effect over long periods of time on
Ω, the longitude of the ascending node of a spacecraft’s orbit, and on ω, the argument of
periapsis in an eccentric orbit. The oblateness of Earth’s mass distribution produces an
instantaneous time rate of change in all six orbital elements; however, when averaged over
one orbit, the rates of change in four of the elements vanish. For a circular orbit of radius
R, the average rate of change in Ω is given by (see, for example, Ref. [6])(

dΩ
dt

)
av

= −3
2
nJ2

(
RE

R

)2

cos i (3)

where i is the inclination of the orbit, and J2 = 1.08263 × 10−3 is the zonal gravitational
harmonic coefficient of degree 2 that quantifies oblateness. When R and i are chosen such
that (Ω̇)av = nS [see Eqs. (2)], the orbit is sun-synchronous. The longitude of ascending
node changes with the time t according to the relationship

Ω = (Ω̇)av t+ Ω0 (4)

where Ω0 is the value of Ω at time t0.
In a circular orbit the periapsis is undefined, therefore we do not concern ourselves with

the average time rate of change in ω.

2.4 Autumnal Equinox as Initial Epoch

The line of equinoxes is the line of intersection of Earth’s equatorial plane and the ecliptic
plane. The relative inclination of the two planes, known as the obliquity of the ecliptic, is
approximately 23.44◦. At some instant on the first day of Spring in the northern hemisphere,
the position vector from Earth’s center to the Sun’s center is parallel to the line of equinoxes,
and the direction of this vector is defined to be the vernal equinox direction. On the date of
the autumnal equinox, the direction of the position vector from the Sun’s center to Earth’s
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center is the same as the vernal equinox direction. The time t0 is defined to be the instant
of the autumnal equinox.

It is assumed that the Earth spins about its polar axis at a constant angular speed and,
further, at t0 the spin angle is such that the line of equinoxes lies in the plane containing the
Greenwich meridian. To be precise, the Greenwich meridian is facing away from the Sun.

For future work it may be desirable to have t0 correspond to a particular year, month,
day, hour, minute, and second, and to use the actual position and spin angle of Earth at that
instant, as specified in Ref. [7] or another authoritative ephemeris.

3 INTERCALIBRATION OPPORTUNITY

An intercalibration opportunity is defined to be an interval of time during which it is pos-
sible for the primary spacecraft to obtain measurements that can be compared with those
taken by the secondary spacecraft. If the instrument on the secondary spacecraft scans in
the crosstrack direction (perpendicular to the spacecraft’s ground track), it can be helpful to
think of an opportunity in terms of the passage of the primary spacecraft through a “tent,”
a geometric construction that has a fixed shape and moves with the secondary spacecraft
whose measurements are to be calibrated. When the primary spacecraft is inside the tent,
intercalibration can take place. A geometric description of the tent is provided in Secs. 3.1
and 3.2. Another geometric construction, a pyramid that has four points in common with the
tent, proves to be especially useful for determining the times at which an opportunity begins
and ends, and the position of the primary spacecraft at each of those times, as discussed in
Sec. 3.3. Because reflected solar radiation is being measured, solar illumination must also
be considered in determining whether or not an opportunity in fact exists. Accordingly,
solar illumination is the topic of Sec. 3.4.

3.1 Temporal Constraint

Reflected solar radiation lies in the shortwave region of the spectrum and the scenes ob-
served by the instrument change rapidly; consequently, a limit is imposed on the time
elapsed between a measurement obtained with the primary spacecraft and a measurement
made from the secondary spacecraft, A (Ref. [8]). For example, the measurement by the
primary spacecraft cannot be taken more than 5 minutes earlier than that of A, nor more
than 5 minutes later. The determination of when and where this temporal constraint can be
met is facilitated by the introduction of two fictitious spacecraft. The first such spacecraft,
A+, is 5 minutes ahead of A in the orbit, whereas the second such spacecraft, A−, trails
A by 5 minutes. This situation is illustrated in Fig. 1 for the case in which the radius RA

of the orbit of A is larger than the radius RC of the the primary spacecraft’s orbit. These
spacecraft orbit the Earth, E, whose center is the point E?. At any instant of time, the
position of the primary spacecraft lies somewhere on the surface of a fictitious sphere C.
The curve between A− and A+ can be regarded as the ridge of a “tent.”
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3.2 Scan Angle of Instrument on Secondary Spacecraft

The boresight of the instrument aboard A is regarded as permanently aimed in the direction
of local nadir (toward E?). The slope of the sides of the tent roof is determined by the
angle δ, which is twice the scan angle of the instrument, as shown in Figs. 2 and 3. First,
consider the spacecraft A+ in Fig. 2. The field of view of the instrument is considered to lie
in a plane that is perpendicular to the orbit plane of A; the curve between points T1 and T2

marks the intersection of the field of view and the surface of C. The plane containing A+,
T1, and T2 is regarded as the front face of the tent. Similarly, the rear face of the tent is the
plane containing A−, T3, and T4, as shown in Fig. 3.

P

C

T3
T4

T1
T2

Figure 4. Upper Floor of the Tent

The four points T1, T2, T4, and T3 serve in pairs as the endpoints of four curves, each
of which forms a boundary of a patch on the surface of C as indicated in Fig. 4. When the
primary spacecraft, denoted by P , is inside the patch it is also inside the tent. An example
of a path taken by P is illustrated in Fig. 4 with a dashed curve; in this case P enters through
the rear face of the tent and exits through one side of the tent.

3.3 Intercalibration Pyramid

A determination of whether or not an intercalibration opportunity exists can be made with
the aid of a right pyramid whose apex is E? and whose base contains the points Tr (r =
1, 2, 3, 4), as depicted in Fig. 5. The position vector from E? to A passes through the center
of the pyramid’s base and is fixed in the pyramid; therefore, the pyramid moves with A as
it orbits E. The reader may recall that any rigid body can be regarded as a reference frame,
and vice-versa. Thus, the pyramid can be considered as a local-vertical local-horizontal
reference frame associated with the orbit of A.

Presently we will have occasion to make use of three right-handed mutually perpendic-
ular unit vectors â1, â2, and â3 fixed in the pyramid, as shown in Figs. 6 and 7. Unit vector
â3 is parallel to local vertical at A, and directed towards nadir. Unit vector â1 lies in the
orbit plane of A, and is in the direction of the orbital (circular) velocity of A. Finally, â2 is
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Figure 5. Intercalibration Pyramid
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Figure 6. Lateral Cross Section of Pyramid
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Figure 7. Transverse Cross Section of Pyramid
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perpendicular to the orbit plane of A and has direction opposite to hA, the orbital angular
momentum vector of A.

Two constant angles are used to define the shape of the pyramid. The first of these is
ψ, shown in a lateral cross section of the pyramid in Fig. 6. If the time interval allowed
between measurements is denoted by τ (for example, τ = 5 min = 300 sec), then ψ is
simply the product of nA [see Eqs. (2)] and τ ,

ψ = nA τ (5)

The second angle, ε, shown in a transverse cross section of the pyramid in Fig. 7, is calcu-
lated as follows. Consider a triangle having a base of length RA (the distance from E? to
A), and three angles ε, δ/2, and a (not shown). According to the law of sines for a plane
triangle,

RA

sin a
=

RC

sin(δ/2)
(6)

Because sin a = sin(π−a), this relationship in general admits two solutions for a; one with
a < π/2 and the other with a > π/2. The values ofRA,RC , and δ encountered in studies to
date correspond to the latter solution; however, the former solution is obtained numerically
when using the function arcsin( ). The difficulty is circumvented by calculating ε as

ε = π − δ/2− (π − a) = a− δ/2 (7)

The result in Eq. (7) is used whenRA > RC . On the other hand, whenRA < RC , a revision
of Figs. 1 – 3 and 5 – 7 must be undertaken, and the analysis leading to an expression for ε
must be modified. The result in that case is ε = δ/2− a.

With numerical values for ψ and ε in hand, one can perform two straightforward cal-
culations involving pPE?

, the position vector from P to E?. P is inside the tent when the
following two inequalities are satisfied.∣∣∣∣∣arctan

(
pPE? · â1

pPE? · â3

)∣∣∣∣∣ ≤ ψ,

∣∣∣∣∣arctan

(
pPE? · â2

pPE? · â3

)∣∣∣∣∣ ≤ ε (8)

3.4 Solar Illumination

The discussion in Sec. 3.3 of the possibility of intercalibration fails to consider whether or
not the measurements are taking place in sunlight. Solar illumination of the surface of E
must be taken into account when dealing with measurements of reflected solar radiation.

In Fig. 8 the left hemisphere of E is in darkness whereas the right hemisphere of E
is illuminated by the Sun. The circular boundary on the surface of E that separates the
two hemispheres is known as the terminator. Spacecraft A is shown in a position directly
above the terminator. In determining whether or not intercalibration of measurements of
reflected solar radiation can be performed, it may be reasonable to require that P and A
both be positioned somewhere over the illuminated hemisphere. The two requirements can
be expressed mathematically as

arccos(rE?A · rE?S) ≤ π/2, arccos(rE?P · rE?S) ≤ π/2 (9)

where rE?A, rE?P , and rE?S are unit vectors having the same directions as the position
vectors from E? to A, P , and S (the Sun), respectively.
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E

E*

A

Figure 8. Illuminated Hemisphere

4 INTERCALIBRATION MEASUREMENTS

The general conditions necessary for intercalibration opportunities are presented in Sec. 3.
During a single opportunity, several intercalibration measurements can be made. In order
for such a measurement to be useful, a target on Earth’s surface observed by spacecraft
A must be viewed from a similar vantage point by spacecraft P . The viewpoint of each
spacecraft is described in terms of three viewing angles introduced in Sec. 4.1. Selection
of an instantaneous target point for a measurement taken by P is the subject of Sec. 4.2,
and determination of the gimbal angles needed to aim the boresight of the instrument at this
target is the focus of Sec. 4.3.

4.1 Viewing Angles

A measurement obtained by a spacecraft is associated with a specific point fixed on the
surface of E. At any such target point, lines of sight to a spacecraft and to the Sun can
be described in terms of three angles. The three angles associated with a measurement
taken from one spacecraft must have values that are similar to those corresponding to a
measurement taken from another spacecraft in order for intercalibration to take place. An
illustration of the three viewing angles is provided in Fig. 9.

At a target point T fixed to the surface of E, the viewing zenith angle θ is measured
between a line that is locally vertical (zenith), and the line of sight to a spacecraft. A vector
rE?T with unit magnitude and the same direction as the position vector from E? to T is
parallel to zenith. A vector rTA with unit magnitude and the same direction as the position
vector from T to spacecraft A is parallel to the line of sight from T to A. Therefore,

rE?T · rTA = cos θ (10)

Provided θ 6= 0, a unit vector normal to the plane containing E?, T , and A can be formed
as

n̂A =
rTA × rE?T

|rTA × rE?T |
(11)
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b̂S

E

µ

Á

µ0

rE*T

rTS
rTA

E*

T

Figure 9. Viewing Angles

At T , the solar zenith angle θ0 is measured between the zenith line and the line of sight
to the Sun, S. Let rTS be a unit vector having the same direction as the position vector
from T to S. Thus,

rE?T · rTS = cos θ0 (12)

Only when θ0 ≤ 75◦ is a measurement of reflected solar radiation considered of value for
the purpose of intercalibration (Ref. [9]). As long as θ0 6= 0, a unit vector normal to the
plane containing E?, T , and S can be formed as

n̂S =
rE?T × rTS

|rE?T × rTS |
(13)

Subsequently a unit vector b̂S , whose direction is called the solar backscatter direction, can
be constructed as

b̂S
4
= n̂S × rE?T (14)

Provided that neither θ or θ0 vanishes, one can determine the angle φ between two
planes; one contains E?, T , and S, and the other is formed by E?, T , and A. This angle,
referred to as the relative azimuth angle, is related to the previously constructed unit vectors
as follows.

tanφ =
n̂A · b̂S

n̂A · n̂S
(15)
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4.2 Boresight Target Point

The concept of an intercalibration tent is introduced in Sec. 3.1, and Fig. 4 depicts the upper
floor of the tent as a patch on the surface of the sphere C. A similar patch on the surface of
E can be regarded as the lower floor of the tent. Points on the lower tent floor are candidate
targets for measurements that will meet the constraints imposed on time, illumination, and
viewing angles discussed respectively in Secs. 3.3, 3.4, and 4.1. A particular target at which
to aim the boresight of the instrument aboard P is determined with an approach1 that will
now be presented; at this target the viewing angles to P are, by construction, identical to
those associated with one of an infinite number of (fictitious) spacecraft occupying the arc
of radius RA containing A+, A, and A−.

The position vector pE?P fromE? to P can be regarded as the sum of two components;
one lies in the orbit plane of A, whereas the other is perpendicular to the orbit plane of A.
Let q be the first of these components and, henceforth, assume that P is inside the tent. One
way of expressing q is

q
4
= (pE?P · â1)â1 + (pE?P · â3)â3 (16)

where unit vectors â1 and â3 lie in the orbit plane of A and are directed as shown in Fig. 6.
With q in hand, one may form

pE?Q 4
= RA

q
|q|

(17)

This is the position vector from E? to the point Q on the arc between A+ and A− that is
closest to P , as illustrated in Figs. 10 and 11. In other words, Q is in general a fictitious
spacecraft on the ridge of the tent.

The position vector from Q to P is given by

pQP = pE?P − pE?Q (18)

When a line segment from Q to P is extended until it intersects E, the point of intersection
T serves as a measurement target at which the viewing angles for P are, by construction,
identical to those for Q. The position vector pQT from Q to T has the same direction as
pQP , and a magnitude that can be determined on the basis of geometrical considerations.
The position vector from E? to T is then simply

pE?T = pE?Q + pQT (19)

4.3 Gimbal Angles

The reflected solar radiation instrument aboard P can be attached to the spacecraft bus by
means of two revolute joints so that the instrument boresight can be aimed in various direc-
tions relative to the bus. The following material contains a discussion of how to determine
the angular displacements in the joints or gimbals needed to aim the boresight at the target
point identified in Sec. 4.2.

1This method of choosing a target point was conceived by Donald P. Garber and David G. Macdonnell.
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b̂3

b̂1
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d̂3

q
1

q
2

D

Figure 12. Primary Spacecraft with Gimbaled Instrument

Figure 12 depicts a set of three right-handed, mutually perpendicular unit vectors b̂1,
b̂2, and b̂3 fixed in the spacecraft bus B such that they are parallel to the spacecraft roll,
pitch, and yaw axes respectively. A similar set of unit vectors d̂1, d̂2, and d̂3 is fixed in D,
a rigid body in which the instrument is also fixed, with the boresight having the direction of
d̂3.

The orientation of D with respect to B is described with two angles, q1 and q2, referred
to as a yaw angle and a roll angle respectively. To bring D into a general orientation with
respect to B, one begins with d̂1, d̂2, and d̂3 having the same directions as b̂1, b̂2, and b̂3,
respectively. A simple, right-handed rotation through an angle q1 is performed about b̂3,
which is parallel to the axis of what will be called the yaw gimbal, followed by a similar
rotation through an angle q2 about d̂1, which is parallel to the axis of what will be referred
to as the roll gimbal.

Unit vector d̂3 can be written as

d̂3 = sin q1 sin q2 b̂1 − cos q1 sin q2 b̂2 + cos q2 b̂3 (20)

When d̂3 has the same direction as pQP [see Eq. (18)], the instrument boresight is aimed
at the target point T identified in Sec. 4.2. A unit vector having the same direction as pQP

can be expressed as

rQP =
pQP

|pQP |
4
= r1b̂1 + r2b̂2 + r3b̂3 (21)

When the scalar measure numbers r1, r2, and r3 are in hand, the angles necessary to satisfy
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the equation d̂3 = rQP can be determined by the relationships

q1 = arctan
(
r1
−r2

)
, q2 = arctan

(
r1 sin q1 − r2 cos q1

r3

)
(22)

Thermal considerations may dictate a semi-annual change in the nominal orientation of
B with respect to the local-vertical-local-horizontal reference frame of P ; in particular, a
rotation ofB through 180◦ about local vertical may be required. For a given position vector
rQP , this rotation is accompanied by a change in the signs of r1 and r2. Equations (22) are
applicable in either situation, without modification. It can be shown that the change in yaw
angle does not alter q1, whereas it changes the sign of q2.

5 RESULTS

The material presented in Secs. 2 – 4 forms the basis of a computer program used to study
intercalibration opportunities that arise under various conditions. In what follows, results
are presented for a pair of spacecraft in typical low Earth orbits. Computations are per-
formed at intervals of 1 second for one year of simulated orbital motion. Orbital parameters
of the two spacecraft are presented in Sec. 5.1, together with a brief discussion of important
consequences that follow from the particular numerical values of the parameters. The geo-
graphic and temporal distributions of opportunities are addressed in Sec. 5.2, and Sec. 5.3
contains an assessment of time during which useful measurements can be obtained. Finally,
gimbal motion is quantified in Sec. 5.4. An annual perspective is provided first, followed
by details of motion during two specific opportunities of interest.

5.1 Orbital Parameters

The orbital characteristics of the primary spacecraft, P , are chosen as follows. The orbit is
circular (see Sec. 2.2) with an altitude of 609 km. (The value of Earth radius, RE , is taken
to be 6378 km; therefore, the radius of the orbit of P is RC = 6987 km.) The inclination
i of the orbit plane with respect to the equatorial plane is 90◦ (polar orbit); in view of Eq.
(3) there is in this case no average time rate of change of the longitude of ascending node Ω
and the orbit plane is fixed in an inertial reference frame. The initial value of argument of
latitude u is assumed to be 0◦, meaning that P is crossing the equator and headed northward
at the beginning of the simulation. The value of Ω, a constant, is taken to be 0◦. At the
instant of autumnal equinox, Ω = u = 0◦ corresponds to a local time of ascending node of
24:00 hours, or midnight; however, the local time of ascending node will vary during the
year because this orbit is not sun-synchronous.

The secondary spacecraft A is given a circular orbit with an altitude of 833 km
(RA = 7211 km). The inclination i is chosen to be 98.74◦ in order to make the orbit
sun-synchronous (see Sec. 2.3). The initial value of u is taken to be 0◦, and the initial value
of Ω is set to 202.5◦. At the instant of autumnal equinox, these initial values correspond to
a local time of ascending node of 13:30 hours, or 1 hour and 30 minutes after local noon.
Orbital parameters for P and A are recorded in Table 1.

As discussed heretofore, the longitude of ascending node of the orbit of P does not
change with time (Ω̇ = 0), whereas A is in a sun-synchronous orbit (Ω̇ = nS). The
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Table 1. Orbital Parameters

Parameter Spacecraft P Spacecraft A
13:30 local time

altitude (km) (constant) 609 (constant) 833
inclination, i (deg) (constant) 90 (constant) 98.74

longitude of ascending node, Ω (deg) (constant) 0 (t = 0) 202.5
argument of latitude, u (deg) (t = 0) 0 (t = 0) 0
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Figure 13. Angle Between Orbit Planes, Solar Beta Angle for P

difference in time rate of change of Ω for the two orbits leads to a change in the angle
Θ between the orbit planes or, more precisely, the angle between the two orbital angular
momentum vectors. A time history of Θ is shown in the upper half of Fig. 13. After 160
days the angle reaches a minimum value of 8.74◦, which is the difference in inclinations
of the two orbits, and a maximum of 171.26◦ is reached after 343 days. Θ is equal to 90◦

on day 70 and again on day 250. When arranged in ascending order, these key days are
roughly 3 months apart, and they correspond to notable features in the results that follow.

The bottom half of Fig. 13 shows a time history of the angle β between the orbit plane
of P and a vector directed toward the Sun. The amplitude and phase of the curve are conse-
quences of the particular orbital parameters for P , and the direction of the Sun at the outset
of the simulation (see Sec. 2.4). Although the value of β does not affect intercalibration di-
rectly, it can affect the design and operation of the spacecraft. For example, the 180-degree
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rotation mentioned in Sec. 4.3 could be required when the sign of β changes, in order to
keep one side of the spacecraft always shaded.

The intercalibration pyramid (see Sec. 3.3) is about 6.5 times as long as it is wide.
With the aid of Eqs. (2) and (5), the angle ψ (see Fig. 6) is found to be 17.72◦ by using
RA = 7211 km and a maximum time τ between measurements of 300 sec. The value of
the angle δ, twice the scan angle of the instrument aboard A (see Sec. 3.2), is taken to be
110◦. The corresponding value of ε (see Fig. 7) is determined to be 2.72◦. Thus, ψ/ε = 6.5.

5.2 Geographic and Temporal Distribution of Intercalibration Opportunities

The geographic distribution of intercalibration opportunities can be illustrated by plotting
the ground track of P during each opportunity. Over the course of one year, 661 opportu-
nities arise as shown in Fig. 14, where the beginning of an opportunity is indicated with an
open circle, the end of an opportunity is denoted by a filled circle, and the ground track is
represented by a line segment that joins two circles. Because P is traveling at a constant
orbital speed, the length of a ground track is an indication of the duration of an opportunity.
Opportunities with long durations occur at low to mid latitudes. Conversely, opportunities
of short durations occur predominantly at high latitudes, although they can also be found at
low latitudes.

Over the course of one year there is a change in the latitude at which intercalibration
occurs, due to two factors. First, as the plane of the sun-synchronous orbit of A precesses,
there are marked changes in the latitudes of the two points at which the ground tracks of
A and P intersect. Second, the northern and southern boundaries of the terminator change
in latitude during the year. These two effects combine to produce a seasonal variation in
the latitude of intercalibration. For example, intercalibration takes place predominantly
over northern latitudes during the first 30 days of the simulation as shown in Fig. 15. In
the 30-day period that follows, almost all intercalibration occurs over extreme southern
latitudes as illustrated in Fig. 16. The ground tracks contained in Fig. 17 indicate that by
the middle of the year there has been a shift to low and mid latitudes. The seasonal change
in intercalibration latitude is better illustrated in Fig. 18 with the temporal behavior of the
latitude of P at the beginning of each opportunity. Opportunities begin at extreme latitudes
when Θ = 90◦ (see Fig. 13), whereas they begin near the equator when Θ is minimum, and
maximum.

5.3 Duration of Intercalibration Opportunities

The time spent in each tent (or pyramid) over the course of a year is marked with an open
triangle in Fig. 19. Seasonal behavior seen in Fig. 18 is also evident here. Two minima of
about 90 sec occur six months apart, during times when intercalibration opportunities exist
at near-polar latitudes (see Fig. 18) and Θ = 90◦ (see Fig. 13). Three months after the first
minimum, duration reaches a maximum of nearly 600 sec at a time when intercalibration
occurs over the equator and Θ reaches a minimum; P andA are moving in roughly the same
direction. Three months after the second minimum, duration reaches a local maximum of
approximately 300 sec. At this time intercalibration occurs over the equator and Θ reaches
a maximum, and P and A are traveling in approximately opposite directions.
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Figure 14. Ground Tracks of P During Intercalibration, One Year
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Figure 15. Ground Tracks of P During Intercalibration, Mission Days 0 – 30
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Figure 16. Ground Tracks of P During Intercalibration, Mission Days 31 – 60
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Figure 17. Ground Tracks of P During Intercalibration, Mission Days 151 – 180
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Figure 18. Latitude of P at Beginning of Intercalibration, One Year
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Figure 19. Duration of Intercalibration Opportunities, One Year
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Figure 20. Gimbal Angles During Intercalibration, One Year

No consideration is given to viewing angles (see Sec. 4.1) in the calculation of time
spent in each tent, which is plotted with open triangles in Fig. 19. Now, measurements of
reflected solar radiation are not useful when solar zenith angle θ0 is greater than 75◦; there-
fore, time spent in the tent does not always provide an accurate indication of the quantity
of useful measurements that can be obtained. The effect of the constraint can be taken into
account by determining the time during which θ0 ≤ 75◦ at the target of the boresight of the
instrument aboard P , and the adjusted durations are shown in Fig. 19 with filled circles. It
can be seen that no useful measurements can be obtained during two intervals, each lasting
a substantial number of days. The first of these occurs between days 18 and 45, whereas
the second period lasts from day 300 to about day 327. Duration is significantly reduced
between days 0 and 18, and again between days 45 and 80.

5.4 Aiming the Boresight

The location of a target at which viewing angles for P are identical to those for A at some
instant in time (within an allowable window) is discussed in Sec. 4.2. Gimbal angles q1 and
q2 (see Fig. 12) needed to aim the boresight of the instrument aboard P at such a target are
the subject of Sec. 4.3. Annual time histories of q1 and q2 are provided in Fig. 20.

When the spacecraft bus B (see Sec. 4.3) is in a nominal orientation with respect to the
local-vertical-local-horizontal reference frame for P , unit vector b̂1 is in the direction of the
orbital (circular) velocity of P , b̂2 has direction opposite to the orbital angular momentum
vector of P , and b̂3 is in the direction of local nadir. In this case, one can regard q1 as
an angle needed to to make unit vector d̂1 (see Fig. 12) parallel to the ground track of A.
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In general there are two values of q1 that will produce the desired result; the two values
differ by 180◦. Setting q1 equal to the angle Θ between the orbit planes provides one
approximate solution. By using the arctangent function as in Eq. (22) one obtains a solution
that minimizes |q1|, with −90◦ ≤ q1 ≤ 90◦.

An approximate limit on the magnitude of q2 of 55◦ can be determined by halving the
value of δ, taken to be 110◦ as discussed previously. The particular values of the orbital
parameters used here (see Sec. 5.1) lead to an actual limit of |q2| ≤ 57.7◦. This limit is
evident in the annual time history of q2 shown in Fig. 20, where the value at the beginning
of an intercalibration opportunity is indicated with an open circle, and the value at the end
of an opportunity is marked with a filled circle. When P passes through a corner of the tent
(rather than all the way from one side to the other), the initial or final value of q2 can differ
substantially from 57.7◦, as shown.

Details of the gimbal motion and boresight path are provided for two intercalibration
opportunities of interest. The first occurs on day 87 when the duration of the opportunity
is short (see Fig. 19) and intercalibration takes place over the Antarctic (see Fig. 18). The
second opportunity takes place on day 161 when duration is maximum and intercalibration
occurs over the equator.

Motion on day 87 is shown for the yaw gimbal in Fig. 21 and for the roll gimbal in
Fig. 22. The duration of the opportunity is 90 sec. The yaw gimbal moves only slightly.
Variation in q1 is only about 0.02◦, and the time-derivative of q1 does not exceed 0.001◦/sec.
In contrast, there is substantial movement of the roll gimbal. The roll angle varies smoothly
all the way from 57.7◦ at the beginning of the opportunity to −57.7◦ at the conclusion of
the opportunity. The time-derivative of q2 begins and ends with a value of about −0.6◦/sec,
and reaches −1.9◦/sec when q2 = 0 and the boresight is aimed at nadir. It is important to
note that in other spacecraft pairings the maximum absolute value of dq2/dt will increase
as the difference in orbit radii, RA −RC , decreases.

On day 161 the variation in q1 is approximately 0.4◦ as shown in Fig. 23, and the mag-
nitude of dq1/dt remains less than 0.003◦/sec. The roll gimbal again undergoes a large
excursion from 57.7◦ to −57.7◦ as seen in Fig. 24, but the 575-sec duration of the opportu-
nity results in lower values of dq2/dt, which range from −0.1◦/sec to −0.3◦/sec.

As a consequence of using the angular displacements shown in Figs. 21 and 22 to aim
the boresight during the opportunity on day 87, the boresight traces a path on Earth’s surface
illustrated in Fig. 25 with a solid curve. Because intercalibration is taking place very near
the South pole, the boresight path covers a large range of longitude during the initial portion
of the opportunity. The location of the primary spacecraft at the beginning and end of the
opportunity is indicated with open and filled circles, respectively, and its ground track is
displayed with a dashed line. The boresight path crosses from one side of the ground
track to the other when the value of q2 is zero. At each target point on the solid curve,
the three viewing angles (see Sec. 4.1) for the primary spacecraft are, by construction,
identical to those for the secondary spacecraft. A similar plot of the boresight path during
the opportunity on day 161 is provided in Fig. 26. In this case the boresight is aimed
according to the angular displacements shown in Figs. 23 and 24. The boresight path is
approximately symmetric with respect to the ground track of the primary spacecraft.
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Figure 21. Yaw Gimbal Motion, Mission Day 87
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Figure 22. Roll Gimbal Motion, Mission Day 87
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Figure 23. Yaw Gimbal Motion, Mission Day 161
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Figure 24. Roll Gimbal Motion, Mission Day 161
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Figure 25. Boresight Track, Mission Day 87
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Figure 26. Boresight Track, Mission Day 161
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6 CONCLUSION

If accurate measurements of solar radiation reflected by Earth can be obtained from one
spacecraft, they can be used to calibrate the measurements obtained by a second spacecraft.
The measurements must be made within a short time of one another, and from a similar
vantage point. Investigation of opportunities for intercalibration between two spacecraft
is facilitated by making several simplifying assumptions regarding orbital motion, and by
introducing the geometrical concepts of an intercalibration tent, together with a pyramid.
When two rotational degrees of freedom are available, the boresight of the instrument on
the primary spacecraft can at each instant be aimed at a target for which there are, by
construction, identical viewing angles to the primary and secondary spacecraft. Two angles,
yaw and roll, are used to describe the direction of the instrument boresight relative to the
primary spacecraft bus.

Key mathematical relationships presented here serve as the basis for a computer pro-
gram that can be used to analyze opportunities over the course of one year (or even longer)
between two spacecraft in particular orbits. Results are provided for the case of a primary
spacecraft in polar orbit and the secondary spacecraft in a sun-synchronous orbit. The pe-
riod of relative precession of the two orbit planes is one year; this is observed to be the
period of several quantities including the angle between the two orbit planes, the latitude at
which an intercalibration opportunity begins, the duration of an opportunity, and the yaw
angle of the instrument boresight. Maxima and minima of these periodic variables occur at
times when the angle between the orbit planes becomes 90◦ or reaches one of the two ex-
trema. During a particular intercalibration opportunity there is very little variation in yaw.
The roll angle, however, varies substantially. The time-derivative of roll can reach nearly
2◦/sec for the orbital parameters used in the present example.
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