The SPoRT-WRF: Evaluating the Impact of NASA Datasets on Convective Forecasts

Bradley Zavodsky
Danielle Kozlowski
Jonathan Case
Andrew Molthan

16th Symposium on IOAS-AOLS/92nd AMS Annual Meeting
26 January 2012
New Orleans, LA
Presentation Outline

Introduction/Motivation
SPoRT-WRF Version 1 Overview and Procedure
SPoRT-WRF Version 1 Quantitative and Qualitative Results
Feedback on SPoRT-WRF Version 1 at 2011 HWT EFP
SPoRT-WRF Version 2 Development
Summary
Introduction/Motivation

- SPoRT focuses on improvements to short-term, regional weather forecasts using unique NASA products and capabilities
- Accurate forecasting of convection (timing, intensity, mode, location) is forecast challenge for regional/local scale modeling
 - WFOs cite this as main forecast challenge in their local modeling efforts
 - SPC/NSSL have revolved their Spring Experiment around the “convection-in-models” forecast challenge for many years
 - SPoRT’s data sets provide additional information on factors that contribute to convection in NWP models
- Since SPoRT’s inception, research projects have examined the sensitivity of an individual dataset or capability
- SPoRT-WRF combines all datasets and capabilities into one real-time modeling system for testbed evaluation by forecasters
SPoRT-WRF V1 Background

• Identical configuration to National Severe Storms Laboratory (NSSL) WRF used operationally by SPC
 – Same WRF core (ARW), domain (CONUS), resolution (4-km), and physics options (convective allowing)
 – Except for 12-km NAM-218 used for initial and boundary conditions

• NASA Unified WRF (NU-WRF) with unique NASA datasets and capabilities:
 – SPoRT SST Composite
 – 2-km resolution
 – Generated twice daily
 – Provides details that allow model to account for ocean fluxes and seabreeze forecasting
 – LIS
 – 3-km resolution
 – Run once daily (available every 3 hours)
 – Uses precipitation data and vegetation to predict soil characteristics that shape energy fluxes for weakly-forced convection
 – MODIS GVF
 – 1-km resolution
 – Generated once daily
 – Replaces coarse climatology to produce weather-of-the-day details that affect energy fluxes for weakly-forced convection
 – AIRS Profile Assimilation
 – 45-km resolution
 – Assimilated once daily (available twice daily)
 – Enhances upper-air analysis at asynoptic times to provide information on atmospheric moisture and stability

transitioning unique NASA data and research technologies to operations
SPoRT-WRF V1 Procedure

- Initialized each day at 0000 UTC
- Surface datasets integrated into SPoRT-WRF at initialization using a modified version of the NU-WRF Preprocessing System (WPS)
 - MODIS GVF s are incorporated into the system through the LIS
 - LIS is run offline once per day to provide land-surface information for model
 - SPoRT SSTs are generated offline and brought in as a replacement for the RTG SST product
- AIRS profiles assimilated using WRF-Var with 9-h forecast as background
- Forecast runs additional 27 hours (total of 36) producing forecast output every hour
- Files are postprocessed using the WRF Postprocessor (WPP) with GRIB1 files sent to HWT and model output images displayed on internal SPoRT website
Impact on April 25-27 Forecasts

• MET evaluation tools used to produce a statistical evaluation of surface characteristics comparing SPoRT-WRF to NSSL-WRF for historic tornado outbreak

• **Conclusion:** SPoRT-WRF tends to have a cool and dry bias for 2-m T and T_d
 - Largest impact from AIRS profiles
 - LIS/GVFs slightly cool and moisten
 - Likely little impact from SSTs for these strongly forced non-coastal storms

![SPC Tornado Reports 25-27 April 2011](image)

![2-m Temperature](image)

![2-m Dew Point](image)

![April 25](image)

![April 26](image)

![April 27](image)

Mean Forecast Error (F-O) Compared to METAR, SAO, and Mesonet Observations
Qualitative Forecast Comparison

- Evaluated reflectivity at selected forecasts for historic 25-27 April 2011 tornado outbreak across the SEUS
- Tracked reflectivity differences back to initial conditions in surface parameters

Conclusions:

- 25 April: SPoRT has slightly cooler 2m temperature than NSSL, but is more consistent with RUC analysis
- 26 April: SPoRT has very small differences in 2m temperature from NSSL; both are slightly warmer than the RUC
- 27 April: SPoRT slightly warmer than NSSL; RUC analysis is cooler than both; SPoRT similar to NSSL for 10m wind; both forecasts stronger southerly winds than RUC
Qualitative Forecast Comparison

• Evaluated reflectivity at selected forecasts for historic 25-27 April 2011 tornado outbreak across the SEUS
• Tracked reflectivity differences back to initial conditions in surface parameters

Conclusions:

– 25 April: SPoRT is drier than NSSL and RUC analysis
– 26 April: SPoRT is drier than NSSL; RUC analysis is much more moist over N MS and W TN and drier over E TN and E KY
– 27 April: SPoRT is slightly drier than NSSL; both are drier than RUC analysis
Qualitative Forecast Comparison

- Evaluated reflectivity at selected forecasts for historic 25-27 April 2011 tornado outbreak across the SEUS
- Tracked reflectivity differences back to initial conditions in surface parameters

Conclusions:

- 25 April: SPoRT has more convection with two-band feature in AR/OK/MS tri-state area; more closely matches the observed reflectivity than NSSL
- 26 April: SPoRT removes almost all precipitation from MS and AL with some convection over NE TN; NSSL produces strong squall line from E KY to E MS; observed reflectivity show precipitation but no convection
- 27 April: SPoRT displaces cold front too far SE compared to both NSSL and observed reflectivity
Feedback from Spring Experiment

- NOAA HWT’s Spring Experiment ran from 9 May – 10 June 2011
 - This year’s EFP focused on severe weather, QPF, and CI forecasting
 - Brings together modelers and operational forecasters to **subjectively** evaluate model performance and discuss the strengths and limitations of regional models and how they should be used operationally

- Each day, participants evaluated a number of regional models
 - SPoRT-WRF was evaluated for 12 days by the severe weather group
 - SPoRT-WRF evaluated against NSSL-WRF and an NCAR-WRF

- Overall feedback was that the SPoRT-WRF was too cool and dry and suppressed convection (some good; some bad)
 - Similar tendency to 25-27 April evaluation

- SPoRT-WRF performed comparably to NCAR-WRF and worse than the NSSL-WRF

Subjective Rating of 18-06Z Forecasts of 1-km AGL Reflectivity

Subjective Comparison of NSSL- and SPoRT WRF for 1-km AGL Reflectivity

Subjective Comparison of NSSL- and SPoRT WRF for T and T_d

transiti@ng unique NASA data and research technologies to operations
SPoRT-WRF V2

• Feedback from research, testbed activities, and operational users improve model
 – AIRS profiles being assimilated in a start/stop methodology results in “shock to the system” imbalances that are never totally corrected

• Development of Version 2 of the SPoRT-WRF is completed for dissemination to 2012 EFP
 – Continuous (cycling) assimilation using Gridpoint Statistical Interpolation (GSI) with AIRS and IASI thermodynamic profiles, conventional, and other satellite radiances
 – Initialization of LIS during each cycle with improved precipitation forcing using CMORPH climatology product
 – Integration of USGS eMODIS GVF product

• Science questions to be pursued in 2012:
 – What impacts do the NASA datasets and model options have on convective forecasts?
 – How well does the SPoRT-WRF perform (both qualitatively and quantitatively) against other operational models?
 – Which individual components of the SPoRT-WRF have the largest impact on the performance?
Summary

• SPoRT seeks to improve short-term, regional weather forecasts using unique NASA products and capabilities

• SPoRT has developed a unique, real-time configuration of the NASA Unified WRF (ARW) that integrates all SPoRT modeling research data
 – 2-km SPoRT SST Composite
 – 3-km LIS with 1-km GVFs
 – 45-km AIRS retrieved profiles

• Transitioned this real-time forecast to NOAA’s HWT as deterministic model at EFP

• Feedback from forecasters/participants and internal evaluation of SPoRT-WRF shows a cool, dry bias that appears to suppress convection likely related to methodology for assimilation of AIRS profiles

• Version 2 of the SPoRT-WRF will premier at the 2012 EFP and include NASA physics, cycling data assimilation methodology, better coverage of precipitation forcing, and new GVFs