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I t d tiIntroduction

• Most propulsion systems are designed to be filled and p p y g
flown, draining can be done but decontamination may be 
difficult
T t f th t b diffi lt ll• Transport of these systems may be difficult as well 
because flight weight vessels are not designed around 
DOT or UN shipping requirements

• Repairs, failure analysis work or post firing inspections 
may be difficult or impossible to perform due to the 
hazards of residual propellants being presenthazards of residual propellants being present
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C P ll tCommon Propellants 

• Hydraziney
– Monopropellant and bipropellant uses
– Soluble in water and alcohols

Hydrazine systems have heaters and insulation for freeze– Hydrazine systems have heaters and insulation for freeze 
protection

– Toxic ACGIH 10 ppb TLV/TWA
F i i t b t 2° C (35° F)– Freezing point about 2° C (35° F) 

– Boiling point about 113° C ( 235° F)
– Heat capacity  3.08 J/gK
– Heat of fusion  396 J/g
– Heat of vaporization 1398 J/g
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C P ll tCommon Propellants 

• Monomethylhydrazine (MMH)y y ( )
– Bipropellant uses
– Soluble in water and alcohols

Toxic ACGIH 10 ppb TLV/TWA– Toxic ACGIH 10 ppb TLV/TWA
– Freezing point about -52° C (-62° F) 
– Boiling point about 87° C ( 189° F)
– Heat capacity  2.92 J/gK
– Heat of fusion  226 J/g
– Heat of vaporization 877J/gp g
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C P ll tCommon Propellants 

• Dinitrogen Tetroxide (NTO)g ( )
– Bipropellant oxidizer
– Reacts with water to make nitric and nitrous acids

Soluble in CFC 113– Soluble in CFC-113
– Toxic NASA 1.0 ppm PEL 
– Freezing point about -11° C (12° F) 
– Boiling point about 21° C ( 70° F)
– Heat capacity 1.55 J/gK 
– Heat of fusion 159 J/gg
– Heat of vaporization  414 J/g
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C S l tCommon Solvents 

• Water
– Non-toxic, non-flammable
– Freezing point about 0° C (32° F) 

Boiling point about 100° C ( 212° F)– Boiling point about 100 C ( 212 F)
– Heat capacity 4.18 J/gK
– Heat of fusion 334 J/g
– Heat of vaporization 2270 J/g
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C S l tCommon Solvents 

• Isopropyl alcohol (IPA), 2-propanolp py ( ), p p
– Toxic (ACGIH TLV/TWA 200 ppm), flammable
– Freezing point about -89° C (-128° F) 

Boiling point about 82° C ( 181° F)– Boiling point about 82 C ( 181 F)
– Heat capacity 2.68 J/gK
– Heat of fusion 88 J/g
– Heat of vaporization 733 J/g
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C S l tCommon Solvents 

• Ethyl alcohol, ethanoly ,
– Toxic (ACGIH STEL 1000 ppm), flammable
– May cause issues with titanium alloys

Freezing point about 114° C ( 173° F)– Freezing point about -114 C (-173 F) 
– Boiling point about 78° C (173° F)
– Heat capacity  2.44 J/gK
– Heat of fusion  107J/g
– Heat of vaporization  920 J/g
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P G d M t i lPurge Gases and Materials

• Helium Heat Capacity 1.04 J/gK (0.0012 J/mLK)p y g ( )
• Nitrogen Heat Capacity 5.19 J/gK (0.0008 J/mLK)

• Aluminum Heat Capacity 0.90 J/gK
• Chromium Heat Capacity 0.45 J/gK

C /• Iron Heat Capacity 0.45 J/gK 
• Nickel Heat Capacity 0.44 J/gK
• Titanium Heat Capacity 0 52 J/gK• Titanium Heat Capacity 0.52 J/gK
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S ft dSoft goods

• This work is focused on returning hardware to a state g
where it can be reused/flown/tested

• Soft goods functionally never decontaminate
• For a system to be rendered permanently safe in a 

decontaminated state the soft goods must be removed
• If a solvent is chosen for rinsing the interaction of the• If a solvent is chosen for rinsing, the interaction of the 

solvent with the soft goods should be understood if the 
hardware will not be disassembled to replace the soft 

dgoods 
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D t i ti M th dDecontamination Methods

• Solvent Rinsing/flushingg g
• Advantages

– Doesn’t require propellant to vaporize, no heat required
– Potentially fast
– Bureaucratically clean (triple rinsed)

• DisadvantagesDisadvantages
– Requires a flow path (no dead end)
– Rinsate is likely hazardous waste

Introduces something that will ultimately have to be removed– Introduces something that will ultimately have to be removed
– May cause corrosion (water rinse of an NTO system)
– May leave residues less volatile (nitric acid in an NTO system)
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D t i ti M th dDecontamination Methods

• Gas purgingp g g
• Advantages

– Doesn’t introduce something to remove later (inert gas assumed) 
– Purge gases commonly available and possibly interfaced to 

hardware already
– Detection methodologies commonly available for gas stream 

evaluation

• Disadvantages
– Requires a flow path (no dead end)Requires a flow path (no dead end)
– Purge gas is still hazardous 
– Heat required to convert propellant to a vapor and remove it

Hard to put heat into a system with a gas due to low heat– Hard to put heat into a system with a gas due to low heat 
capacities of gases
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E l P l i S t El tExample Propulsion System Element

• Valve 
• Line
• Filter
• Line
• Valve 
• Heated and insulatedHeated and insulated
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D t i ti f El tDecontamination of Element

• First  valve may be opened 
• Second valve stays closed
• Heater may be turned on• Heater may be turned on
• Insulation may not be removed
• Entire element will need to be in a vacuum to protect the tank
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Fl id i VFluids in a Vacuum

• Vacuum is not the “Magic Bullet”g
• More or less assumed to be adiabatic, heat capacities 

are small compared to heats of vaporization and fusion, 
li i l t dlines insulated

• As pressure drops liquid begins to boil, heat of 
vaporization comes from cooling the liquid and finallyvaporization comes from cooling the liquid and finally 
from heat of fusion

• Boiling liquid turns into ice (more or less a triple point)
• Under vacuum, diffusion now defines flow
• Filters act as diffusion restrictors

O i hi d f l d t i ti• Once vacuum is achieved, useful decontamination 
becomes minimal
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Fl Si l ti i D d E dFlow Simulation in a Dead End

• Once vacuum is achieved, system is re-pressurized, y p
• Although this will carry vapor back into the system it is 

the vehicle to ultimately remove it
• After pressurization, system is vented and a vacuum 

reapplied
• Each venting and vacuum cycle removes• Each venting and vacuum cycle removes 

propellant/solvent vapor
• Vapor production is dependent on heat available to 

vaporize the propellant/solvent
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H t Fl P blHeat Flow Problems

• Under vacuum it is hard to heat an insulated line
• Line heaters are sized to feed heat capacity not heat of 

vaporization
• Gas (even warm gas) doesn’t really carry much heat into 

the system
• The lack of heat flow into the system makes this a very• The lack of heat flow into the system makes this a very 

slow process
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Sl D t i ti PSlow Decontamination Progress
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C l iConclusions

• Solvents should be carefully chosen to avoid problems y p
with contamination, corrosion and removal

• Heat flow (or lack of it) into the system will largely 
d t i th t f ti it ill t k tdetermine the amount of time it will take to 
decontaminate it

• Vacuum is important but works best if an artificial flow isVacuum is important but works best if an artificial flow is 
set up to remove volatilized species
– Bulk draining (optional and well considered solvent rinse)

Pulse purging (maximum safe upper pressure to vacuum)– Pulse purging (maximum safe upper pressure to vacuum)
– Heat as you can (but recognize that it is hard to do)
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