Combined effects of Gamma Radiation and High Dietary Iron on Peripheral Leukocyte Distribution and Function

Brian E. Crucian,
Jennifer L.L. Morgan
Heather A. Quiriarte
Clarence F. Sams
Scott M. Smith
Sara R. Zwart
Both radiation and increased iron stores can independently increase oxidative damage, resulting in protein, lipid and DNA oxidation.

Oxidative stress increases the risk of many health problems including cancer, cataracts, and heart disease.

This study, a subset of a larger interdisciplinary investigation of the combined effect of iron overload on sensitivity to radiation injury, monitored immune parameters in the peripheral blood of rats subjected to gamma radiation, high dietary iron or both.

Specific immune measures consisted of:
- peripheral leukocyte distribution
- plasma cytokine levels
- cytokine production profiles following whole blood mitogenic stimulation
THE IMMUNE SYSTEM

THYMUS GLAND
LYMPH NODES
LIVER
LYMPH NODES
BREAST
LYMPHOCYTES
ANTIBODIES
ANTIBIOTICS
B CELLS & OTHER LYMPHOCYTES

INNATE IMMUNITY (rapid response)
- Dendritic cell
- Mast cell
- Macrophage
- Natural killer cell
- Complement protein
- Basophil
- Eosinophil
- Neutrophil
- Granulocytes

ADAPTIVE IMMUNITY (slow response)
- B cell
- T cell
- γδ T cell
- θ T cell
- Natural killer T cell
- Antibodies

CD4+ T cell
CD8+ T cell

IL-12, STAT4, T-bet
IL-4, STAT6, GATA3

Th1
- IFN-γ
- TNF-β
- IL-2

Th2
- IL-10
- IL-4, IL-5
- IL-13

Th1
Th2
Immune dysregulation during deep space missions has the capacity to synergize with other variables such as oxidative damage or radiation exposure. This would further enhance clinical risk to crewmembers.
Current Study Design

- **Irradiation - Cs-137 source, .375 Gy**
- **Sacrifice**
 - Starting after week 2, irradiation every other day (8 doses); 3 Gy total

<table>
<thead>
<tr>
<th>Week 1</th>
<th>Week 2</th>
<th>Week 3</th>
<th>Week 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal iron diet</td>
<td>Normal iron diet</td>
<td>High iron diet</td>
<td>High iron diet</td>
</tr>
</tbody>
</table>

- **Sacrifice**

 - Irradiation - Cs-137 source, .375 Gy
 - Starting after week 2, irradiation every other day (8 doses); 3 Gy total
Specific Immunology Assays

- WBC
- Neutrophil, Lymphocyte, Monocyte
- T cell subsets: CD4+/CD8+ (Flow cytometry)
- Cytokine Profiles (cytometrix bead array)
 - Adaptive immunity: IFNg, IL-10, IL-4, IL-2
 - Innate/inflammatory: TNFa, IL-1b, IL-6
Constitutive Plasma Cytokine Levels
Cytokine Production Profiles (*anti-CD3/28, 48hr*)

- IFNg
- IL-10
- IL-4
- IL-1b
- TNFa
- IL-6
Cytokine Production Profiles (anti LPS, 48hr)
Cytokine Production Profiles (anti PMA-I, 48hr)
Conclusions
(and places we can go...)

• **Gamma-radiation treatment:** Demonstrable alterations in peripheral leukocyte distribution and leukocyte cytokine production following mitogenic stimulation.

• **High iron diet:** Resulted in an elevated WBC but with a normal subset distribution; minimal direct immune effects; abrogated some of the radiation-induced functional alterations but not the phenotypic alterations.

• **Summary:** Radiation induced demonstrable changes in peripheral immunity. Generally, the high iron diet did not, yet did abrogate many of the radiation effects.
ALTERED INNATE AND LYMPHOCYTIC IMMUNITY IN MURINE SPLENOCYTES FOLLOWING SHORT-DURATION SPACEFLIGHT

Brian E. Crucian
Shen-An Hwang
Jeffrey K. Actor
Heather Quiriarte
Clarence F. Sams
STS-135 Study Design

Ground controls

½ spleen; n=6
Splenocytes harvested 3-4 hours post-landing

Phenotype

T cells: CD4:CD8
Dendritic cells: CD11c, CD86, MHC-I

Activation marker expression and cytokine profiles

24 or 48hr cell culture

DC Function:
- Zymosan (TLR-2)
- LPS (TLR-4)
- Flagellin (TLR-5)

Expression of MHC-I, CD86

Cytokine Profiles
- CD3/CD28
- PMA/I
- LPS
- (7 cytokine array)

T-cell Function:
- Anti-CD3/28
- SEA/SEB
- PMA/Ionomycin

CD69 and/or CD25

STS-135 (13 day mission)
Altered expression of lymphocytic markers post-flight

% positive cells

Intensity of marker expression

*** = p<0.001
Post-flight splenocytes have decreased expression of antigen presentation and co-stimulatory molecules

% positive cells

Intensity of marker expression

** = p<0.01
*** = p<0.001
Post-flight DCs show decreased expression of presentation and co-stimulatory molecules after TLR stimulation.

** = p<0.01
*** = p<0.001

No differences in MHC II observed.
Post-flight splenocytes demonstrate increased CD25\(^+\) in CD4\(^+\)/CD8\(^+\)CD28\(^+\) cells when stimulation bypasses the 2\(^{\circ}\) signal.

*** = p<0.001

* = p<0.05
Data – T Cell Function, 24h culture, CD69/25 dual positive

SEA+SEB

αCD3+CD28
Data – Cytokine Production Profiles (anti CD3/28, 48hr)

- IFNγ
- IL-10
- IL-4
- IL-6
- TNFα
- IL-17a
Data – Cytokine Production Profiles (anti PMA-I, 48hr)
Data – Cytokine Production Profiles (anti LPS, 48hr)

1. TNFa

2. IL-6

3. IFNg

* indicates significant difference.
Conclusions

• These data indicate that alterations in splenocytes phenotype, function and cytokine production patterns are evident following spaceflight.

• The pattern suggests that some innate immune functions are possibly enhanced, whereas some adaptive immune parameters may be inhibited.

• Follow up human and in-flight studies will determine if a clinical risk related to immune dysregulation exists for astronauts.

Acknowledgement: