A method of determining a subsurface temperature in a body of water is disclosed. The method includes obtaining surface temperature anomaly data and surface height anomaly data of the body of water for a region of interest, and also obtaining subsurface temperature anomaly data for the region of interest at a plurality of depths. The method further includes regressing the obtained surface temperature anomaly data and surface height anomaly data for the region of interest with the obtained subsurface temperature anomaly data for the plurality of depths to generate regression coefficients, estimating a subsurface temperature at one or more other depths for the region of interest based on the generated regression coefficients and outputting the estimated subsurface temperature at the one or more other depths. Using the estimated subsurface temperature, signal propagation times and trajectories of marine life in the body of water are determined.
Fig. 8

1. Obtain surface temperature anomaly data and surface height anomaly data of a body of water for a region of interest.
2. Obtain subsurface temperature anomaly data for the region of interest at a plurality of depths.
3. Regress the obtained surface temperature anomaly data and surface height anomaly data for the region of interest with the obtained subsurface temperature anomaly data for the plurality of depths to generate regression coefficients.
4. Estimate a subsurface temperature at one or more other depths for the region of interest based on the generated regression coefficients.
5. Output the estimated subsurface temperature at the one or more other depths.
900 CALCULATE SURFACE LOCATIONS AND DEPTHS IN A BODY OF WATER ASSOCIATED WITH A PROPAGATION PATH OF A SIGNAL

910 OBTAIN SURFACE TEMPERATURE ANOMALY DATA AND SURFACE HEIGHT ANOMALY DATA OF THE BODY OF WATER CORRESPONDING TO THE CALCULATED SURFACE LOCATIONS ASSOCIATED WITH THE PROPAGATION PATH OF THE SIGNAL

920 ESTIMATE SUBSURFACE TEMPERATURES ALONG THE PROPAGATION PATH AT A PROPAGATION DEPTH BASED ON AT LEAST THE OBTAINED SURFACE TEMPERATURE ANOMALY DATA AND SURFACE HEIGHT ANOMALY DATA

930 CALCULATE THE PROPAGATION TIME OF THE SIGNAL ALONG THE PROPAGATION PATH BASED ON THE ESTIMATED SUBSURFACE TEMPERATURES

940 OUTPUT THE CALCULATED PROPAGATION TIME

Fig. 9
Obtain subsurface temperature data at one or more specified depths corresponding to the calculated surfact locations associated with the propagation path of the signal.

Determine subsurface temperature anomaly data at the one or more specified depths using the obtained subsurface temperature data.

Regress the surface temperature anomaly data and surface location along the propagation path with the subsurface temperature anomaly data to generate regression coefficients.

Estimate a subsurface temperature at a depth of the propagation path for each of the calculated surfact locations using the generated regression coefficients.
DETERMINE A GEOGRAPHIC REGION OF INTEREST WHERE MARINE LIFE IS LOCATED

OBTAIN SUBSURFACE TEMPERATURE ANOMALY DATA AND SURFACE HEAT ANOMALY DATA OF THE BODY OF WATER FOR THE REGION OF INTEREST

ESTIMATE A PLURALITY OF VERTICAL SUBSURFACE TEMPERATURE GRADIENTS IN THE REGION OF INTEREST BASED ON AT LEAST THE OBTAINED SURFACE TEMPERATURE ANOMALY DATA

DETERMINE A PLURALITY OF DEPTHS FOR A THERMOCLINE IN THE REGION OF INTEREST, EACH OF THE PLURALITY OF DEPTHS FOR THE THERMOCLINE BEING ASSOCIATED WITH A RESPECTIVELY DIFFERENT ONE OF THE PLURALITY OF ESTIMATED VERTICAL SUBSURFACE TEMPERATURE GRADIENTS

DISPLAY AT LEAST THE THERMOCLINE IN THE REGION OF INTEREST TO ESTABLISH ONE OR MORE TRAJECTORIES OF THE MARINE LIFE IN THE REGION OF INTEREST

Fig. 11
1130 Obtain the subsurface temperature data at the one or more specified depths of a body of water in a plurality of sub-regions of the region of interest.

1132 Determine subsurface temperature anomaly data at the one or more specified depths using the obtained subsurface temperature data for each respective sub-region of the region of interest.

1134 Regress the subsurface temperature anomaly data and surface height anomaly data associated with each respective sub-region of the region of interest with the corresponding subsurface temperature anomaly data to generate a respective set of regression coefficients associated with each respective sub-region of the region of interest.

1136 Calculate a plurality of vertical subsurface temperature gradients based on respective sets of regression coefficients.

Fig. 12
ESTIMATION OF SUBSURFACE THERMAL STRUCTURE USING SEA SURFACE HEIGHT AND SEA SURFACE TEMPERATURE

CROSS REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application No. 61/062,027, filed Jan. 23, 2008, the contents of which are herein incorporated by reference.

GOVERNMENT FUNDING

The U.S. Government has a paid-up license in the present invention and the right in limited circumstances to require the patent owner to license others on reasonable terms as provided for by contract as awarded by the National Aeronautics and Space Administration under funding number NASA Space Grant (NNG05G0921I).

FIELD OF THE INVENTION

The present invention relates to estimating subsurface thermal structures and, more particularly, to methods and systems for improved estimation of subsurface temperatures.

BACKGROUND OF THE INVENTION

Subsurface thermal information is useful in determining the trajectories of fish in open-ocean fisheries and in detecting ocean acoustic signals. Such information is also useful for weather predictions and ocean dynamics analysis. Presently, subsurface thermal information may be obtained from in-situ measurements using devices such as thermal monitors and may be extrapolated using numerical modeling through assimilations.

SUMMARY OF THE INVENTION

The invention is embodied in a method of determining a subsurface temperature in a body of water. The method includes obtaining surface temperature anomaly data and surface height anomaly data of the body of water for a region of interest, and also obtaining subsurface temperature anomaly data for the region of interest at a plurality of depths. The method further includes regressing the obtained surface temperature anomaly data and surface height anomaly data for the region of interest at a plurality of depths to generate regression coefficients, estimating a subsurface temperature in a body of water. The method further includes calculating the propagation time of a signal along a propagation path based on the estimated subsurface temperatures and outputting the calculated propagation time.

The invention is also embodied in a method of determining trajectories of marine life in a body of water. The method includes determining a geographic region of interest of the body of water where the marine life is located, obtaining surface temperature anomaly data and surface height anomaly data of the body of water for the region of interest and estimating a plurality of vertical subsurface temperature gradients in the region of interest based on at least the obtained surface temperature anomaly data and surface height anomaly data. The method further includes determining a plurality of depths for a thermocline in the region of interest, each of the plurality of depths for the thermocline being associated with a respectively different one of the plurality of estimated vertical subsurface temperature gradients and displaying at least the thermocline in the region of interest to establish one or more trajectories of the marine life in the region of interest.

BRIEF DESCRIPTION OF THE DRAWINGS

The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with colored drawing(s) will be provided by the Patent and Trademark Office upon request and payment of the necessary fee.

The invention is best understood from the following detailed description in connection with the accompanying drawings, with like elements having the same reference numerals. According to common practice, the various features of the drawings are not drawn to scale. On the contrary, the dimensions of various features are arbitrarily expanded or reduced for clarity. The letter n may be used to refer to a non-specific number of elements. Included in the drawings are the following figures:

FIG. 1 is a schematic drawing illustrating a satellite measurement system in accordance with an exemplary embodiment of the invention;

FIG. 2 is a block diagram illustrating a computer architecture in accordance with another exemplary embodiment of the invention;

FIGS. 3A and 3B are color images illustrating monthly Sea Surface Height (SSH) data and Sea Surface Temperature (SST) data, respectively;

FIGS. 3C and 3D are color images illustrating SSH anomaly (SSHA) data and SST anomaly (SSTA) data, respectively;

FIGS. 4A and 4B are color graphs illustrating a typical vertical normal temperature profile (gradient) and a typical vertical temperature anomaly profile (gradient) for a body of water;

FIGS. 5A, 5B and 5C are color images illustrating predictions (estimates) of subsurface temperature based on SSTA data, SSHA data and a combination of SSHA data and SSTA data;

FIG. 5D is a color image illustrating observed (actual) subsurface temperature anomaly (STA) data;

FIG. 6 is a color image illustrating a correlation coefficient between mean SSHA data and observed STA data;

FIG. 7 is a graph illustrating a correlation between estimated STA data and observed STA data for a specific region of interest over an extended timeframe;

FIG. 8 is a flowchart illustrating a method of determining a subsurface temperature in a body of water in accordance with yet another embodiment of the invention;
FIG. 9 is a flowchart illustrating a method of determining a propagation time of a signal along a propagation path in a body of water in accordance with yet another exemplary embodiment of the invention;

FIG. 10 is a flowchart illustrating an operation of estimating a subsurface temperature along the propagation path for the method of FIG. 9;

FIG. 11 is a flowchart illustrating a method of determining trajectories of marine life in a body of water in accordance with yet another exemplary embodiment of the invention; and

FIG. 12 is a flowchart illustrating an operation of estimating a plurality of subsurface temperature gradients (profiles) in a region of interest for the method of FIG. 11.

DETAILED DESCRIPTION OF THE INVENTION

Exemplary embodiments of the present invention may be used to estimate subsurface thermal structures of a body of water from readily available surface measurements such as Sea Surface Height and Sea Surface Temperature.

FIG. 1 is a schematic drawing illustrating a satellite measurement system in accordance with an exemplary embodiment of the invention.

Referring now to FIG. 1, satellite measurement system 100 includes a satellite 102 for observing a planetary surface (e.g., bodies of water) 108. Satellite 102 may have measurement equipment for obtaining measurements from the planetary surface 108 within a field of view 106. For example, this measurement equipment may be the National Centers for Environmental Predictions (NCEP) Global Ocean Data Assimilation System (GODAS) platform. Satellite 102 also may include communication link 104 for transmitting measured data regarding the bodies of water (e.g., SSH and SST data, among others) to a control station 110 for ease of obtaining and interpreting the measured data. Planetary surface 108 may be segmented into geographic regions 112 (e.g., regions of interest) that each include a plurality of locations (represented by locations 114A-114N).

FIG. 2 is a block diagram illustrating a computer architecture 200 in accordance with an exemplary embodiment of the invention. Computer architecture 200 may include a computer 201 that has a memory 202 for storing information, and a processor 208 for receiving information, and a processor 210 for processing information. Computer 201 may include a communication link 204 that enables processor 210 to access memory 202, receive input from input device 206, and display information on display 208. Computer 201 may receive information including, for example, SSH and SST data from satellite 102 (FIG. 1) via communication links 104 and 204 for processing by processor 210 and/or storage in memory 202. Input device 208 may be any standard computer input device such as a keyboard or CD-ROM. Further, communication link 206 may be connected to additional devices such as a local area network (not shown).

FIGS. 3A and 3B are color images illustrating monthly SSH data and SST data, respectively. FIGS. 3C and 3D are color images illustrating SSAH data and STA data, respectively.

FIG. 3A shows monthly mean SSH data for the period of December, 1997 from the GODAS platform. The monthly mean SSH data corresponds to locations between latitudes 75°S and 65°N with a resolution of 1° by 1° enhanced to 1/3° in the north/south direction within 10° of the equator. Terrestrial portions (land masses) are shown in black for FIG. 3A and each subsequent color image derived from GODAS data (i.e., FIGS. 3A-3D, 5A-5D and 6). In FIG. 3A, shades of red indicate regions where monthly mean SSH is about one meter above climatological (normal) height and shades of purple indicate regions where monthly mean SSH is about 2 meters lower than climatological height.

FIG. 3B shows SST data in the same month and with the same coverage area as FIG. 3A. In FIG. 3B, shades of red indicate regions where SST is about 20° C. and shades of purple indicate regions where SST is about 0° C.

FIG. 3C shows SSAH for the period of December, 1997 from the same coverage area as FIGS. 3A and 3B. In FIG. 3C, shades of red indicate regions where SSAH is about +20 centimeters and shades of purple indicate regions where SSAH is about —20 centimeters. The SSAH data is derived from the difference between the actual SSH and the monthly mean SSH data.

FIG. 3D shows subsurface temperature anomaly (STA) data from December, 1997 for the same coverage area as FIGS. 3A-3C. These subsurface temperatures are measured/observed temperatures at a depth of 105 meters. The STA data of FIG. 3D is derived from the difference between the actual subsurface temperature and the climatological subsurface temperature at the depth of 105 meters. That is, FIG. 3D shows the difference between the actual subsurface temperature and the climatological subsurface temperature at a depth of 105 m. In FIG. 3D, shades of red indicate regions where actual subsurface temperatures are about 4° C. above the climatological subsurface temperatures and shades of purple indicate regions where actual subsurface temperatures are about 4° below the climatological subsurface temperatures.

The inventors have observed that limited similarities exist between the monthly mean SSH data in FIG. 3A and the SST data in FIG. 3B. The inventors have further observed that there are similar spatial features between the SSAH data of FIG. 3C and the STA data of FIG. 3D at a depth of 105 meters.

FIGS. 4A and 4B are color graphs illustrating a typical vertical normal temperature profile (gradient) and a typical vertical temperature anomaly profile (gradient). As shown in FIG. 4A, region 205 indicated by red corresponds to heat from the atmosphere that is absorbed by a body of water and region 215 indicated by blue corresponds to heat that is lost from the body of water to the atmosphere. Due to seasonal variation, a Mixed Layer Depth (MLD) 230 may change such that, for example, MLD 230 may be shallower in the summer than in the winter. Line 210 separating region 205 and 215 represents an average temperature anomaly profile, with region 205 representing the positive variation about the mean profile 210 and region 215 representing the negative variation about the mean profile 210. Average temperature anomaly profile 210 varies (decreases with depth) and in time periods for which the atmospheric temperatures are in excess of normal climatological conditions, the vertical temperature profile (or gradient) may tend toward region 205. Moreover, during periods for which atmospheric conditions are below normal (e.g., normal climatological conditions) the vertical temperature profile may tend toward region 215.

FIG. 4B includes a vertical temperature profile similar to that of FIG. 4A with the exception that the climatological subsurface temperatures are subtracted (i.e., the average temperature anomaly profile 210 is removed) to generate line 250 and regions 245 and 255. The subsurface temperature (ST) and the subsurface temperature anomaly (STA) are shown in FIGS. 4A and 4B as ST(z) and STA(z), respectively, where z is the depth. There may be a depth dependent relationship between SSAH(z) and STA(z) because the vertical displacement in upper thermocline depth 220 (the starting depth of thermocline 240) may lead to changes in the vertical temperature profile and changes in SSH. Maximum correlation
may be at depths deeper than MLD 230. Thermocline 240 separates warmer surface water from cold deep water and may be identified by a rapid temperature decrease at depths below upper thermocline depth 220.

The inventors have observed that there is a high correlation between SSTA and STA from the surface of a body of water to MLD 230 due to this layer being well mixed and that there is a high correlation between SSHA and STA from MLD 230 to lower thermocline depth 235.

FIGS. 5A, 5B and 5C are color images illustrating predictions (estimates) of subsurface temperatures based on SSTA data, SSHA data and the combination of SSHA data and SSTA data, respectively. FIG. 5D is a color image illustrating observed (actual) STA data.

FIGS. 5A, 5B and 5C are predicted (estimated) STA data at a depth of 105 meters during the period of December 1997. In each of FIGS. 5A-5C red shading indicates regions where subsurface temperatures at the depth of 105 meters are in excess of the climatological subsurface temperature at the same depth by about 4°C. Moreover, purple shading indicates regions where subsurface temperatures at the depth of 105 meters are lower than climatological subsurface temperatures at the same depth by about 4°C.

FIG. 5A shows the predicted STA at 105 m depth based on the SSTA data alone. FIG. 5B shows the predicted STA at 105 m depth based on the SSHA data alone and FIG. 5C shows the predicted STA at 105 m depth based on a combination of SSHA and SSTA.

FIG. 5D shows the actual (observed) STA at the depth of 105 meters during the same period (i.e., December, 1997). The inventors note the spatial similarities between the SSHA data and the actual (observed) STA at the depth of 105 meters.

FIG. 6 is a color image illustrating correlation coefficients between monthly mean SSHA data and observed STA data. Values of the correlation coefficients between monthly mean SSHA and STA at the depth of 105 meters are shown. The monthly mean SSHA data and STA data are taken from January 1998 to December 2006. In FIG. 6, red shading indicates regions where the correlation coefficient is about 1 and purple shading indicates regions where the correlation coefficient is about -1. A large portion of the color image is highly correlated with the exception of higher latitudes. The relationship between SSHA and STA at a specified depth depends on, for example, the location of the geographic region of interest 112 and the season. For example, at a 200 m depth, the correlation between SSHA and STA is higher at high latitudes and lower near the equator.

FIG. 7 is a color graph illustrating a correlation between estimated STA data and observed STA data for a specific geographic region of interest over an extended time-frame. Color graph 700 shows the observed STA data 710 at the depth of 105 meters at a specified location (i.e., 0° N and 160° W) and the estimated STA data 720 at the same depth and location as those of FIG. 7 with a correlation between SSHA data and STA data of about 0.80 in a range of about 50 m to 200 m in depth.

Bilinear regression may be used to derive regression coefficients a, b, and c for SSHA and SSTA to estimate STA. Equation 1, which is a function of both SSTA and SSHA, may be used to define STA.

\[
STA(z,t) = a(z) \cdot SSHA(t) + b(z) \cdot SSTA(t) + c(z)
\]

where \(a, b \) and \(c \) are regression coefficients calculated by the LSM algorithm at each geographic location as those of FIG. 7 with a correlation between SSHA data and STA data of about 0.80 in a range of about 50 m to 200 m in depth.

A least square method (LSM) may be used to calculate regression coefficients \(a, b \) and \(c \) in Equation 1 for a best fit between SSHA(t) and SSTA(t) where \(t \) is the measurement period and \(z \) is the depth. The LSM may determine regression coefficients \(a, b \) and \(c \) for each region of interest 112 (see FIG. 1) to estimate STA at any depth for region of interest 112. Applying LSM to Equation 1 generates Equation 2 in which regression coefficients \(a, b \) and \(c \) may be determined by minimizing function \(E(z) \).
The actual and climatological surface temperature data, for example, from in situ measurements taken at region of interest 112. The STA data may be derived from the difference between the actual subsurface temperature data and the mean subsurface climatology temperature at a plurality of specified depths.

In certain exemplary embodiments, processor 210 may derive the STA data for region of interest 112 at the plurality of specified depths from time series subsurface temperature data sampled at the same, common time interval or a substantially common time interval as the STA data and/or the SSHA data. At block 830, processor 210 may regress the obtained STA data and SSHA data for region of interest 112 with the corresponding STA data at the plurality of specified depths to generate regression coefficients a, b and c. That is, the actual STA at the plurality of specified depths is obtained and the SSHA data are curve-fit to the actual STA to derive the regression coefficients a, b and c.

In certain exemplary embodiments, the regression is a bilinear regression, although other regression techniques may also be possible, for example, non-linear regression techniques. Suitable regression techniques will be understood by one of skill in the art from the description herein.

At block 840, processor 210 may estimate the subsurface temperature at one or more other depths for region of interest 112 based on the generated regression coefficients a, b and c.

In certain exemplary embodiments, this range of depths may be between the MDL 230 and lower thermocline depth 235 (FIG. 4A).

In various exemplary embodiments, vertical subsurface temperature gradients for region of interest 112 may be calculated using the generated regression coefficients a, b and c.

In some exemplary embodiments, region of interest 112 may include sub-regions 114A, 114B ... 114N such that STA data at one or more specified depths may be determined from subsurface temperature data for each respective sub-region 114A, 114B ... 114N of region of interest 112. The STA data and SSHA data associated with each respective sub-region 114A, 114B ... 114N of region of interest 112 may be regressed with the corresponding STA data to generate a respective set of regression coefficients (a1, b1, c1; a2, b2, c2; ... a_n, b_n, c_n) associated with each respective sub-region 114A, 114B ... 114N of region of interest 112. Further, a plurality of vertical subsurface temperature gradients may be calculated based on respective sets of regression coefficients (a1, b1, c1; a2, b2, c2; ... a_n, b_n, c_n). The determination of STA data at the one or more specified depths for each respective sub-region 114A, 114B ... 114N of region of interest 112 may include the subsurface temperature data in region of interest 112 being sampled such that the same or different depths are sampled for respective sub-regions 114A, 114B ... 114N of region of interest 112.

The climatological subsurface temperature may be subtracted from the sampled subsurface temperature data to estimate STA data at the one or more specified depths for each respective sub-region 114A, 114B ... 114N. For example, if in-situ sampling for one or more of the sub-regions 114A, 114B ... 114N does not occur, sub-regions 114A, 114B ... 114N adjacent to the un-sampled sub-regions 114A,
114B . . . 114N may be used to interpolate the subsurface temperature data in un-sampled sub-region 114A, 114B . . . 114N.

It is contemplated that such interpolation may be based on a linear model, a non-linear model and/or models which account for other factors.

At block 850, the estimated subsurface temperature is output. That is, processor 210, for example, may output the estimated subsurface temperature to a display 204, a printer or other output device.

Sound speed is dependent on temperature and salinity. For example, sound speed changes rapidly in thermocline 240 (FIG. 4A). Estimating thermocline depth in-situ on a large scale (i.e., a global scale) may be difficult due to poor spatial resolution problems. Sound speed, C, may be computed based on the Equation 5.

\[C(T,P)=C_w(T,P)+A(zP)+B(zP)S \]

where T is temperature, P is pressure and S is salinity. Equation 5 is based on an algorithm by C-T. Chen and F.J. Millero, in a publication entitled "Speed of Sound in Seawater at High Pressures." J Acoust Soc Am, Vol. 62, No. 5, published 1977 at pages 1129-1135. Because of the temperature gradient in thermocline 240, sound speed may rapidly decrease. The negative sound speed gradient may reflect certain signals, for example, active sonar to produce further propagation paths for a propagation signal.

FIG. 9 is a flowchart illustrating exemplary steps for determining a propagation time of a signal along a propagation path in a body of water in accordance with yet another exemplary embodiment of the invention.

At block 910, processor 210 may calculate surface locations and depths in a body of water (e.g., in an ocean, deep sea, or river) associated with a propagation path of a signal. At block 920, processor 210 may obtain SSHA data and SSTA data from various sources including, for example, data from GODAS and other weather satellite information.

In an exemplary embodiment, processor 210 may also identify locations along the propagation path where the signal may be reflected and may calculate one or more further propagation paths corresponding to locations of the reflected signal. For example, processor 210 may calculate the depth of thermocline 240 (e.g., upper and lower thermocline depths 220 and 235; FIG. 4A) along the propagation path for each respective surface location and may compare the depth of thermocline 240 associated with the respective surface location to the calculated depth of the propagation path at the respective surface location. If the calculated depth of thermocline 240 and the corresponding depth of the propagation path are within a predetermined threshold, the propagation path corresponding to the respective surface location may be indicated as a possible reflection point.

At block 930, processor 210 may estimate subsurface temperatures along the propagation path at the propagation depth based on at least the obtained SSTA data and SSHA data. A description of exemplary steps for estimating subsurface temperatures along the propagation paths is described below with reference to FIG. 10.

At block 940, processor 210 may calculate the propagation time of the signal traversing the propagation path based on the calculated subsurface temperatures. For example, the propagation path may be segmented into propagation path segments and each propagation path segment may have a corresponding estimated subsurface temperature. The propagation time may be calculated by estimating a speed for the signal for each propagation segment based on the subsurface temperature; the pressure which may be estimated based on the depth of the propagation signal and/or the salinity of the body of water at the propagation path segment.

In certain exemplary embodiments, the salinity may be assumed to be a predetermined amount and in other embodiments, actual or estimated salinity data corresponding to each respective propagation segment may be obtained.

At block 950, processor 210 may output the calculated propagation time (e.g., the total composite propagation time for the propagation segment).

In certain exemplary embodiments, display 204 communicates with processor 210, and may display the calculated propagation time with the propagation path and/or the subsurface temperatures along the propagation path. Moreover, in the exemplary embodiments in which further propagation paths are calculated, display 204 may also display the further propagation paths.
In certain exemplary embodiments, it is contemplated that salinity data and pressure data may be used for the estimation of the plurality of vertical subsurface temperature gradients.

At block 1140, processor 210 may determine variations in the upper and lower depths 220 and 235 for thermocline 240 in accordance with different ones of the plurality of estimated vertical subsurface temperature gradients associated with region of interest 112. That is, thermocline 240 in the region of interest may be mapped by processor 210 such that the changes in thermocline 240 depth (e.g., upper and lower thermocline depth 220 and 235, FIG. 4A) may be calculated and/or displayed. Processor 210 may determine upper and lower thermocline depths 220 and 235 as the depths associated with a rapidly changing vertical subsurface temperature profile (gradient). For example, upper and lower thermocline depths 220 and 235 may be identified based on rapid changes in the slope of the vertical subsurface temperature profile or based on the change in the slope of the vertical subsurface temperature profile that is more than a predetermined threshold.

At block 1150, processor 210 may send to display 204, the information to map/display thermocline 240 for region of interest 112 to establish one or more trajectories of marine life in region of interest 112. That is, thermocline 240 may establish a floor below which marine life generally do not traverse.

In certain exemplary embodiments, thermocline 240, upper thermocline depth 220, and/or lower thermocline depth 235 in region of interest 112 may be displayed along with respective ones of the plurality of the estimated vertical subsurface temperature gradients.

Although the determination of trajectories of marine life is based on thermocline 240 in region of interest 112, it is contemplated that various types of marine life are also affected by salinity of the water. Thus, salinity data may also be obtained and mapped/displayed to track/find the trajectories of marine life, such as fish.

FIG. 12 is a flowchart illustrating exemplary steps for estimating a plurality of subsurface temperature gradients (profiles) in a region of interest for step 1130 the method of FIG. 11.

Processor 210 may estimate the plurality of vertical subsurface temperature gradients in region of interest 112 by: (1) at block 1132, obtaining subsurface temperature data at one or more depths in the body of water and a plurality of sub-regions 114A, 114B ... 114N of region of interest 112; (2) at block 1134, determining SST anomalies at the one or more specified depths using the obtained subsurface temperature data for each respective sub-region 114A, 114B ... 114N of region of interest 112; (3) at block 1136, regressing the SST anomalies and surface height anomaly data associated for the region of interest to generate regression coefficients; and (4) at block 1138, calculating a plurality of vertical subsurface temperature gradients based on respective sets of regression coefficients.

It is contemplated that the methods previously described may be carried out within a computer instructed to perform these functions by means of a computer readable medium. Such computer-readable medium include integrated circuits, magnetic storage medium and optical storage medium.

Although the invention is illustrated and described herein with reference to specific embodiments, the invention is not intended to be limited to the details shown. Rather, various modifications may be made in the details within the scope and range of equivalents of the claims and without departing from the invention.

What is claimed:
1. A method of determining a subsurface temperature in a body of water, the method comprising the steps of:
 - obtaining surface temperature anomaly data and surface height anomaly data of the body of water for a region of interest;
 - obtaining subsurface temperature anomaly data for the region of interest at a plurality of depths;
 - regressing the obtained surface temperature anomaly data and surface height anomaly data for the region of interest with the obtained subsurface temperature anomaly data for the plurality of depths to generate regression coefficients;
 - estimating a subsurface temperature at one or more other depths for the region of interest based on the generated regression coefficients;
 - outputting the estimated subsurface temperature at the one or more other depths.

2. The method of claim 1, wherein the step of regressing includes bilinear regressing of the surface temperature anomaly data and surface height anomaly data associated for the region of interest with the obtained subsurface temperature anomaly data for the plurality of depths.

3. The method of claim 1, wherein:
 - the step of estimating the subsurface temperature at one or more other depths for the region of interest based on the generated regression coefficients includes calculating a vertical subsurface temperature gradient for the region of interest using the generated regression coefficients; and
 - the step of outputting includes:
 - mapping respective ones of the plurality of calculated vertical subsurface temperature gradients, and
 - identifying, with the mapped ones of the plurality of calculated vertical subsurface temperature gradients, one or more depths associated with a mixed layer and a thermocline layer for the region of interest.

4. The method of claim 1, wherein:
 - the step of obtaining the surface temperature anomaly data and the surface height anomaly data of the body of water for the region of interest includes:
 - deriving the surface temperature anomaly data and surface height anomaly data of the body of water for the region of interest from time series data sampled at a common time interval;
 - and
 - the step of obtaining the subsurface temperature anomaly data for the region of interest at the plurality of depths includes:
 - deriving the subsurface temperature anomaly data for the region of interest at the plurality of depths from other time series data sampled at the common time interval or at a substantially common time interval.

5. The method of claim 1, wherein the step of estimating the subsurface temperature at one or more other depths for the region of interest includes:
 - obtaining the subsurface temperature data at one or more specified depths of the body of water in a plurality of sub-regions of the region of interest;
 - deriving the subsurface temperature anomaly data at the one or more specified depths using the obtained subsurface temperature data for each respective sub-region of the region of interest;
 - and
 - regressing the surface temperature anomaly data and surface height anomaly data associated with each respective sub-region of the region of interest.
the sampled subsurface temperature data includes estimating the subsurface temperature anomaly data at the one or more specified depths of the body of water associated with each respective sub-region of the region of interest; and calculating a plurality of vertical subsurface temperature gradients based on respective sets of regression coefficients.

6. The method of claim 5, wherein the step of determining the subsurface temperature anomaly data at the one or more specified depths using the obtained subsurface temperature data for each respective sub-region of the region of interest includes:
sampling subsurface temperature data in the region of interest such that the same or different depths are sampled for the respective sub-regions of the region of interest; and normalizing the sampled subsurface temperature data to estimate the subsurface temperature data at the one or more specified depths for each respective sub-region.

7. The method of claim 6, wherein the step of normalizing the sampled subsurface temperature data includes linearly interpolating the sampled subsurface temperature data to derive the estimate subsurface temperature data at the one or more specified depths for each respective sub-region.

8. A method of determining a propagation time of a signal along a propagation path in a body of water, comprising the steps of:
calculating surface locations and depths in the body of water associated with the propagation path of the signal; obtaining surface temperature anomaly data and surface height anomaly data of the body of water corresponding to the calculated surface locations associated with the propagation path of the signal; estimating subsurface temperatures along the propagation path at a propagation depth based on at least the obtained surface temperature anomaly data and surface height anomaly data; calculating the propagation time of the signal along the propagation path based on the estimated subsurface temperatures; and outputting the calculated propagation time.

9. The method of claim 8, wherein:
the step of obtaining the surface temperature anomaly data and the surface height anomaly data of the body of water corresponding to the calculated surface locations associated with the propagation path of the signal includes:
deriving the surface temperature anomaly data and surface height anomaly data of the body of water corresponding to the calculated surface locations associated with the propagation path of the signal from time series data sampled at a common time interval; and the step of obtaining the subsurface temperature anomaly data for the region of interest at the plurality of depths includes:
deriving the subsurface temperature anomaly data corresponding to the calculated surface locations associated with the propagation path of the signal at the plurality of depths from other time series data sampled at the common time interval or a substantially common time interval.

10. The method of claim 8, wherein the step of outputting includes:
displaying the propagation path, the subsurface temperatures along the propagation path and the calculated propagation time.

11. The method of claim 10, wherein:
the step of calculating surface locations and depths in the body of water associated with the propagation path of the signal includes:
identifying locations along the propagation path where the signal is reflected, and calculating one or more further propagation paths corresponding to the locations of the reflected signal; and the step of displaying includes:
displaying, with the propagation path, the one or more further propagation paths.

12. The method of claim 11, wherein the step of identifying locations along the propagation path where the signal is reflected includes:
calculating depths of a thermocline along the propagation path for each respective surface location; comparing the depth of the thermocline associated with a respective surface location to the calculated depth of the propagation path at the respective surface location; if the calculated depth of the thermocline associated with the respective surface location and the corresponding depth of the propagation path are within a predetermined threshold, indicating the propagation path corresponding to the respective surface location is indicated as a reflection point.

13. The method of claim 8, wherein the step of estimating the subsurface temperatures along the propagation path includes:
obtaining subsurface temperature data at one or more specified depths of the body of water, the subsurface temperature data corresponding to the calculated surface locations associated with the propagation path of the signal; determining the subsurface temperature anomaly data at the one or more specified depths using the obtained subsurface temperature data; regressing the surface temperature anomaly data and surface height anomaly data associated with each respective surface location along the propagation path with the subsurface temperature anomaly data to generate regression coefficients; and estimating a subsurface temperature at a depth of the propagation path for each of the calculated surface locations using the generated regression coefficients.

14. The method of claim 13, wherein the step of regressing includes bilinear regressing of the surface temperature anomaly data and surface height anomaly data associated with the surface location along the propagation path with the respective subsurface temperature anomaly data at the one or more specified depths to generate the regression coefficients.

15. The method of claim 13, wherein the step of obtaining the subsurface temperature anomaly data at the one or more specified depths of the body of water includes:
sampling the subsurface temperature data along the propagation path of the signal such that the same depths are sampled for respective locations along the propagation path; and normalizing the sampled subsurface temperature data to estimate subsurface temperature data at the one or more specified depths for each respective location along the propagation path.

16. The method of claim 15, wherein the step of normalizing the sampled subsurface temperature data includes:
linearly interpolating the sampled subsurface temperature data to derive the estimate subsurface temperature data at the one or more specified depths for each respective sub-region.
17. A method of determining trajectories of marine life in a body of water, comprising the steps of:

determining a geographic region of interest of the body of water where the marine life is located;

obtaining surface temperature anomaly data and surface height anomaly data of the body of water for the region of interest;

estimating a plurality of vertical subsurface temperature gradients in the region of interest based on at least the obtained surface temperature anomaly data and surface height anomaly data by:

obtaining subsurface temperature data at one or more specified depths of the body of water in a plurality of sub-regions of the region of interest,

determining subsurface temperature anomaly data at the one or more specified depths using the obtained subsurface temperature data for each respective sub-region of the region of interest,

regressing the surface temperature anomaly data and surface height anomaly data associated with each respective sub-region of the region of interest with the corresponding subsurface temperature anomaly data to generate a respective set of regression coefficients associated with each respective sub-region of the region of interest, and

calculating the plurality of vertical subsurface temperature gradients based on respective sets of regression coefficients;

determining a plurality of depths for a thermocline in the region of interest, each of the plurality of depths for the thermocline being associated with a respectively different one of the plurality of estimated vertical subsurface temperature gradients; and

displaying at least the thermocline in the region of interest to establish one or more trajectories of the marine life in the region of interest.

18. The method of claim 17, wherein the step of displaying the thermocline in the region of interest includes displaying respective ones of the plurality of estimated vertical subsurface temperature gradients with the depths of the thermocline.

19. A non-transitory computer readable medium for storing program code for executing using a computer a method of determining a subsurface temperature in a body of water, the method comprising the steps of:

obtaining surface temperature anomaly data and surface height anomaly data of the body of water for a region of interest;

obtaining subsurface temperature anomaly data for the region of interest at a plurality of depths;

regressing the obtained surface temperature anomaly data and surface height anomaly data for the region of interest with the obtained subsurface temperature anomaly data for the plurality of depths to generate regression coefficients;

estimating a subsurface temperature at one or more other depths for the region of interest based on the generated regression coefficients; and

outputting the estimated subsurface temperature at the one or more other depths.