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This paper investigates the use of proof (or acceptance) test data during the

reliability based design optimization of structural components. It is assumed

that every component will be proof tested and that the component will only enter

into service if it passes the proof test. The goal is to reduce the component

weight, while maintaining high reliability, by exploiting the proof test results

during the design process. The proposed procedure results in the simultaneous

design of the structural component and the proof test itself and provides the

designer with direct control over the probability of failing the proof test. The

procedure is illustrated using two analytical example problems and the results

indicate that significant weight savings are possible when exploiting the proof

test results during the design process.
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L̃ Allowable service load

A Proof test success event

b Width

F Failure event

f Objective function

G Limit state function

h Height

L Service load

l Length

M Number of analysis in a Monte Carlo simulation

m Number of proof loads

mf Number of failure modes

mp Number of proof failure modes

N Normal distribution

n Number of design variables

P Probability

p Proof load magnitude

Pf Probability of failure estimated by a Monte Carlo simulation

q Distributed load

s Standard deviation

SF Safety factor

x Design variable

I. Introduction

Reliability based design optimization (RBDO) is becoming more popular as a method

for designing reliable structures when presented with uncertainty in the problem pa-

rameters. There are currently a large number of research projects that investigate the

efficient application of RBDO to real life scenarios. These include methods for efficiently

estimating the probability of failure (e.g., Grandhi and Wang1) as well as methods for up-

dating the uncertainty as more data (typically as a result of additional testing) becomes

available (e.g., Acar et al.2). In general these studies present numerically efficient method-

ologies that provide the most benefit (typically in the form of weight savings) by using

RBDO.

This paper investigates an alternative RBDO approach that may enable significant weight

savings, without accepting higher risk. The approach is best explained by considering

the life cycle of a structure as outlined by the USAF Aircraft Structural Integrity Pro-
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gram (ASIP). The ASIP considers the full life cycle of a vehicle consisting of: requirement

specification (Task 1); design and development (Task 2); verification testing (Task 3);

test evaluation/analysis for certification and sustainment (Task 4); and force manage-

ment/sustainment (Task 5). The ASIP is focused on designs that result in robust vehi-

cle operations, and it is usually acceptable to incur performance (i.e., weight) penalties

that minimize periodic inspections and/or repairs. The ASIP process only provides loose

coupling between the outlined tasks. The present paper will propose an integrated engi-

neering approach that combines several of these tasks to enable significant performance

enhancements by utilizing proof (or acceptance) test data during the RBDO of structural

components. A key assumption in the present work is that every component that is man-

ufactured is proof tested and will only enter into service if it passes the proof test. The

research was motivated by the current design process at NASA, which can be summarized

as:

1. Mostly a deterministic design process

2. Typically only a relatively small number of components are manufactured

3. Virtually all components are proof tested before entering service

The advantage of considering a RBDO approach over the traditional deterministic ap-

proach within the NASA context has already been illustrated (e.g., Mason and Krishna-

murthy3). The goal here is to show how the RBDO process can further benefit by also

exploiting proof test data in cases where it is available. In this research, a proof test is

considered as a test that simulates the service load and that is performed on every compo-

nent before entering service. Currently, proof tests are conducted at NASA, but the results

of the proof tests are not directly included in the design process. The influence of proof

testing on the strength distribution has been previously reported by Herbert and Trilling4

in the context of thermal loading. Herbert and Trilling4 accounted for the reduced uncer-

tainty in the strength distribution in their RBDO approach, but did not include the proof

test as part of the design process. In contrast Acar et al.2 considered the influence of future

uncertainty reduction measures in the form of structural tests on aircraft safety during the

design process, resulting in simultaneous design of the structure and the tests. However,

the work by Acar et al.2 concentrated on future tests that are aimed at the reduction of

uncertainty (for example coupon tests) and not proof tests. In addition, the additional

information is used to update the uncertainty in the mean failure stress using a Bayesian

update procedure. In the current work proof tests will be considered and no Bayesian

updating will be performed.

The proposed RBDO approach aims to provide significant weight reductions, while

maintaining high levels of reliability. Also, the methodology provides the designer with
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direct control over the probability of failing the proof test itself. Controlling the probability

of failing the proof test is a desirable and extremely important feature. In some cases,

where the cost of failing the proof test is bearable, larger weight savings can be realized by

accepting higher risk. In other cases, where a proof test failure would be extremely costly,

the risk of failing the proof test can be reduced but will increase the component weight.

Although the current work was inspired by the NASA design process where virtually all

components are proof tested before entering service, the methodology could also be used

to investigate the addition of simple proof tests to components that are currently not proof

tested. For example, commercial aircraft are typically type certified. Type certification

involves extensive testing that is performed on a small number of prototypes, while the

production planes that are delivered to the customers are only subjected to limited testing.

In these cases, it could be worthwhile to investigate the cost benefit of adding simple proof

tests to each of the production aircraft as well. An example may be to connect actuators to

the wings to perform a simple bending proof test on each aircraft.

II. Reliability Based Design Optimization

The traditional deterministic design process accounts for uncertainty in the problem

parameters by using safety factors. Safety factors for airframe structural design have a

long heritage that has evolved over many years. The safety factor approach provides for

structural reliability by requiring that the design structural strength be greater than the

stresses induced by external loads by at least the factor of safety. Historically, the safety

factor accounts for uncertainties such as the occurrence of extreme loads, inaccuracies of

stress prediction methods, variability of materials, variability in fabrication workmanship,

and structural strength deterioration over the lifetime of an airframe. The values used for

safety factors have evolved over many years and typically have been reduced as greater

knowledge and reduced variability in materials and processes were obtained.5

The traditional deterministic design process is illustrated by the following example,

where a structural component is designed subject to a stress constraint as follows:

Minimize: f(x)

Such That: σmax(x) ≤ σfail
xloweri ≤ xi ≤ xupperi i = 1, n

(1)

In Eq. 1, f(x) represents the objective function (typically weight), x the vector of n design

variables, σmax the maximum stress in the component and σfail the failure stress. Upper

and lower bounds on the design variables are specified by xloweri and xupperi respectively.
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To deal with uncertainty, a safety factor is typically used to obtain a design load L̃ for

calculating the maximum stress σmax. In addition, the stress limit is adjusted to obtain an

allowable stress limit σ̃fail. A standard approach for generating an allowable stress limit is

to obtain data from simple coupon or element tests and then perform a statistical analysis

to estimate an allowable stress which has a specified, low probability of causing a structural

failure. The allowable stress limit is calculated to be the mean failure stress from the tests,

reduced by the product of the test standard deviation times a stress limit adjustment factor.

The stress limit adjustment factor used here, is referred to as a K-factor and is a function

of the desired reliability, the confidence requirement and the test sample size. A K-factor

equal to three (which implies three standard deviations from the mean value) is assumed

here without specifying these inputs. As a comparison, if a reliability of 99%, with a 95%

confidence level (A-basis allowable) is desirable, and the material failure is governed by a

normal distribution, about 35 tests are required to obtain a K-factor of three.6

If we assume that the uncertainty in the load and the failure stress are normally dis-

tributed, the design load can be obtained from:

L̃ = SF (µL + 3sL) (2)

where µL + 3sL is defined as the limit load. Launch vehicles typically makes use of a

limit load of three standard deviation loads from trajectory simulations with dispersion.

Aircraft have a larger empirical database that they can use. For the purposes of this paper,

a limit load of three standard deviation loads from the mean load was used, similar to the

approach used for launch vehicles. The allowable failure stress could be obtained from:

σ̃fail = µσfail − 3sσfail (3)

In Eq. 2 the safety factor SF is applied to the limit load, which in the present work is

defined as three standard deviations sL above the mean value µL of the service load L. In

Eq. 3 an allowable failure stress, similar to the A- or B-basis approach, is defined. The

allowable failure stress is defined as three standard deviations sσfail below the mean value

µσfail of the failure stress σfail. Note that the deterministic design process typically does not

directly account for uncertainty in problem parameters other than the applied load and

stress allowable.

In contrast, RBDO does not make use of safety factors, but instead directly accounts for

the uncertainty in all problem parameters to obtain a probability of failure. The equivalent
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RBDO formulation for Eq. 1 would be:

Minimize: f(x)

Such That: P(F) ≤ Preq
xloweri ≤ xi ≤ xupperi i = 1, n

(4)

where the probability of failure P(F) is constrained to be less than the allowed probability

of failure Preq specified by the designer.

In the present work, the deterministic design approach is simulated by first solving each

example problem using the deterministic approach outlined in Eq. 1. For the determin-

istic design, the design load and failure stress allowable are obtained from Eqs. 2 and 3

respectively.

The deterministic design is followed by a reliability analysis, where all random vari-

ables are assumed to be independent and normally distributed with known distributions.

Although independent, normally distributed random variables are assumed in the present

work, dependent and non-normal variables could also be considered. These variables

could be transformed into independent normal variables, using for example the Rosen-

blatt7 transformation. The results of the deterministic design are assumed to be the mean

quantities in the reliability evaluation of the deterministic design. The resulting probabil-

ity of failure is then used as the probability of failure constraint Preq in Eq. 4. The idea is

thus to obtain a RBDO design with the same reliability as the corresponding deterministic

design. Finally, the proof test data will be accounted for in an attempt to realize further

weight savings.

III. Influence of Proof Testing

When calculating the probability of failure for a structural component, one is interested

in the probability that the applied load is larger than the strength of the structure. The

probability of failure is denoted by P(F). Schematically, a qualitative representation of the

failure region can be represented as shown in Fig. 1, with the failure region indicated by

the shaded area.

When performing a successful proof test, the strength of the component that was proof

tested is known to be larger than the load value at which the proof test was conducted. If

one assumes that the component either fails the proof test or remains in pristine condition

after the proof test, the proof test in effect cuts off the tail of the strength distribution as

illustrated in Fig. 2. The assumption that a component that passes the proof test is not

damaged by the proof test will be used throughout this paper. This is a critical assumption
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Load

Strength

P
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F

Figure 1. Probability density distributions for stress due to applied load, and structural strength
(Region contributing to probability of failure indicated by shading)

that should be noted. Accounting for the effect of damage as a result of the proof test will

be the subject of future research.

Strength

P
D
F

Proof Test

Figure 2. Influence of proof test on strength distribution (Region indicating the probability of failing
the proof test 1− P(A) is shaded)

The effect of the proof test on calculating the probability of failure after the proof test

is performed, is shown in Fig. 3. Note that the failure region is now much smaller than

that shown in Fig. 1.

Load

Strength

P
D
F

Proof Load

Figure 3. Probability density distributions for stress due to applied load, and structural strength
including proof test effect (Region contributing to probability of failure indicated by shading. Note
that Fig. 1 denotes P(F), while Fig. 3 denotes the conditional probability P(F|A))

The probability of failure shown in Fig. 3, can be expressed as a conditional probability
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of failure, denoted by P(F|A). This conditional probability of failure can be stated as the

probability of failure (condition F), provided that the proof test was successful (condition

A). The proof test is successful if the component does not fail and is not damaged when

the test is performed. When considering the proof test results in the design process, the

probability of failure of the structure is obtained from the conditional probability of failure

P(F|A) rather than from the probability of failure P(F) as was the case when no proof test

data was considered.

The deterministic design approach thus reduces the probability of failure by making use

of proof tests. However, this reduction in the probability of failure is not quantified and is

thus not directly included in the design process. In the present work, this reduction in the

probability of failure will be quantified by calculating the P(F|A) value and by using this

value in the design process to realize additional weight savings. The RBDO formulation

when including the proof load results, can then be written as:

Minimize: f(x)

Such That: P(F|A) ≤ Preq
1− P(A) ≤ Pproof
xloweri ≤ xi ≤ xupperi i = 1, n

plowerj ≤ pj ≤ pupperj j = 1,m

(5)

where 1−P(A) is the probability of failing the proof test, Pproof is the maximum acceptable

probability of failing the proof test and pj are the variables that describe the magnitude

of the proof load. When compared to Eq. 4, this new RBDO formulation has an additional

constraint that controls the probability of failing the proof test and includes extra design

variables pj that describe the magnitude of the proof test loads. The designer thus has

direct control over the probability of failing the proof test and the magnitude of the proof

test loads are designed simultaneously with the structural component.

IV. Calculating the Probability of Failure

Since the calculation of the probability of failure is a costly exercise that requires mul-

tiple function evaluations, it is no surprise that the literature provides many methods for

efficient calculation of the probability of failure. These methods typically have to manage a

trade-off between numerical efficiency and accuracy. Efficient evaluation of the probability

of failure is especially important in an optimization framework, since the computational

cost is compounded by the fact that a two-level optimization process is encountered in

RBDO. At the outer level is the structural optimization problem and at the inner level the
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calculation of the probability of failure.

The focus of the current study is not the efficient calculation of the probability of failure,

but rather the effect of including the proof test data in the RBDO process. As a result, it

was decided to use a well established and popular method for calculating the probability of

failure. The method selected here is the first order reliability method (FORM).8 It should

be noted that although the FORM approach is widely used, it may not converge to the most

probably point of failure (MPP) for cases with complex limit state functions. For problems

with complex limit state functions, system reliability techniques based on fault or event

trees and numerical techniques tailored to the specific problem at hand may be required.

The FORM method operates in the standard normal space where all random variables

are assumed to be independent normal variables that are scaled to have a mean value of

0 and a standard deviation of 1. A normal distribution with a mean of 0 and a standard

deviation of 1 is denoted byN(0,1). The FORM method estimates the probability of failure

using a linear approximation of the limit state function G(X) at the most probable point of

failure. Where the upper case X is used to denote a random variable. In the present work

the limit state function is defined in terms of the stress constraint as:

G(X) = σfail(X)− σmax(X) (6)

The limit state is defined as G(X) = 0 and provides the interface between the failure

G(X) < 0 and safe G(X) > 0 regions of the design space. Note that there is a different

convention between the constraint definition for the deterministic design process and the

limit state function used in RBDO. In Eq. 1 the stress constraint is defined to be violated

when it has a positive value. In Eq. 6 the limit state function is defined to be violated when

it has a negative value. This difference was applied here for consistency with the existing

literature.

The FORM algorithm used here is a straight-forward implementation of the algorithm

outlined in Haldar and Mahadevan.9 This algorithm makes use of a Newton-Raphson type

iteration scheme to find the MPP.

When using the FORM approach, the linearized limit state function is a linear combi-

nation of independent, normal, random variables and as a result is also a normally dis-

tributed random variable. The estimated probability of failure P(F) obtained from the

FORM method can then be calculated numerically using Eq. 7:

P(F) = P(G
′ ≥ β) =

∫ ∞
β

1√
2π

exp

[
−1

2
(g ′)2

]
dg
′ (7)

where β indicates the shortest distance from the origin of the standard normal space to the

9 of 26



limit state function and is obtained from the FORM method. The upper case G
′

denotes

the random variable that describes the linearized limit state function in the standard space

and the lower case g ′ denotes an instance of that random variable. The integral on the

right hand side of Eq. 7 is simply the probability density function of a normally distributed

random variable in the standard space.

To evaluate the conditional probability of failure P(F|A), it is necessary to use the

multiplication rule (e.g., Haldar and Mahadevan9), which states that the joint probability

P(F ∩A) of F and A is equal to:

P(F ∩A) = P(F|A) P(A) (8)

where P(A) can be obtained directly from the FORM method as outlined above. P(F ∩A)
can be obtained from:

P(F ∩A) = P
(
(G
′
1 ≥ β1)∩ (G

′
2 ≥ β2)

)
=∫ ∞

β2

∫ ∞
β1

|R|1/2

2π
exp

[
−1

2
g
′T
R−1g

′
]
dg
′
1dg

′
2

(9)

which is simply the integral of the bi-variate normal probability density function in the

standard space. Within the current framework, F and A are guaranteed to be normal

variables, due to the fact that they are obtained from linearized limit state functions. To

evaluate Eq. 9, it is first necessary to perform two FORM analyses to obtain P(F) and P(A)

respectively. These two FORM analyses also provide the values for β1 and β2 as well as

the information required to construct the correlation matrix, R. The correlation matrix

is a symmetric matrix with all diagonal elements equal to one. For the bi-variate case

of Eq. 9, this is a 2×2 matrix and only a single entry r12 is unknown. The r12 value can

be obtained from the dot product of the gradients of the linearized limit state functions

(e.g., Pandey10). As was the case for Eq. 7, no analytical solution exists for this integral.

However, several very efficient numerical integration schemes are available (e.g., the al-

gorithms provided by Donnelly,11 Drezner and Wesolowsky12 and Cox and Wermuth13).

V. Calculating the System Probability of Failure

So far the conditional probability of failure has been considered for the special case

where only a single service load failure F and a single proof load A was considered. In

general, however, multiple service load failures F and multiple proof loads A are possible.

When considering more then one failure mode, one needs to consider a system reliability

approach to obtain the probability of failure for the component. There are many system re-
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liability approaches available, but the two that are most often encountered are a series and

a parallel approach (e.g., Haldar and Mahadevan9). Serial system failure occurs when any

of the failure modes are violated and the resulting probability of system failure represents

a union of all the failure events as illustrated in Eq. 10:

Ps(F) = P(F1 ∪ F2 ∪ . . .∪ Fmf) (10)

Parallel system failure occurs when all of the failure modes are violated and the resulting

probability of system failure represents an intersection of all the failure modes as illustrated

in Eq. 11:

Pp(F) = P(F1 ∩ F2 ∩ . . .∩ Fmf) (11)

The parallel system failure Pp(F) can easily be evaluated from:

Pp (F) =
∫ ∞
βmf

. . .

∫ ∞
β1

|R|1/2

(2π)mf/2exp

[
−1

2
g
′T
R−1g

′
]
dg
′
1 . . . dg

′
mf (12)

which is the same integral as shown in Eq. 9, but now generalized for mf failure modes,

with the correlation matrix R being a mf ×mf matrix. Unlike the uni- and bi-variate inte-

grals of Eqs. 7 and 9, the multi-variate integral of Eq. 12 can be more difficult to evaluate,

especially for larger values of mf . Typically, this multi-variate integral is evaluated using

one of three approaches (e.g. Gassmann14):

1. Bounding the answer (e.g. Ditlevsen,15 Ramachandran16 and Ditlevsen17)

2. Approximating the answer (e.g. Hohenbichler and Rackwitz,18 Tang and Melchers19

and Pandey10)

3. Performing numerical integration (e.g. Drezner20 and Genz21)

Numerical integration can be costly and is typically limited to between 100 and 500 fail-

ure modes. In the present work, numerical integration is performed using the algorithm

developed by Genz.21 The Genz algorithm21 presents an efficient numerical integration

scheme for solving Eq. 12 for larger values of mf , up to 500. Numerical integration is a

reasonable approach here, since the number of failure modes considered is in the order of

10. For larger problems, the bounding or approximation approaches should be considered

instead.

The series system failure Ps(F) can not be obtained directly from Eq. 12, since the

definition is based in the union of the failure modes instead of the intersection as was the

case for the parallel system failure Pp(F). However, two approaches are available that can

be used to convert Ps(F) into a form that can be evaluated by Eq. 12. The first approach is
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to make use of the complement of the failure modes F to obtain:

Ps(F) = 1− Ps(F) (13)

In addition, De Morgan’s rule (e.g., Haldar and Mahadevan9) can be used to expand the

complement as follows:

Ps(F) = P(F1 ∪ F2 ∪ . . .∪ Fmf) = P(F1 ∩ F2 ∩ . . .∩ Fmf) (14)

which is in a form that can be evaluated by Eq. 12.

The second approach is to make use of the definition of the probability of the union of

two or more events. For example, for two failure modes this would provide (e.g., Haldar

and Mahadevan9):

Ps(F) = P(F1 ∪ F2) = P(F1) + P(F2)− P(F1 ∩ F2) (15)

For this example the first two terms on the right hand side can be evaluated using the

uni-variate integral of Eq. 7, while the third term can be evaluated using the bi-variate

integral of Eq. 9. In general, when considering more than two failure modes, the terms on

the right hand side will include more than two failure events and the multi-variate integral

of Eq. 12 can be used.

The advantage of using the first approach is that only a single multi-variate integral is

required. The disadvantage is that two numbers that are very close to each other are sub-

tracted, with a potential loss in significant digits. The advantage of the second approach

is that the problem with subtracting two numbers that are close to each other is avoided.

The disadvantage is that the number of terms on the right hand side grows exponentially

as the number of failure modes increases. For example, for three failure modes the num-

ber of terms is equal to seven. However, the first order terms (P(F1) and P(F2) in the

above example) are the most important and an upper bound to Ps(F) can be obtained by

considering only these terms. The advantage then would be that the number of terms

grow linearly with the number of failure modes and that one only has to perform a num-

ber of numerically efficient uni-variate integrals rather than one numerically expensive

multi-variate integral.

When the conditional probability of failure P(F|A) that occurs when accounting for

multiple failure modes and multiple proof tests is considered, it is also necessary to deal

with both the series and parallel system reliability definitions. For the parallel system, this
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results in:

Pp(F|A) =
P(F ∩A)
P(A)

=
P
(
(F1 ∩ F2 ∩ . . .∩ Fmf)∩ (A1 ∩A2 ∩ . . .∩Amp)

)
P(A1 ∩A2 ∩ . . .∩Amp)

(16)

where mp represents the number of proof test failure modes. Equation 16 can be evaluated

using Eq. 12. Note that the conditional probability of failure requires the evaluation of two

separate multi-variate integrals, one for the numerator and one for the denominator. The

numerator has mf +mp terms, while the denominator has mp terms.

For the series case the conditional probability results in:

Ps(F|A) =
P
(
(F1 ∪ F2 ∪ . . .∪ Fmf)∩ (A1 ∩A2 ∩ . . .∩Amp)

)
P(A1 ∩A2 ∩ . . .∩Amp)

(17)

As was the case for Ps(F), there are two strategies that can be used to convert Eq. 17 into

a form where the multi-variate integral of Eq. 12 is applicable. For the first approach, the

complement and De Morgan’s rule is used similar to Eqs. 13 and 14 to obtain:

Ps(F|A) = 1− P(F|A) = 1−
P((F1 ∩ F2 ∩ . . .∩ Fmf)∩A)

P(A)
(18)

For the second approach, the definition for the probability of the union of events is used

similar to Eq. 15. For the special case where two failure modes are considered, this results

in:

Ps(F|A) =
P(F1 ∩A)
P(A)

+
P(F2 ∩A)
P(A)

− P((F1 ∩ F2)∩A)
P(A)

(19)

In both cases the multi-variate integral of Eq 12 can be used to evaluate the numerator

and denominator of the right hand side terms. As was the case when evaluating Ps(F), the

same advantages and disadvantages exist for each approach. However, numerical experi-

mentation has shown that the first approach is problematic. The numerical integration of

the numerator in Eq. 18 was found to be difficult and the Genz algorithm has trouble con-

verging. Although the second approach could have a large number of terms on the right

hand side, it has the advantage that the Genz algorithm seems to converge very easily for

all of these terms. As a result, the second approach is used throughout this paper. Further-

more, it is shown that for the example problems considered here, that an insignificant loss

of accuracy is incurred by creating an upper bound for Ps(F|A) using:

Ps(F|A) = min

(
1.0,

mf∑
i=1

P(Fi|A)
)

(20)
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VI. Numerical Examples

Two analytic example problems are considered to illustrate the proposed method. The

first is a simple cantilevered beam that has a single load condition with a single failure

mode and thus illustrates the use of P(F|A). The second is a stepped cantilevered beam,

that also has a single load condition but with multiple failure regions for both the service

and the proof loads. For the second example, a series system reliability approach is fol-

lowed and thus the use of Ps(F|A) is illustrated. In both cases, a single, uniform material

is assumed and the volume instead of the weight is used as objective function. When using

a single, uniform material, minimizing the volume is equivalent to minimizing the weight.

In both cases, a deterministic design is performed first, using the limit load and safety

factor approach of Eq. 2 and the allowable failure stress of Eq. 3. The probability of failure

for these deterministic designs are then determined using the FORM approach and is used

as the required probability of failure Preq for the RBDO design that follows.

A. Example 1: Cantilevered Beam Problem

The first example problem is a simple linear, homogeneous and isotropic cantilevered beam

with a uniform cross-section as illustrated in Fig. 4. The beam has length l, width b, height

h and is subject to a service load L at the tip.

L

h

b

Cross-section

l

Figure 4. Cantilevered beam

It is assumed that the beam has random variables that are both independent and nor-

mal with the distribution data outlined in Table 1. Note that all variables have a fixed

standard deviation. Also, the mean values of the width and height are not yet known and

will be determined from the optimization process. The standard deviation of the geomet-

ric variables represent machining tolerances and although a uniform distribution may have

been more appropriate, a normal distribution is used in the present work.
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Table 1. Random variable definition

Parameter Distribution

Load (L) N(1000, 100) N
Length (l) N(500.0, 2.0) mm
Width (b) N(?, 1.0) mm
Height (h) N(?, 1.0) mm

Failure Stress (σfail) N(350, 25) MPa

The first step is to perform a deterministic design of the beam as follows:

Minimize: Volume

Such That:
h

b
≤ 2

σmax ≤ σ̃fail
b, h ≥ 0

(21)

where the first constraint is a simple geometric constraint to ensure stability and:

σmax =
6L̃l
bh2

L̃ = 1.4(µL + 3sL)

σ̃fail = µσfail − 3sσfail

(22)

The deterministic optimization was performed using a safety factor of 1.4 for the load,

the mean values of the quantities in Table 1 and the DOT22 optimizer. The results are

summarized in Table 2. Both constraints are active at the optimum.

Table 2. Deterministic optimization results

Parameter Value

Width (b) 17.1 mm
Height (h) 34.1 mm

To determine the probability of failure P(F) for the deterministic design outlined in

Table 2, a FORM analysis was performed using the distribution data of Table 1. The

resulting probability of failure was found to be P(F) =7.12×10−9. Using this probability of

failure as Preq in Eq. 4 resulted in a RBDO design that was the same as the deterministic

design. For this simple example problem, there is thus no advantage moving from the

deterministic to an equivalent RBDO design.

Before continuing to the RBDO design that includes the proof test data, a numerical
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experiment was performed to determine the accuracy of the assumptions outlined in this

paper for evaluating P(F|A). For this experiment, a deterministic optimization was per-

formed, but using µσfail instead of σ̃fail to obtain a design with a probability of failure

P(F) = 3.88×10−5 instead of 7.12×10−9. This was done to obtain a probability of failure

value that could be validated with a reasonable number of Monte Carlo simulations. The

accuracy of the Monte Carlo simulations was evaluated by calculating the coefficient of

variation (COV) using Eq. 23, obtained from Haldar and Mahadevan.9

COV (Pf) = δPf =

√
(1−Pf )Pf

M

Pf
(23)

In Eq. 23 Pf is the probability of failure as estimated by the Monte Carlo simulation and

M is the number of Monte Carlo analyses that was performed. The Monte Carlo results

are compared to the probability of failure P(F), the probability of failing the proof test

1 − P(A) and the conditional probability of failure P(F|A) computed using the proposed

FORM based approach. For this experiment, five Monte Carlo simulations were considered.

Due to the different magnitudes of the estimated probability of failure values obtained,

different numbers of analyses were considered for each of the Monte Carlo simulations.

For the first simulation 5×106 analyses was considered, for the 2nd, 3rd and 4th simulations

25×106 analyses and for the 5th simulation 75×106 analyses. The average COV values for

the five simulations were 0.04 for P(F), 0.10 for 1−P(A) and 0.01 for P(F|A). The results

are summarized in Fig. 5 below.
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Figure 5. FORM analysis validation using Monte Carlo simulations (solid lines from FORM analysis,
dots from Monte Carlo simulations)

In Fig. 5, the y-axis provides the probability of failure and has a logarithmic scale. The

x-axis specifies the proof load value. For this example, the proof load is defined as a point

load that is applied at the same location and in the same direction as the service load and
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varies from the mean value of the service load (1000 N) to 1.4 times the mean value of the

service load (1400 N). For reference, the limit load has a value of 1300 N. From Fig. 5 it is

clear that the P(F) value is not influenced by the proof load. However, as the proof load

is increased, the probability of failing the proof load 1 − P(A) is also increased, while the

conditional probability of failure P(F|A) is reduced. Considering the COV values for the

Monte Carlo simulations, all three cases show good correlation between the FORM based

and the Monte Carlo results. Clearly the Monte Carlo simulations validate the overall trend

obtained from the FORM based approach.

To account for the proof test data, the following RBDO design problem was defined:

Minimize: Volume

Such That:
h

b
≤ 2

P(F|A) < 7.12× 10−9 (Conditional POF)

1− P(A) < Pproof (Prob of failing proof test)

b, h, p ≥ 0

(24)

where the required probability of failure was obtained from the deterministic design and

the required probability of failing the proof test Pproof can be set by the designer. In this

work, the value of Pproof will be varied to obtain a trade-off graph. Note that the magnitude

of the proof load p is also included as a design variable. The results of the trade-off study

when varying the value of Pproof in Eq. 24 is summarized graphically in Fig. 6.
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Figure 6. Trade-off study for different values of Pproof (with optimized proof load)

In Fig. 6 the objective function is normalized with respect to the deterministic optimum,

while the proof load is normalized with respect to mean value of the service load. As a

reference, the limit load would have a normalized value of 1.3 and a proof test load of 1.2
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times the limit load would have a normalized value of 1.56.

From Fig. 6 it is clear that by including the proof test data as part of the RBDO de-

sign process, that it is possible to realize significant weight savings while maintaining the

same high reliability obtained from the original deterministic design. Also, the normalized

objective function is reduced very quickly for relatively small probabilities of failing the

proof test, with diminishing returns for higher probabilities of failing the proof test. Fi-

nally, when designing both the structure and the proof test at the same time, the optimizer

prefers to use lower values for the proof test than one would typically expect. The standard

proof test value would be 1.2 times the limit load.23 In Fig. 6 all tests are performed below

this threshold. Armed with a trade-off graph like Fig. 6, the designer can make informed

decisions as to what weight savings can be realized for an acceptable probability of failing

the proof test.

The results of Fig. 6 should also be compared to the current way of proof testing, where

a fixed proof load is used. The trade-off study for a fixed proof load equal to 1.2 times the

limit load is shown in Fig. 7. From Fig. 7 it is clear that even with the current approach
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Figure 7. Normalized objective function for different values of Pproof using a fixed proof load

of using a fixed proof test load, significant weight saving is possible. Also, Fig. 7 has great

value in helping the designer manage the risk associated with performing the proof test.

However, when compared to Fig. 6, it is clear that additional weight savings is possible

when also considering the proof test load as a design variable.

B. Example 2: Stepped Cantilevered Beam Problem

The second example problem is a stepped cantilevered beam with three segments. The

beam is also linear, homogeneous and isotropic and each of the three segments are as-

sumed to have a uniform cross-section. The height of each segment hi is different, while

the beam has a constant width b throughout. The length of the beam is l = 0.5 m and
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is not considered as a random variable. The beam is subject to a uniformly distributed

service load q and a proof load that consists of three components L1, L2 and L3. These

three load components represent three actuators that are used to simulate the service load

during the proof test. As a result, the relative magnitude of the three load components are

fixed as shown in Fig. 8. The relative magnitude between the three load components were

obtained from a lumped equivalent work approach (e.g., Cook, Malkus and Plesha24) simi-

lar to what one would use when modeling the beam with three finite elements. The actual

proof load is obtained by multiplying a single scale factor with the relative magnitude of

the load components to obtain the values for Li.

1 2 3

q = Distributed service load

L1

L2

L3

L1=L2=2L3

Figure 8. Stepped cantilevered beam

As for the first example, the random variables are assumed to be normally distributed

and independent with the distribution data summarized in Table 3. The mean values

of the height and width variables are not yet known and will be determined from the

optimization process.

Table 3. Random variable definition

Parameter Distribution

Load (q) N(7500, 750) N/m
Width (b) N(?, 1.0) mm

Height (h1) N(?, 1.0) mm
Height (h2) N(?, 1.0) mm
Height (h3) N(?, 1.0) mm

Failure Stress (σfail) N(350, 25) MPa

The deterministic optimization is performed first, using the following formulation:

Minimize: Volume

Such That:
hi
b
≤ 2 where i = 1,2,3

σmaxi ≤ σ̃fail
b, hi ≥ 0

(25)
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where the first constraint equation represents three geometric constraints to ensure stabil-

ity and:

σmaxi =
3q̃
bh2

i

(
(4− i)l

3

)2

q̃ = 1.4(µq + 3sq)

σ̃fail = µσfail − 3sσfail

(26)

As was the case for the first example, a safety factor of 1.4 is used for the load.

The DOT results for this deterministic optimization are summarized in Table 4. The

optimum design is fully stressed with the failure stress constraint active for each of the

three segments.

Table 4. Deterministic optimization results

Parameter Value

Width (b) 21.0 mm
Segment 1 Height (h1) 42.1 mm
Segment 2 Height (h2) 28.0 mm
Segment 3 Height (h3) 14.0 mm

Next a FORM analysis was performed to determine the probability of failure for the

deterministic design. A series system reliability approach and the distribution data of Ta-

ble 3 were used. The resulting probability of failure was found to be Ps(F) = 2.56×10−5.

With the probability of failure known for the deterministic design, an equivalent RBDO de-

sign could be performed using the formulation outlined in Eq. 4. Unlike the first example,

the equivalent RBDO for the second example provided a design that differed significantly

from the deterministic design. The RBDO design is summarized in Table 5. Table 5 also

includes the results from a second RBDO run, where the value of Preq was changed from

2.56×10−5 to 1.0×10−7. The reduced weight associated with the RBDO design is a result

of the difference between the two design approaches which is discussed in more detail

below.

Table 5 indicates that the equivalent RBDO design with the same Ps(F) value as the

deterministic design resulted in a 12% weight savings when compared to the deterministic

design. In addition, when reducing the Preq value to 1.0×10−7, the probability of failure

was reduced by roughly two orders of magnitude while maintaining roughly the same

weight when compared to the deterministic design. The weight savings that are realized

in the RBDO designs are a result of the distribution of the probability of failure values for

each of the three segments as outlined in Table 6.

Table 6 clearly illustrates the difference between the two design approaches. The deter-
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Table 5. Reliability based design optimization results

Parameter Deterministic RBDO1 RBDO2

Ps(F) 2.56×10−5 2.56×10−5 1.0×10−7

Width (b) (mm) 21.0 19.3 20.3
Height (h1) (mm) 42.1 38.7 40.7
Height (h2) (mm) 28.0 26.7 28.1
Height (h3) (mm) 14.0 15.0 16.1

Volume (×10−6 m3) 885.3 777.1 862.9
RBDO1 -RBDO design with Preq =2.56×10−5

RBDO2 - RBDO design with Preq =1.0×10−7

Table 6. Probability of failure values for each segment. Both designs has Ps(F)=2.56×10−5 (Stress
values calculated from the design load in both cases)

Deterministic RBDO
Parameter Stress (MPa) P(F) Stress (MPa) P(F)

Segment 1 275 7.19×10−10 354 1.56×10−5

Segment 2 275 9.73×10−9 329 7.21×10−6

Segment 3 275 2.55×10−5 261 4.23×10−6

ministic design is only concerned with stress and results in a fully stressed design with the

same maximum stress value for each segment. In contrast the RBDO design is only con-

cerned with the Ps(F) value, which is determined from the P(F) values for each segment.

Acar and Haftka25 illustrated that for the RBDO design, the ratio of the probability of fail-

ure for each segment should be roughly equal to the weight ratio of the segments. The

weight and probability of failure ratios of the three segments are summarized in Table 7

below. In both cases, the normalization was performed using the values for segment 3.

Clearly the weight and probability of failure ratios exhibit the same trend as observed by

Acar and Haftka.25

Table 7. Comparison of weight and probability of failure ratios for the RBDO design (in both cases
the values are normalized with that of segment 3)

Normalized Normalized
Weight Ps(F)

Segment 1 3 3.7
Segment 2 2 1.7
Segment 3 1 1

Although the Ps(F) value is the same for both designs, the P(F) values for each segment

are significantly different. Even though the maximum stress value is the same for each
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segment in the deterministic design, only segment 3 is critical from a probability of failure

point of view, while segments 1 and 2 are over designed. The reason for the different

P(F) values is that the standard deviation for the hi values are constant. For segment 3

the mean deterministic design value for h is much smaller than for segment 1. The fixed

standard deviation thus has a much larger influence on the stress value of segment 3 than

it does on the stress value of segment 1, resulting in the higher probability of failure for

segment 3. Similarly, due to the smaller variability in the stress value of segment 1, the

RBDO approach allows a higher stress value for this segment, while maintaining a lower

stress value in segment 3.

Before continuing to the RBDO design that includes the proof test data, another nu-

merical experiment was conducted to compare the results obtained from the FORM based

approach outlined in this paper with a Monte Carlo simulation. For this experiment the

RBDO design with Ps(F) =2.56×10−5 was used as a design point, and a proof load that

represents the limit load was applied. For the Monte Carlo simulation 108 analyses were

performed and the results are summarized in Table 8.

Table 8. Comparison of Monte Carlo and FORM results for RBDO design with Ps(F) =2.56×10−5 and
proof load equal to limit load (For the Monte Carlo results, the values in parenthesis indicate the COV
values obtained from Eq. 23)

Parameter Monte Carlo FORM FORM∗∗

Ps(F) 2.764×10−5 2.557×10−5 2.701×10−5

(0.019)
P(A) 0.997827 0.998038 –

(4.667×10−6)
Ps(F|A) 2.916×10−6 3.422×10−6 3.423×10−6

(0.059)

In Table 8, the FORM∗∗ column indicates results obtained from the upper bound ap-

proximation for the Ps values as outlined in Eq. 20. Table 8 shows excellent correlation

between the FORM and FORM∗∗ columns, indicating that the upper bound approximation

approach for estimating the PS values is valid for the current example problem. In ad-

dition, Table 8 shows good correlation between the Monte Carlo and FORM approaches

for the Ps(F) and P(A) values, with a slightly larger variation for the Ps(F|A) value. This

larger variation can in part be explained by the smaller numerical value associated with

Ps(F|A). The Monte Carlo simulation resulted in 2764 failures in 108 simulations used

for estimating the Ps(F) value, compared to only 291 failures in 108 simulations used for

estimating the Ps(F|A) value. The Monte Carlo estimate of Ps(F|A) is thus less accurate

than than of Ps(F).

The final step for this example problem was to perform the RBDO design that accounts
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for the proof test data. The following formulation was used:

Minimize: Volume

Such That:
hi
b
≤ 2

P(F|A) < 1.0× 10−7 (Conditional POF)

1− P(A) < Pproof (Prob of failing any proof test)

b, hi, p ≥ 0

(27)

The Preq value used for the conditional probability of failure in Eq. 27 was obtained

from the second RBDO design outlined in Table 5. The magnitude of the proof load is

included as a design variable and the allowable probability of failing the proof test Pproof
was varied to generate a trade-off as shown in Fig. 9.
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Figure 9. Trade-off study for different values of Pproof

In Fig. 9 the x-axis provides the specified probability of failing the proof test. The ob-

jective function is normalized with respect to the RBDO design for P(F)=1.0×10−7 (the

RBDO design already presents a small weight savings over the corresponding determin-

istic design, but with a significantly higher reliability) and the proof load is normalized

with respect to the mean value of the service load. As a reference, a proof test load that

corresponds to 1.2 times the limit load would have a normalized value of 1.56.

Figure 9 presents a similar effect on the objective function, as was observed in Fig. 6

with a rapid initial drop-off in weight, followed by diminishing returns for larger proof

failure probabilities. Figure 9 indicates roughly an 8% reduction in weight over the corre-

sponding RBDO design (that does not account for the proof test data) with a probability

of 1 in 1000 of failing the proof load. For the proof load, as was the case in Fig. 6, Fig. 9

indicates that the proof tests should be performed at smaller values than what is typically
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used. In this case, the proof load should be just below the limit load, while standard

practice is to use a proof load 1.2 times the limit load. It is interesting to note that the

traditional use of acceptance testing is to check workmanship. However, the question at

which level to perform the acceptance test is generally not known and typically depends

on individual experience. Trade-off graphs like those presented in Figs. 6 and 9 may be

used as a quantitative tool to help determine and motivate an appropriate level at which

to perform the acceptance test. In Fig. 9, the proof load basically remains constant over

the full range of Pproof values considered. The optimizer increases the probability of failing

the proof test by decreasing the weight rather than by increasing the proof load.

VII. Concluding Remarks

This paper presents a methodology for including the results of proof/acceptance tests

in the RBDO process. The proposed method allows for the simultaneous design of the

structural component and the proof test itself and provides the designer with direct control

over the probability of failing the proof test. The results indicate that a significant weight

saving is possible when including the proof test results in the design process as compared

to equivalent deterministic or RBDO designs, while maintaining the same probability of

failure as obtained from the deterministic design. Trade-off graphs generated here allows

the designer to select an appropriate probability of failing the proof test, based on the

project at hand.

Several issues should be further investigated in future work. This includes the assump-

tion that the components remain in pristine condition after the proof test. The use of

more realistic distribution data, other than independent, normal distributions, should be

explored. For example, other distributions may be more appropriate than the normal dis-

tribution used here to represent manufacturing tolerances. Also, analysis techniques other

than FORM should be investigated to provide the designer with a wider range of tools for

performing the probabilistic analysis. Finally, the method should be applied to more com-

plicated applications that require the use of numerical simulations techniques like finite

element analyses.
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