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The primary loading condition in launch-vehicle barrel sections is axial compression, and 
it is therefore important to understand the compression behavior of any structures, 
structural concepts, and materials considered in launch-vehicle designs. This understanding 
will necessarily come from a combination of test and analysis. However, certain potentially 
beneficial structures and structural concepts do not lend themselves to commonly used 
simplified analysis methods, and therefore innovative analysis methodologies must be 
developed if these structures and structural concepts are to be considered. This paper 
discusses such an analysis technique for the fluted-core sandwich composite structural 
concept. The presented technique is based on commercially available finite-element codes, 
and uses shell elements to capture behavior that would normally require solid elements to 
capture the detailed mechanical response of the structure. The shell thicknesses and offsets 
using this analysis technique are parameterized, and the parameters are adjusted through a 
heuristic procedure until this model matches the mechanical behavior of a more detailed 
shell-and-solid model. Additionally, the detailed shell-and-solid model can be strategically 
placed in a larger, global shell-only model to capture important local behavior. Comparisons 
between shell-only models, experiments, and more detailed shell-and-solid models show 
excellent agreement. The discussed analysis methodology, though only discussed in the 
context of fluted-core composites, is widely applicable to other concepts. 

I. Introduction 
he primary loading condition in launch-vehicle barrel sections is axial compression, and it is therefore important 
to understand the compression behavior of any structures, structural concepts, and materials considered in 

launch-vehicle designs. This understanding will necessarily come from a combination of test and analysis. However, 
certain potentially beneficial structures and structural concepts do not lend themselves to commonly used simplified 
analysis methods, and therefore innovative analysis methodologies must be developed if these structures and 
structural concepts are to be considered. This paper discusses such an analysis technique for the fluted-core 
sandwich composite structural concept. This analysis methodology, though only discussed in the context of fluted-
core composites, is widely applicable to other concepts including other composite designs such as those with 
corrugated webs or I-beam stiffeners, and integrally stiffened metallic structures that include complexities such as 
fillets or other form of variable thickness in the interface between skins and stiffeners like those often found on 
isogrid and orthogrid structures. 

Fiber-reinforced composite structures are increasingly considered in efforts to develop new launch vehicles 
because of potential benefits over traditional metallic structures. Such benefits can include lower mass, better fatigue 
resistance, and reduced costs. Structures recently baselined specifically as composite during NASA’s recent launch-
vehicle-development efforts included dry-shell components such as interstages, shrouds, and frustums.1-4 The 
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structural efficiency of sandwich composite shells in terms of high bending stiffness and low density is well known. 
Traditional sandwich composites (e.g., those made with a honeycomb or foam core and laminated composite faces), 
however, can have poor damage resistance and damage tolerance, and it can be difficult to measure manufacturing 
defects and damage. To potentially overcome some of these shortcomings, other sandwich-composite concepts are 
being developed and considered for launch-vehicle applications. The fluted-core composite concept is one such 
sandwich concept, and is considered herein. Fluted-core composites are sandwich composites that consist of integral 
angled web members and structural radius fillers spaced between laminate face sheets, as shown in Fig. 1. A 
discussion of perceived benefits and drawbacks for honeycomb-core and fluted-core composites was presented 
recently.5 

It is often reasonable to model a sandwich structure as a shell. Additionally, it is often reasonable to model a 
stiffened structure as a shell with discrete beams for the stiffeners,6 or if the stiffeners are closely and equally spaced 
to have their properties, including stiffener eccentricity, averaged or smeared over the surface of the shell.7 These 
types of approaches have recently been applied to compression-loaded isogrid structures in assessments prior to 
testing8 and to fluted-core structures for initial-design-type analyses.9 However, the compression response of fluted-
core components has a number of complexities that can make either smeared-shell or shell-beam models, as well as 
linear analyses, insufficient for predicting their behavior. In particular, local buckling can occur in the facesheets and 
webs before any material failures or global-buckling events. Though not catastrophic by themselves, these local 
buckling responses must be captured in analyses because they may lead to other failures in the postbuckling load 
range. Smeared-shell analyses are not capable of capturing these local-buckling responses. Nonlinear analyses that 
capture enough of the cross-sectional detail are needed to predict the failures that occur in the postbuckling range. 
Care is required in developing finite-element models that can accurately capture this complex behavior. Earlier 
efforts to address these difficulties resorted to detailed finite element meshes that included both facesheets and webs 
as shell elements,10-12 or a combination of solid and shell elements when necessary because of the presence of filled 
(or filleted) face-web joints. 5,13 However, the use of solid elements can produce models with a large numbers of 
degrees of freedom that can make the analysis of complex built-up structures impossible with available computer 
resources. Because of the variety of designs and manufacturing considerations envisioned for fluted-core structures 
and their relative novelty, there is limited structural data associated with them, and they may therefore require a 
lengthy development and certification process. The analysis methodology presented herein could potentially shorten 
the time and lower the costs involved in this development by providing greater understanding, better predictions, 
and therefore greater confidence on the effects of design changes. The developed methodology is based on 
commercially available finite-element codes and uses shell elements to capture behavior that would normally require 
solid elements; in this methodology, the shell thickness and offset properties of these additional shell elements are 
parameterized. A combination shell-and-solid model is developed as part of the discussed methodology and is used 
as the standard with which to iteratively tune the shell-element parameters so that the structural response of the 
shell-only model is essentially equivalent to that of the shell-and-solid model. This approach is different in that 
geometry of certain small sections of the physical structure being modeled is considered less important than the 
structural response, and to the knowledge of the authors, this type of approach has not been used before. 
Additionally, the more detailed shell-and-solid model can be strategically placed in a larger shell-only model to 
capture important local behavior or be used as a local model for which the loads and boundary conditions are 
inferred from the shell-only global model. 

A description of the test articles that are considered in the current study is given in Section II. Two 
methodologies used to produce finite element models for both small and large fluted-core articles are discussed in 
Section III. One of these methodologies uses solid elements to model the noodle region, and the other methodology 
is the primary subject of this paper and uses shell elements to efficiently model the noodle region. Experimental test 
results from Ref. 5 are also discussed and compared with results from the two methodologies in Section III. 
Concluding remarks are given in Section IV. 

II. Test-Article Description 
Though the analysis methodology developed in this paper is intended to help improve the understanding of the 

behavior of future fluted-core composite structures and test articles, it is also necessary to use previous experiments 
and detailed analyses to validate the methodology. As such, there are three test-article configurations discussed 
herein; experimental results from one of these configurations will be used for analysis-method validation, and the 
analysis methodology developed herein will be used to make pre-test predictions for the other two test-article 
configurations. All the test articles were fabricated by The Boeing Company by wrapping unidirectional 350-°F-cure 
toughened carbon-epoxy prepreg plies around trapezoidal mandrels, arranging the wrapped mandrels with pultruded 
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unidirectional-prepreg radius fillers (termed noodles) and placing prepreg facesheets above and below the wrapped 
mandrels. The entire arrangement was then autoclave co-cured and the mandrels were removed after cure. 

The three test-article configurations considered are shown in Fig. 2. Figure 2a shows a coupon-level 
configuration that is used for the analysis-method validation, and which was discussed in Ref. 5. Figures 2b and 2c 
show curved-panel and full-cylinder configurations for which the new analysis methodology will be used to make 
pre-test predictions. The cross sections of the test articles in Fig. 2 are essentially the same except that the test article 
in Fig. 2a is flat, and the other two are curved. The cross section of these test articles was termed the subscale cross 
section in Ref. 5, and the experimental testing and detailed analyses of the flat test article are discussed in Ref. 5. 
The flat test article of Fig. 2a is 12-in. long, 5.39-in. wide on the wide face and 4.87-in. wide on the narrow face, 
0.74-in. thick, and consists of five flutes. The curved test article of Fig. 2b is 53.875-in. long, has arc-lengths of 
31.82-in. on the inner mold line (IML) and 31.63-in. on the outer mold line (OML), is 0.77-in. thick, has a 78.8-in. 
outer radius, and consists of 33 flutes. The full cylinder shown in Fig. 2c is 112-in. long, has the same radius as the 
curved panel test article, and consists of five panels connected by longitudinal joints of the type discussed in Ref. 14. 
For all of the considered test articles, the web layup is [±45/±45], and the combined layup of each joined 
facesheet/flute-span is [±45/0/90]s. A full set of material properties was not available for the specific toughened 
carbon-epoxy used in the construction of the test articles, so linear material properties for the similar material 
IM7/8552 were used in the modeling of all components.15 

The analysis and analysis results of the test articles shown in Figs. 2a and 2b are reported herein. The analysis of 
the full-cylinder article is not discussed herein, but is shown as motivation for the currently discussed 
computationally efficient analysis methodology. Further validation of the analysis methodology will require the 
experimental testing of these two curved test articles.  

III. Finite-Element Modeling 
The finite-element models used in this study were built using MSC Patran 2010,16 the analyses were performed 

with Abaqus/Standard 6.9.1,17 and the post processing was completed with Abaqus/CAE 6.9.1.18 Two finite-element 
analysis (FEA) models were developed for each of the panel test articles (Figs. 3a-3d). The flat-panel test article was 
originally modeled using solid finite elements to represent the pultruded noodles, and with shell elements for all the 
other components of the panel.5 Models using this approach are herein termed solid-noodle models because they use 
6-node C3D6 solid wedge elements to represent the pultruded noodles. The facesheets and the flutes were modeled 
with 4-node S4R5 shell elements. In order to account for important details, and to aid in post processing, the 
facesheets, flutes, and noodles were modeled using separate components or element sets. Thus the stresses and 
strains in the facesheets, flutes, and noodles could be easily separated during post processing of the results.  

Though excellent agreement with experiment was seen using the solid-noodle method,5 this method is not well 
suited for panels with a larger number of flutes because the model size becomes intractable with large numbers of 
flutes. Larger elements cannot be used to produce a global model because the wedge elements used in the noodles 
are sized based on the noodle cross-section dimensions, and the element sizes for the entire model are tied to the 
smallest face of the wedge elements.  

Creating FEA models for larger or more complex structures that are solvable requires an approach different from 
the solid-noodle approach. The developed approach uses a more computationally efficient model that replaces the 
solid elements in the noodle with shell elements to form a tee where the webs meet the faces. In this tee region, both 
the unidirectional noodle and the plies that wrap around the radii of the noodles need to be represented. This is 
accomplished by varying the thicknesses and offsets of seven laminated shell elements, as shown in Fig. 4. The 
noodle-region is represented by variable-thickness 0° plies to model the noodle, and nominal-thickness +45° and -
45° plies to model the plies wrapped around the flutes. In order to define the tee using this method, a total of 14 
parameters must be chosen—the 0°-ply thickness and the offset for each of the seven shell elements. The 
parameterized thickness corresponds to the 0°-ply of an element while the offset is a shell-element property that 
affects all plies. These parameters are chosen such that they define a tee that matches as close as possible the 
distribution of stiffness-weighted mass and inertia properties of the original section. Because of the demonstrated 
agreement with experimental testing, the solid-noodle model was used as the standard with which to iteratively tune 
these parameters. The linear bifurcation buckling loads and modes, and the linear longitudinal shortening are used as 
the metric for determining agreement between the models. Models using this approach are herein termed shell-
noodle models because they use 4-node S4R5 shell elements to represent the pultruded noodle regions. This shell-
noodle approach differs from traditional approaches because the shell thicknesses and offsets are parameterized and 
tuned to produce target mechanical behaviors rather than determined from the design data. A detailed description of 
this tuning process is given below. Once the parameter-tuning is complete, the shell-noodle model can be used in 
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geometrically nonlinear analyses at either local or global levels. The shell-noodle approach was first applied to the 
flat panel for validation purposes and the results are given in Section III-A. The approach was then used on a 9-flute, 
11.875-in long, coupon-model (Figs. 3c and 3d) of the larger 33-flute curved panel (Fig. 2b). The 33-flute panel was 
modeled with the shell-noodle approach (Fig. 3d) using the parameter values determined for the 9-flute coupon 
model.  

All the models were loaded in longitudinal compression and had the same boundary conditions.  One-inch of 
each end was considered to be potted, and the potting conditions were represented by fixing all rotations and 
displacements except the longitudinal displacement in the potted regions. Rigid surfaces were fixed to the end cross 
sections. The bottom rigid surface was fixed in all rotations and displacements, and the top rigid surface was fixed in 
all rotations and displacements except the longitudinal displacement. A nominal longitudinal-compression load was 
applied as a longitudinal force on the reference node of the top rigid surface. 

The global shell-noodle model may be produced with a coarser mesh than the solid-noodle model because the 
necessarily small-faced wedge elements are not used. Additionally, eliminating the wedge elements themselves 
removes additional degrees of freedom, and eliminating the wedge elements saves computational time by removing 
the three-dimensional solid-element connectivity that produces a less-sparse (and thus more computationally time 
consuming) system of equations; these savings are particularly important for nonlinear analyses.  

Though the shell-noodle model is much more computationally efficient, the global model made with the shell-
noodle model would not be able to provide the correct strains and stresses within the noodle. Therefore, the already-
developed solid-noodle model can be used in conjunction with the shell-noodle model by embedding a local solid-
noodle model in the global model in one or more places of interest, or by using the results of the global model to 
produce adequate boundary conditions and loads for the local model. Results of the 9-flute curved-coupon model 
and of the 33-flute curved panel with and without an embedded local model are given in Section III-B. 

A. Modeling and Analysis of the Flat-Panel Test Article 
1. Shell-Noodle Model Tuning 

Some basic decisions made on this scheme deserve explanation. Because of the noodle shape, it was judged that 
to avoid an overly stiff response, the number of elements on each of the tee wing sections (elements W1–W4 in Fig. 
4) could not be less than two. However, the same cross-sectional length was used for the four elements on the wings 
because the smallest element length on the cross section determines the number of elements in the longitudinal 
direction. Similarly, it was believed that using three elements in the tee leg section (elements L1–L3 in Fig. 4) of the 
noodle was reasonable because three elements on the leg produce elements only slightly longer than those on the 
wings. Using these seven elements in the shell-noodle produced fourteen unknowns, or parameters, to select. To 
simplify the parameter tuning, on this test article it was assumed that the leg offsets were zero and that the outer 
wing elements had equal thickness, so ten unique parameters were left to be chosen. The boundary and loading 
conditions that were used for the tuning process were for end-potted longitudinal compression, and were identical to 
those discussed in Ref. 5. 

A closed-form solution to determine the thicknesses and offsets would be convenient and might be possible, but 
currently has not been found. Instead, a heuristic procedure was effectively implemented that started with a guess at 
a possible solution, and in which the ten remaining parameters were iterated to match results from the solid-noodle 
model. Once the initial guess was made, a shell-noodle model using the chosen parameter values was produced for 
bifurcation buckling and linear static analyses. The 0°-ply thicknesses and shell offsets were designated parametric 
values in the model. In this way, changes could be made in a single file containing the parameters so that the 
procedure could be scripted if desired. The initial guess used in the current work is made by sketching a distribution 
of thicknesses and offsets that visually looks equivalent to the physical-noodle cross section. Because some of the 
ply sections overlap at the junction and because both area and ply longitudinal stiffness are important, this visual 
equivalence can only be made in a rough manner. 

The results that were inspected during the tuning procedure were the first five bifurcation-buckling eigenvalues 
and eigenmodes and the linear end-shortening. The criteria used to judge agreement were to obtain these five 
eigenvalues within 1% of those from the solid-noodle model, and to have the corresponding five eigenmodes appear 
qualitatively very similar to those of the solid-noodle model. Additionally, the end shortening calculated with the 
two modeling approaches should be in good agreement for both linear static analyses under the nominal load; 
comparing the end shortening results ensures that the overall compressive stiffness of the solid-noodle model is well 
represented by the shell-noodle model. Though these criteria are somewhat arbitrary and deserve investigation, they 
were chosen because they were thought to be desirably stringent and were able to be met using the heuristic 
procedure.  
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The nominal compression load applied was 20,000 lb, and the tuning process took 82 iterations. The resulting 
solution is shown in Fig. 4 and Table 1. The result was that the tuned shell-noodle model closely mimicked the 
mechanical behavior of the original solid-noodle. The first five bifurcation-buckling eigenvalues for both solid-
noodle and tuned shell-noodle models are shown in Table 2. The critical bifurcation buckling load was the same in 
both models, 44,844 lb, and the largest relative error for the first five eigenvalues, was 0.26%. In Fig. 5, it is seen 
that the first two eigenmodes are very similar as well. Comparable agreement was seen for eigenmodes three 
through five though they are not shown. 

To ensure that the correct overall stiffness is well represented by the shell-noodle model, the longitudinal 
shortening from a linear static analysis under the nominal 20,000-lb load was calculated. By comparing the 
longitudinal shortening given in Table 3, it is seen that the tuned shell-noodle model was only very slightly stiffer 
than the solid-noodle model; the longitudinal shortening for the two models was within 3%.  

 
2. Comparison Between Experimental, and the Solid-Noodle and Shell-Noodle Nonlinear Results 

Because noncatastrophic local facesheet buckling occurred before material failure in the flat-panel test articles, 
nonlinear analyses are needed to predict the failure response of the flat-panel test articles. A detailed description of 
the experimental and solid-noodle model results are given in Ref. 5. In the nonlinear analyses of both the solid- and 
shell-noodle models, a small geometric imperfection that was based on the first linear eigenmode was used with an 
imperfection amplitude of 0.005 in. These nonlinear analyses were carried out using the built-in Abaqus modified 
Riks solver so that solutions could be obtained in the postbuckling load range. In this section, selected results from 
the experiments and the solid- and shell-noodle models are compared. Specifically, comparisons are made of the 
longitudinal shortening value at the largest load in the nonlinear static analyses, the load vs. longitudinal shortening 
histories, and the local buckling response. In this paper, the “largest load” for the longitudinal shortening 
comparisons is the lower of the material-failure load, or the first maximum in the load vs. displacement plot. 
Material failure is predicted using the maximum-stress failure criterion, and the material-failure loads are taken to be 
the first available load increment where a material strength has been exceeded.  

The first comparison is the longitudinal shortening at the largest load of the nonlinear static analyses (Table 3) of 
the flat panel. The largest loads reached in the two nonlinear flat-panel analyses were material failure loads and were 
within 1.3% of each other. At these loads, the end shortening values agreed within 0.5%. Comparison of the load vs. 
end-shortening histories from nonlinear-static analysis of both flat-panel solid-noodle and shell-noodle models 
showed that the loads were within 1.5% of each other at all end-shortening values. Additionally, the experimental 
slopes of the load vs. end-shortening curves calculated between 14,000 and 32,000 lb (the range after initial 
experimental nonlinearity and before local buckling) were within 4.5% of both analyses. Discrepancies may have 
been caused by the actual geometry and material imperfections in the tested panels, and by modeling the potted ends 
of the panel as having a transversely rigid potting material. These sources of error might also be responsible for the 
larger half-wave count in the model, which in general was slightly stiffer than the tested articles. 

Figure 6 shows the fully developed local buckling in one of the experimental test articles just prior to material 
failure (53,500 lb). It is seen that local-buckling half waves formed in each of the flute wide spans, so that there 
were two columns of half waves on the back side, and three columns of half waves on the front side. For 
comparison, predicted out-of-plane displacements at a 53,100-lb compressive load from the nonlinear-static analysis 
on front face of the solid-noodle and shell-noodle models are displayed in Fig. 7, where positive displacements are 
outward. Observation of Figs. 6 and 7 shows good qualitative agreement between the experiment and both finite-
element models. However, it is seen that nine longitudinal half waves developed in the experiment, but 11 half 
waves developed in both the analyses. For quantitative comparison between the two finite-element models, consider 
that there is very little difference in the displacement values given in Fig. 7. The black contours on Fig. 7b (the shell-
noodle model) represent areas where the displacements were slightly higher than the maximum in the scale (which 
was set by the maximum and minimum displacements calculated for the solid-noodle model of Fig. 7a), and indicate 
the slight differences between the two results. Though not shown, other predicted strain- and stress-fields for the two 
models were also nearly indistinguishable. 

The nonlinear static analysis provided insight on other qualitative behavior as well. For example, “dimples” 
(small round sunken areas) near the end of the potting sections on both faces were the first-observed significant out-
of-plane deformations during the physical tests. This dimpling behavior was also predicted by both the solid-noodle 
and shell-noodle models.  

It can thus be affirmed that linear buckling analyses and geometrically nonlinear static analyses showed excellent 
agreement between the solid-noodle model, the shell-noodle model, and experiments for the configuration shown in 
Fig. 2a. Additionally, even for this small flat panel, the shell-noodle model is much more computationally efficient 
than the solid noodle model. This efficiency can be demonstrated by comparing the number of degrees of freedom 
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and CPU times used by both models. The solid-noodle model had 178,038 degrees of freedom and used 8,246 
seconds of CPU time on a desktop PC for the nonlinear static analysis. The corresponding shell-noodle model had 
134,874 degrees of freedom and the nonlinear analysis used 4,536 seconds of CPU time on the same computer. This 
saving of about 25% in model size and 45% in CPU time was achieved without using a coarser mesh in the shell-
noodle model. However, the ability to use a coarser mesh is precisely one of the advantages of the technique, and 
would produce even greater savings.  

B. Modeling and Analysis of the Curved-Panel Test Article 
1. Comparison of Solid- and Shell-Noodle Coupon Models 

The method described in the previous section was repeated with the curved-panel shown in Fig. 2b. That is, both 
solid-noodle and shell-noodle models were created, and the shell-noodle model was tuned using both bifurcation-
buckling and linear-static analyses run on both models. However, the tuning was performed on coupon models 
having the same cross-sectional geometry as the full curved-panel test article, and several refinements that are 
discussed below were made to improve the shell-noodle model. The coupon models, shown in Figs. 3c and 3d, 
consist of nine flutes and are 11.875-in. long. These coupon models had identical boundary conditions to those 
described for the flat panel, but the nominal compression load used was 10,000 lb. 

The same concept of developing a shell-noodle model that incorporates the flute plies adjacent to the curved 
sides of the actual pultruded noodle was used. As before, seven-element sets were defined with two elements on 
each wing of the resulting tee joint, and three elements on the on the leg. Therefore, there were fourteen 
unknowns—namely the seven thicknesses and the seven offsets of those element sets.  

The representation of the pultruded noodle was similar in proportion to that in the flat-panel model, but was 
modified to more-accurately represent the experimental test articles. The leg of the tee in this equivalent shell-
noodle model was cylindrical so that it would roughly bisect the actual noodle section, as shown in Fig. 8, which 
shows several relevant technical matters. It is seen that the shell noodle can easily replace the solid noodle because 
the outer nodes of the tee connect to the spans and webs of the flutes on their edges. Because the leg of the noodle is 
cylindrical, it has a cylindrical coordinate system that provides the same type of shell property control as in the flat 
segments of the tee region. Additionally, the issue of excessive participation of the ±45° plies in the shell noodle was 
addressed by incorporating a fifteenth parameter—the thickness of the ±45° plies in the L1 elements. It is expected 
that this thickness will be reduced to an almost negligible value. This parameter may be understood by referring to 
Fig. 4 where it can be seen that adding the length of the three leg elements and the two wing elements on each side 
results in a length that exceeds the arc length of the ±45° plies in the solid-noodle model. By nearly removing the 
contribution of the ±45° plies in the L1 leg element, the remaining four elements approximate the original length.  

Bifurcation-buckling and linear-static analyses were run using the solid- and shell-noodle coupon models as the 
thickness and offset parameters were varied to iteratively tune the shell-noodle model. The iterative process was 
similar to the one described for the flat-panel models. It has been shown that the effective transverse shear stiffness 
of fluted-core structures can significantly affect structural response,9 so in addition to the axial compressive load and 
associated boundary conditions, a second load case simulating circumferential transverse-shear loading was used in 
the tuning process. The load introduction was different in the transverse-shear load case than in the previous axial-
compression cases. In the transverse-shear load case, rigid surfaces were attached along the entire length of the panel 
on the regions designated A and B in Figs. 3c and d. The rigid surface on region B was fixed in all degrees of 
freedom, and the rigid surface in region A was fixed in all degrees of freedom except circumferential displacement. 
To introduce the load, a circumferential force was applied to the rigid surface in region A to apply transverse shear 
to the coupon. These conditions were applied to both the solid-noodle and shell-noodle models. Bifurcation buckling 
results for both compression and transverse shear loading, in conjunction with linear static compression analyses 
results, were used in the heuristic approach to finding appropriate values for the fifteen parameters in the shell-
noodle model. Considering transverse shear during the tuning procedure is important because the transverse shear 
stiffness can be very important in accurately capturing the global buckling behavior of the full barrel of Fig. 2c.9 
Linear static results from the transverse shear model and a third distinct condition, axial-shear (that was not included 
in the parameter-optimization procedure), are discussed below. 

The tuned parameter values found using both the compression-loaded and transverse-shear models are shown in 
Table 4. Figure 9 shows the first compression buckling mode predicted from these two models, which correspond to 
a critical bifurcation-buckling load of 65,700 lb in both models. The first five eigenvalues from the solid- and shell-
noodle models for the compression load matched within 0.25%, and the first eigenvalue matched within 0.1%. The 
eigenmodes also agreed well. The linear static analyses were run with the nominal compression load of 10,000 lb. 
Selected results from the linear and nonlinear static compression analyses are given in Table 5. The corresponding 
panel shortenings calculated on both solid-noodle and shell-noodle models were identical at 0.0106 in. The 
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nonlinear static analyses predicted material failure at 39,300 lb for the solid-noodle model and 39,700 lb for the 
shell-noodle model. These loads were within 1% of each other and greater than the local buckling loads, but lower 
than any global panel buckling, so they are within the range where the load-shortening curves are fairly linear. The 
two models produced nearly identical load-shortening histories, with loads staying within 0.5% of each other 
throughout the simulation. The axial shortening values matched within 2% at the material-failure loads.  

The contour plots in Fig. 10 show the fiber-oriented (axial) stress fields on top of the outermost 0° ply on both 
the IML and OML facesheets on both models at their respective material failure loads from the compressive 
nonlinear static analysis. It is seen that there is very good agreement between the solid- and shell-noodle models 
over the entire surfaces. There are small visual differences between corresponding contour plots, particularly near 
the potted area and on the potting area themselves, but those differences are small (less than 200 psi) at any point. 
Failure is predicted to occur on each edge where the potted sections end.  

The transverse-shear case that was used in the tuning had the circumferential force applied toward the fixed 
edge; that is, it was a pushing transverse-shear case. Linear- and nonlinear-static results are given in Table 6; the 
solid- and shell-noodle displacements of the shell-noodle were within 1.5% for the linear analyses at a nominal 
1,000 lb load, and within 2.6% for the nonlinear analyses at the largest load. The largest load in the nonlinear 
analysis was, in this case, the first maximum in the load vs. displacement plot, and was 2,740 lb for both models. 
The critical bifurcation-buckling load was calculated to be 4,932 lb with the solid-noodle model and 4,997 lb (1.33% 
higher) with the shell-noodle model. The first six eigenvalues from the shell-noodle model were all within 4.52% of 
those from the solid-noodle model. The eigenmodes also matched well, but the 5th and 6th modes were switched in 
the two models; these two eigenvalues were within 3.6% of their average value of 10,478 lb.  

Though the shell-noodle model was adjusted using the axial compression loading and pushing circumferential 
transverse-shear loading conditions, the resulting model was also exercised under two other loading conditions. The 
first of these additional loading conditions was a pulling circumferential transverse-shear case, which was produced 
by simply reversing the load used in the previously discussed pushing transverse-shear case; all other conditions 
were the same. The second additional case was a distinct pushing axial transverse-shear case. In the axial 
transverse-shear load case, one-inch long rigid surfaces were attached over the entire width of one face of each panel 
end. One of these rigid surfaces was attached to inner face, and the other rigid surface was attached to the outer face. 
The rigid surface on the inner face was fixed in all degrees of freedom, and the rigid surface on the outer face was 
fixed in all degrees of freedom except axial displacement. To introduce the load, an axial force was applied to the 
rigid surface in the outer face to apply axial transverse shear to the coupon.  

The bifurcation-buckling modes under the pulling circumferential transverse shear loading are the same as those 
discussed above under the pushing conditions, but the eigenvalues have the opposite sign. Additionally, linear static 
analyses also produce the same displacements with opposite sign. However, the predicted behaviors are different in 
nonlinear static analyses. This is because on this panel, in the pushing case the faces buckle first, while in the pulling 
case the webs buckle first. In this pulling case, the maximum loads are 3,900 lb for the solid-noodle model and 
3,850 lb for the shell-noodle model (1.3%. lower). At these maximum loads, the predicted displacements were both 
0.0277 in.  

Under the pushing axial transverse-shear loading, the first five eigenvalues from the solid- and shell-noodle 
models matched within 0.31%, and the eigenmodes were also very similar. The predicted displacements from the 
solid- and shell-noodle models matched within 1.7% for linear static analysis under a 10,000-lb load. The predicted 
loads from the solid- and shell-noodle nonlinear static analyses matched within 2.9% at the large applied 
displacement of 0.0797 in.  

 
2. Global-Local Analyses 

After the parameter tuning was complete and the already discussed additional load cases were examined with the 
coupon models, a global shell-noodle model was created for the curved test article of Fig. 2b using the same tuned 
thickness and offset parameters and cross-sectional geometry as the curved coupon shell-noodle model. This global 
shell model was used to make pre-test predictions for the curved-panel test article (Fig. 2b) under uniform axial 
compression. The cross section of this model is shown in Fig. 3b. The setup of boundary conditions and loading for 
the global model is the same as that used for the axial-compression loading of the flat panel and curved-coupon 
panel; that is, the edges were free, 1 in. of each end was considered potted, and the ends had applied rigid surfaces 
that were used to introduce the load. However, as can be seen in Fig. 2b and illustrated in Fig. 11, the curved panel, 
and thus its global model, also includes a padup on the ends of the panel. The padup consists of eight pre-cured and 
secondarily bonded plies with the same layup as the faces (with the flute plies), and is identical on both top and 
bottom and inner and outer faces. To transition to the test section of the panel, pairs of the padup plies are dropped 
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as shown in Fig. 11. In the model, the additional padup plies are incorporated into the existing element properties so 
no additional mesh elements or degrees of freedom were required to represent the padups.  

For pretest predictions, both bifurcation buckling and geometrically nonlinear static analyses under compression 
loading were performed using the global shell-noodle model. For the bifurcation-buckling analysis, the nominal 
compression load applied for the global model of the curved panel was 100,000 lb applied as an axial force on the 
reference node of the top rigid surface. Table 7 gives the first ten eigenvalues. The first four eigenmodes are global 
modes and are shown in Fig. 12. The first bifurcation buckling mode is nearly antisymmetric and corresponds to a 
critical bifurcation-buckling load of 122,700 lb. The second mode, shown in Fig. 12b, is symmetric and corresponds 
to a load of 123,200 lb, only 0.4% higher than the critical one. The third and fourth modes, (Fig. 12c and d) 
corresponded to clearly higher loads. All first four modes are of global nature. The fifth mode, shown in Fig. 13, is 
the first local eigenmode.  

A geometrically nonlinear static analysis was used to predict the postbuckling responses of the curved panel. The 
first eigenmode was used as an initial geometric imperfection with the small amplitude of 0.005 in. The predicted 
axial stresses in two of the 0° plies at 81,000 lb compression are shown in Fig. 14. This figure shows that the panel 
deformed into a basically symmetric mode similar to the second eigenmode shown previously, that the inner 
(concave) face has higher stresses than the outer face, and that first material failure is predicted (using the 
maximum-stress failure criterion) to occur on one of the edges of the inner face at the midlength. The effect of 
padup ply drops is evident in the staggered contour-plot color changes near the panel ends. 

The solid-noodle coupon model that was used for the tuning can be embedded as a local model anywhere within 
this global model to create a global-local representation. The solid noodles and shell noodles are connected via 
multiple-point constraints (MPCs). The solid-noodle coupon model was embedded in the center of the edge of the 
shell-noodle global model of the curved-panel test article (Fig. 15) because this is where the failure was predicted to 
occur using the shell-noodle model. The predicted axial stresses from this global-local model under 81,000 lb axial 
compression in 0° plies on the inner and outer face are shown in Fig. 15. This figure can be directly compared with 
Fig. 14, and it shows that the stresses are reasonably continuous in the transition between the shell- and solid-noodle 
regions with local “spots” exhibiting acceptable deviations in the stress magnitudes around the locations of 
connectivity between the solid- and shell-noodle sections. The maximum fiber-oriented stress on the global-local 
model (Fig. 15) is smaller (within a 1%) than the corresponding maximum in the global (shell-noodle only) model 
(Fig. 14). That maximum stress appeared on the opposite edge because the local solid-noodle sections are slightly 
stiffer than the shell-noodle counterpart they replace in the global model. The overall distribution of stresses remains 
very much the same as can be seen when comparing Figures 14 and 15.  

The free-edge conditions used on the global model correspond to the proposed test of the curved panel of Fig. 
2b. However, the full barrel of Fig. 2c is a closed shell, so the panels in it have their edges supported. It will need to 
be determined whether local buckling will be the first failure mode, and how close it is to the other failure modes. 
Therefore, the response of the curved panel under axial compression with supported edges was examined as a way to 
activate the local buckling response. The supported edges were modeled by considering the edges potted, so that the 
motion of the side webs and the outer underside and top of the edge noodles are fixed in all directions except axial 
displacement. With the same nominal axial compression load of 100,000 lb in a bifurcation-buckling analysis, the 
resulting first ten eigenmodes were all local buckling modes, with eigenvalues all within 0.55% of the first 
eigenvalue. The critical buckling mode is a local mode, and the critical buckling load is predicted to be 222,230 lb, 
which is, as expected, much higher than the critical load for the free-edge model. As a potential imperfect geometry 
for nonlinear analyses, the first eight eigenvalues, which are within 5% of the first, were combined by adding their 
corresponding normalized modes and are shown in Fig. 16. Note that in Fig. 16 each of the combined modes had a 
maximum amplitude of 1.0 in., but in practice smaller normalized amplitudes would be used to produce a combined-
mode imperfection with reasonable amplitude.  

By considering both the free-edge and supported-edge conditions, it is shown that the same efficient model 
(albeit with different boundary conditions) can be used to predict behaviors at both the local and global scales. 

IV. Concluding Remarks 
Fluted-core composite structures may have benefits for certain launch vehicle structures. However, in order to 

efficiently evaluate fluted-core structures, computationally efficient analysis methodologies must be available. One 
such methodology that handles an important structural detail in a novel way is discussed herein. This methodology 
uses shell elements to capture behavior that would normally require solid elements. The thicknesses and the offsets 
of these shell elements are chosen to match the stiffness-weighted moments of inertia of the solid elements they 
would replace, and then iterated until the linear buckling modes and loads match well with more detailed models. 



9 
American Institute of Aeronautics and Astronautics 

 
 

Experiments and detailed models of coupon panels were used to validate the methodology, and excellent agreement 
was found between all the results. Additionally, the utility of the method was demonstrated by examining the 
compression behavior of a larger curved panel, and it was seen that both local and global responses could be 
captured using the same approach. Though the methodology is discussed in the context of fluted-core composites, it 
is also applicable to other built-up shell structures. 
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Table 1. Flat-panel equivalent-shell properties by element position within noodle. 
Property W1  W2  W3  W4  L1  L2  L3  

0° ply 
thickness (in.) 0.0056 0.0280 0.0168 0.0056 0.0728 0.0280 0.0030 

Shell fractional 
offset* 0.9000 1.2000 1.0000 0.9000 0.0000 0.0000 0.0000 

*Offset normalized by the total shell thickness. 
 
 
 

Table 2. Flat panel solid-noodle and shell-noodle bifurcation-buckling analysis results under longitudinal-
compression loading. 

Mode 

Solid noodle 
model 

Shell noodle 
model Eigenvalue ratio 

(shell/solid) Eigenvalue 
1 2.2422 2.2422 1.0000 
2 2.2460 2.2426 0.9985 
3 2.2624 2.2645 1.0001 
4 2.2727 2.2683 0.9981 
5 2.2737 2.2795 1.0026 

 
 
 

Table 3. Flat panel solid-noodle and shell-noodle static analysis results under longitudinal-compression 
loading. 

Model 
Linear static  Nonlinear static 

Longitudinal shortening 
at 20,000 lb (in.) 

Material-failure 
load (lb) 

Longitudinal shortening at 
material-failure load (in.) 

Solid-noodle 0.0313 54,586 0.0898
Shell-noodle 0.0304 55,288 0.0894

 
 
 

Table 4. Curved-panel equivalent-shell properties by element position within noodle. 
Property W1  W2  W3  W4  L1 L2  L3  

0° ply  
thickness (in.) 0.00601 0.01226 0.01226 0.00601 0.07500 0.04700 0.00200 

Shell fractional 
offset (*) 0.99038 1.25000 1.25000 0.90000 0.06000 0.00268 0.30000  

45° ply 
thickness (in.) 0.00560 0.00560 0.00560 0.00560 0.00014 0.00560 0.00560 

(*) The fractional offset is computed as a ratio to total shell thickness. 
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Table 5. Curved-coupon panel solid- and shell-noodle static analysis results under axial-compression 
loading. 

Model 

Linear static Nonlinear static 
Axial shortening at 

10,000 lb (in.) 
Material-failure  

load (lb) 
End shortening 

at material-failure load (in.) 
Solid-noodle 0.0106 39,300 0.0418 
Shell-noodle 0.0106 39,700 0.0425 

 
 
 

Table 6. Curved-coupon panel solid-noodle and shell-noodle static analysis results under pushing 
transverse-shear loading. 

Model 

Linear static 
Nonlinear static 
(at largest load) 

Displacement at  
1,000 lb (in.) Largest load (lb) 

Displacement at 
largest load (in.) 

Solid-noodle 0.00800 2,740 0.0270
Shell-noodle 0.00812 2,740 0.0263

 
 
 
Table 7. Bifurcation-buckling results of free-edge and potted, 33-flute curved-panel model under an axial 
compression load of 100,000 lb. 

Mode Type Eigenvalue 
1 global 1.2163
2 global 1.2320
3 global 1.7418
4 global 1.8199
5 local 2.3287
6 local 2.3287
7 local 2.3298
8 local 2.3310
9 local 2.3340

10 local 2.3346
 
 

  



12 
American Institute of Aeronautics and Astronautics 

 
 

 
 
  (a) Cross section and nomenclature      (b) Cross-sectional sketch 
  

Figure 1. Cross section.  
 
 
 
 
 

 
 

    (a) Flat panel        (b) Curved panel           (c) Full cylinder 
                      (photo courtesy of The Boeing Company) 
 

Figure 2. Test articles. 
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(a) Flat-panel solid-noodle cross section 

 

 
(b) Flat-panel shell-noodle cross section 

 
A 

 
  B 

(c) Curved-panel local solid-noodle cross section 
 

A 

 
 B 

(d) Curved-panel local shell-noodle cross section 
 

 
(e) Curved-panel global shell-noodle cross section (shown in different scale) 

 
Figure 3. Cross sections of finite-element meshes for analysis of the fluted-core test articles. 
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Figure 4. Shell-noodle model of the noodle region showing layups, thicknesses, and offsets. 
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   Mode 1: Eigenvalue = 2.4222        Mode 1: Eigenvalue = 2.4222   
    Solid-noodle model            Shell-noodle model 

(a) First mode 
 

 
   Mode 2: Eigenvalue = 2.2460         Mode 2: Eigenvalue = 2.2426 
    Solid-noodle model             Shell-noodle model 

(b) Second mode 
 

Figure 5. First and second bifurcation-buckling mode of flat-panel models under compression loading. 
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        (a) Back            (b) Front 
 

Figure 6. Experimental out-of-plane displacements at 53,500 lb applied compressive load from flat-panel 
CPA-2B. Red lines indicate the location of final panel failure. 
 

 

   
   (a) Solid-Noodle Model            (b) Shell-Noodle Model 

 
Figure 7. Predicted out-of-plane displacements at 53,100-lb applied compressive load from nonlinear-static 
analysis on front face of both flat-panel solid-noodle and shell-noodle models. Positive displacements are 
outward. The black dots on the right image are areas where the displacement resulted slightly higher than the 
maximum in the scale. 
  



17 
American Institute of Aeronautics and Astronautics 

 
 

 
 
Figure 8. Curved-panel shell-noodle elements within the outline of the original solid-noodle cross sections 
showing the various (cylindrical and rectangular) coordinate systems used in defining element thickness and 
offset properties about one of the panel flutes. 

 
 

    Mode 1: Eigenvalue = 6.5742            Mode 1: Eigenvalue = 6.5680 
      (a) Solid-noodle model             (b) Shell-noodle model 

 
Figure 9. First bifurcation-buckling mode of curved-coupon models under compression loading. 
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    (a) Solid-noodle model, IML view           (b) Solid-noodle model, OML view 
 

 
      (c) Shell-noodle model, IML view            (d) Shell-noodle model, OML view 
 
Figure 10. Fiber-oriented (axial) stresses on the top of the outermost 0° facesheet ply from nonlinear-static 
analysis of the curved-coupon models under axial compression at failure load of 39,300 lb for the solid-noodle 
model and 39,700 lb for the shell noodle model. 
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   (a) Curved-Panel Dimensions       (b) Padup lengths and stacking sequence 
 

Figure 11. The curved panel dimensions and padup arrangement. 
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     (a) Mode 1             (b) Mode 2 
 
 

 
     (c) Mode 3             (d) Mode 4 
 
Figure 12. First four bifurcation-buckling modes of the curved panel under axial compression with potted 
ends and free longitudinal edges.  
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Figure 13. Fifth bifurcation-buckling mode of free-edge and potted, global curved-panel model under axial 
compression.  
  

Deformation  
scale factor = 0.5 

 

Radial 
displacement (in.) 

 



22 
American Institute of Aeronautics and Astronautics 

 
 

 
 
Figure 14. Fiber-oriented stresses on the inner- and outer face top of 0° ply from nonlinear-static analysis of 
the curved panel using the shell-noodle sections under axial-compressive loading of 81,000 lb. 
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Figure 15. Axial stress in free-edge curved-panel global-local model under axial compression showing 
continuity of stress between shell-and-solid-noodle sections and the effects of the MPC-driven attachment. 
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Figure 16. Superposition of the closely packed first eight bifurcation-buckling modes of the curved panel 
under axial compression with potted ends and potted longitudinal edges.  
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