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NASA Langley Research Center and The Boeing Company are developing an innovative 

composite structural concept, called PRSEUS, for the flat center section of a future environmentally 

friendly hybrid wing body (HWB) aircraft. The PRSEUS (Pultruded Rod Stitched Efficient 

Unitized Structure) concept uses dry textile preforms for the skins, frames, and stiffener webs. The 

highly loaded stiffeners are made from precured unidirectional carbon/epoxy rods and dry fiber 

preforms. The rods are wrapped with the dry fiber preforms and a resin infusion process is used to 

form the rod-wrap stiffeners. The structural integrity of the rod-wrap interface is critical for 

maintaining the panel’s high strength and bending rigidity. No standard testing method exists for 

testing the strength of the rod-wrap bondline. Recently, Boeing proposed a rod push-out testing 

method and conducted some preliminary tests using this method. This paper details an analytical 

study of the rod-wrap bondline. The rod-wrap interface is modeled as a cohesive zone for studying 

the initiation and growth of interfacial debonding during push-out testing. Based on the 

correlations of analysis results and Boeing’s test data, the adequacy of the rod-wrap testing method 

is evaluated, and potential approaches for improvement of the test method are proposed.  

I. Introduction 

HE NASA Environmentally Responsible Aviation (ERA) program is supporting the development of 

unconventional aircraft configurations that can improve fuel efficiency through higher lift-to-drag ratio and 

lower structural weight. One of the main projects of the ERA program is the development of advanced airframe 

structures for future hybrid wing body (HWB) aircraft. A HWB aircraft configuration proposed by Boeing has a flat 

center section as shown in Fig. 1 for reducing drag. The flat center section is a box-like flat-sided pressurized cabin 

constructed with stiffened panels shown in Fig. 2. The circular cross-sectional shape of a conventional aircraft 

fuselage carries much of the cabin pressure-induced load via hoop-tension in the skin. The flat panels of the HWB 

center section carry cabin pressure loads via bending. These panels will need much higher bending stiffness than 

conventional skin-stringer designs. A typical HWB center section panel carries both fuselage and wing bending 

loads, resulting in a bi-axial loading pattern as shown in Fig. 2. The magnitudes of the loads per unit width are 

nearly equal in both x and y directions, 
x yN N . Note that a conventional airframe has a cantilevered fuselage 

that is more highly loaded in the x direction, along the stringer, than in the y direction, along the frame. Hence, new 

innovative airframe structural concepts are needed to efficiently carry the loads of an HWB aircraft.  

Under the ERA program, engineers at NASA and Boeing are developing a structural concept for the HWB 

aircraft called Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) [1,2].  Figure 3 shows that a PRSEUS 

panel is a highly integrated structure in which the dry warp-knit carbon fabric preforms, precured unidirectionally 

reinforced composite rods and foam-core materials are assembled, stitched together, and then infused with 

polymeric resin by way of Boeing’s Controlled Atmospheric Pressure Resin Infusion (CAPRI) process [3]. The 

CAPRI process is a variation of the vacuum assisted resin transfer molding process (VARTM) [4], in which the 

vacuum level in both the resin supply and vacuum manifolds is controlled, resulting in improved consolidation 

quality [1,2]. Since the stitching can hold the stringer and frame components in place during the CAPRI process, this 
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manufacturing process minimizes the necessity for inner mold line (IML) tooling. The presence of the stitching also 

suppresses the debonding between the skin and the flanges of the stringer and frame; hence, the growth of a discrete 

source damage, through-the-thickness crack, could be arrested resulting in a significant increase in damage 

tolerance. The stitching of the stringer and frame preforms to the skin can also resist post-buckling deformation 

induced out-of-plane failure modes, which allows load carrying well into the post-buckled regime [2,5,6]. This 

increase in damage tolerance and the post-buckling performance allow a PRSEUS panel to carry a greater load than 

traditional skin-stringer construction. The result should be an overall lighter weight structure.  

The frames in a PRSEUS structure are formed from dry fabric preforms over a structural foam core, with the 

frame lower flanges stitched to the skin in a manner similar to the stringers. At the stringer-frame intersections, the 

“mousehole” cutouts in the frames can be sized very closely to the shape of the stringer as shown in Fig 3, reducing 

the effects of these intersections on the overall structural performance. The stringer is formed by wrapping a fabric 

preform around the teardrop-shaped rod. Below the rod, the fabric forms the stringer web and lower flange. The high 

axial strength and stiffness of the unidirectional fiber rod in the stringer greatly increases the panel overall bending 

stiffness by shifting the neutral axis farther from the skin. The frame preform layups are optimized for effectively 

carrying both the high bending and shear loads [2].  

Since the structural integrity of the rod-wrap stiffeners is critical for maintaining the high strength and bending 

rigidity of the HWB flat cabin panel, any imperfection or debond in the rod-wrap interface bondline could 

significantly weaken the panel’s loading capability. No standard testing method exists for testing the structural 

integrity of this interface. Recently, Boeing proposed a rod push-out testing method and conducted some preliminary 

tests on skin-stringer coupons cut from a representative PRSEUS panel. The objective of the present study is to 

correlate Boeing’s test data with analysis results to assess the adequacy of the rod-wrap testing method and identify 

potential areas for improving the test. In Section II, the testing method, including test specimen configurations and 

the test set-up, is presented. In Section III, 2D axisymmetric element and 3D solid element models of the test 

specimen are created and analyzed using ABAQUS
®
 fracture analysis procedures [7] to predict the rod-wrap 

interfacial shear strength. In Section IV, correlations of test data and analysis results are performed, and areas for 

improving the testing method are discussed. In Section V, concluding remarks are given.  

II. Rod Push-out Testing Method 

A. Specimen Configuration and Material Properties 

A sketch of the PRSEUS stringer test specimen configuration is shown in Fig. 4. Note that the stringer web is 

extended to wrap the rod and the rod has a teardrop shape to minimize the resin buildup at the bottom of the rod. 

The length of the test specimen along the rod axial direction is 0.5 in. The specimens are supported during testing by 

a one-inch thick aluminum tray, as shown in Fig. 5a. Five specimens are each placed into the tray cavities and are 

then bonded in place with a potting compound, as shown in Figs. 5b and 5c. 

The pultruded rods are made of pre-impregnated tape composed of Toray unidirectional T800 fiber and 3900-2B 

epoxy resin. The stringer webs are made from AS4 fiber preforms infused with HexFlow
®
 VRM 34 resin. The wrap 

is composed of a single stack of warp knitted preform that has a seven-layer dry carbon fiber (+45/-45/0/90/0/-

45/+45) layup. The 0-degree plies are each approximately twice as thick as the other plies. The material properties, 

shown in Table 1, used for this study are provided by Boeing. Note that the wrap material properties, given in Table 

1, are the stack material properties. For the rod and wrap, 
1E is the elastic modulus in the rod radius direction, 

2E  is 

the elastic modulus in the rod hoop direction, and 
3E is elastic modulus in rod longitudinal direction. The rod-wrap 

interfacial fracture toughness values are not available for the present study. Therefore, typical Graphite/Epoxy 

properties are used [8]. The epoxy potting compounds are assumed to be Hysol
®
 EA-9396. The material properties 

for the cured rod, stringer, and potting compound are summarized in Table 1 

B.  Test Set-up and Results 

The rod push-out test set-up is shown in Fig. 6. The aluminum tray is used to hold specimens for testing. A push-

pin applies compression load on an aluminum button to evenly distribute the load on the rod top surface which 

induces shear stress in the rod and wrap interface (see Figs. 5c and 6).  The aluminum button has the same teardrop-

shape as the rod. The bottom of the tray under each specimen has a 0.6-in diameter hole, concentric with the rod, to 

allow the rod to be pushed through by the loading pin. Note that the aluminum tray has a very small rim about 

0.059-in wide that may provide some support to the bottom corner of the potting compound as shown in Fig. 5c. 

Boeing conducted preliminary tests on five specimens (#1 to #5). During the test, load was applied to the rod end via 

a steel pin which bore down on an aluminum button as shown in Fig. 6. Preliminary test results, in the form of push-

out force and test machine stroke data for four specimens are plotted in Fig 7.  Note that an indentation in the top of 
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the button was found after each test.  The stroke of each test specimen shown in Fig. 7 is adjusted for the indentation 

depth by assuming that the indentation depth is proportional to the applied force.  The test data of specimen#2 is 

abnormal, so it is not shown in the figure. The average maximum push-out force for the four tests considered is 

about 2,800 lbs. Note that the load for each specimen near linearly increases to the maximum and suddenly drops to 

zero, indicating a brittle fracture failure.  

 

Table 1 Material Properties 

Engineering 

constants 

Rod 

Toray 

T800/3900-

2B 

Wrap 

AS4-

VRM-34 

(Stack 

properties) 

Isotropic 

Properties 

Resin 

Layer 

Potting 

Compound 

(EA9396) 

Rod-wrap 

Interfacial Fracture 

Toughness 

1E  1.4 msi 1.4msi E  0.6msi 0.615msi* 20.46 /ICG in lb in   

2E  1.4 msi 5.07msi   0.34 0.3 22.85 /IICG in lb in   

3E  18.5msi 9.23msi     

12  0.4 0.01     

13  0.01 0.01     

23  0.01 0.4     

12G  0.8 msi 2.48msi     

13G  0.8msi 2.48msi     

23G  0.8msi 2.48msi     

*After receiving the Hysol
®
  EA 9396 material data sheet, more analyses were performed using E=0.4 msi. 

III. Finite Element Modeling and Fracture Analysis 

Finite element analyses were performed using ABAQUS
®

/Standard [7] to simulate the failure of the rod-wrap 

interface under a push-out load. Modeling, visualization, pre-processing, and post-processing were performed with 

ABAQUS
®
/CAE [9], a graphic user interface (GUI). ABAQUS

®
/CAE was used to create the geometric models of 

the parts shown in Figs. 5b and 5c, including the rod, resin layer, wrap, and potting compound. Then, it was used to 

mesh the parts, to assign the material properties and the parts’ section properties, and to input the rod-wrap 

interfacial cohesive fracture parameters for simulating debonding initiation and growth. Finally, the 

ABAQUS
®
/CAE was used to assemble the meshed parts, to establish boundary and loading conditions, to create a 

completed input file for ABAQUS
®
/standard analysis, and to post-process and visualize the results.  

Two-dimensional axisymmetric and three-dimensional solid finite element models were created. These models 

are shown in Fig. 8. The ABAQUS
®
 axisymmetric element (CAX4 bilinear) was used for the 2D axisymmetric 

model. The three-dimensional linear brick element (C3D8) was used for the 3D solid element model. In both 

models, a perfect bond was assumed between the potting compound and the aluminum tray wall, thus all the 

translational displacements of the outside surface of the potting compound were constrained (fixed). Nonlinear 

analyses of both models were performed with a uniform displacement loading applied on the top of the rod as shown 

in Fig. 8. In the 2D axisymmetric model, the rod was assumed to have a circular cross section, and the tail of the 

teardrop-shaped rod was neglected. The 2D axisymmetric model shown in Fig. 8a is more computationally efficient 

than the 3D model shown in Fig. 8b. The efficiency will make the 2D model better suited for use in future 

parametric studies to examine the effects of different shapes of rod and various thicknesses of wrap and potting 

compound on the rod-wrap interfacial shear strength. Though the 3D solid element model is more difficult to create 

and the results need to be transformed to the proper coordinate systems for visualization, it is needed for obtaining a 

correct stress distribution in the rod-wrap interface, and therefore is essential for accurate prediction of the failure 

load. 

For the 2D axisymmetric model, the interface between the rod and wrap was modeled as a cohesive zone with 

either the ABAQUS
®
 cohesive surface or the cohesive element approach [7]. In the cohesive surface approach, the 

cohesive zone was assumed to have zero thickness, and the corresponding contacted surfaces were modeled as 

master and slave surfaces that are connected with the surface-based cohesive behaviors. In the cohesive element 

modeling approach, the resin layer between the rod and wrap was modeled with 4-node axisymmetric cohesive 

elements (COHAX4). In the 3D solid element model, the cohesive zone was modeled with the cohesive surface 
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approach only. Unlike the virtual crack closure technique (VCCT) [10], the cohesive zone modeling approach does 

not require the assumption of an initial debond length. The initiation of interfacial debonding failure as well as the 

subsequent debonding growth can be simulated with the cohesive law provided. The bilinear cohesive law for each 

fracture mode used in this study is shown in Fig. 9 [9,11-13], including the peel failure mode and two shear failure 

modes. In Fig. 9, C  is the maximum traction, 
f  is the maximum separation, and the area under the cohesive law 

is the critical energy release rate. In this study, an elastic constant of 1.4x10
8 

lb/in
3
 is assigned for the rising slope of   

the cohesive law of the normal traction and an elastic constant of 8.0x10
7
 lb/in

3
 is assigned for the rising slopes of 

both cohesive laws of the two shear tractions. These values were intentionally selected to be high for minimizing the 

effect of the elastic deformations on the cohesive zone analysis results.  

Damage initiation for both the cohesive surface and cohesive element modeling approaches is based on a quadric 

stress criterion [7] 

 
2 2 2

1
n s t

C C C

n s t

  

  

      
       

      
                                                         (1) 

 

where .  is the Macaulay bracket defined as
1

( )
2

n n n   
,
 

n  
is the normal traction, and 

s  and 
t  

are the 

two shear tractions. 
C

n  
is the maximum normal traction, and

C

s and 
C

t are the two maximum shear tractions. In this 

study, the values of 
C

n =4.0x10
3
 ksi, 

C

s =7.0x10
3
 ksi, and 

C

t =7.0x10
3
 ksi were used. These values were selected to 

assure that the brittle fracture of the Boeing test specimens could be represented appropriately. Fully developed 

processing zone lengths for individual fracture modes are estimated to be about one hundredth of an inch [11].  

Researchers have shown that the fracture prediction, using a cohesive law with a short fully-developed-processing-

zone length [11, 14], is compatible to that predicted by the linear elastic fracture mechanics [14-17].  

In this study, the damage evolution, degradation of the cohesive stiffness, along the softening branch of the 

cohesive law was determined based on the mixed mode fracture energy [7, 13]. The mixed mode fracture energy is 

given as  

 
1/2

2 2 2

31 21/mixed C C C

n s t

mm m
G

G G G

      
        
                                                      (2) 

 

where 
1 /n Tm G G , 

2 /s Tm G G  and 
3 /t Tm G G . 

nG is the energy release rate of the normal mode, 
sG and 

tG are the energy release rates for the two shear modes, and 
T n s tG G G G   is the total energy release rate. The 

values of critical energy rates used are 
C

nG =0.46 in-lb/in
2
 and 

C

sG =
C

tG  =2.85 in-lb/in
2
. These values are consistent 

with those of an AS4/3501-6 graphite-epoxy material system [8]. Note that a VCCT analysis with an assumed 

debond length of 0.03 inches predicts that the mode II critical energy rate is about 2.3 in-lb/in
2
, using an estimated 

average force level about 2,300 lbs at which the loading curves shown in Fig. 7 start to turn nonlinearly. Here, the 

turning point is assumed to be caused by the initiation of debonding between the rod-wrap interface. The VCCT 

analysis indicates that the fracture toughness properties used are reasonable. More accurate energy release rates will 

be available from future material characterization tests.  Damage propagation occurs once the following power law 

criterion is satisfied [7,18] 

 
2 2 2

1n s t

C C C

n s t

G G G

G G G

     
       

     
                                                      (3) 

IV. Analysis Results and Correlations with Test Data 

Analysis results from the 2D axisymmetric and 3D solid element models were first obtained with the assumption 

of a perfect bonding between the potting compound and the aluminum tray wall. The boundary conditions for both 

models are given in Fig. 8. In each analysis, a uniform displacement was applied on the top surface of the rod to 

gradually push down the rod until it completely separated from the wrap. The rod wrap interfacial stress is 



 

American Institute of Aeronautics and Astronautics 
 

 

5 

dominated by shear stress in the resin layer between the rod and wrap as shown in Figs. 10-12.  As the rod starts 

separating from the wrap, the high shear stress band gradually moved downward. Detailed 3D solid element model 

results shown in Fig. 12a reveal that there is a high shear stress concentration near the tail of the teardrop-shaped 

rod. The stress concentration increases the debond growth rate in that region. The deformation plots in Figs. 12a and 

12b show that the rod is gradually separated from the wrap as the stroke (push-out displacement) increases.  

The reaction forces of all the finite element nodes on the loaded end of the rod were summed together to obtain 

the push-out force. The maximum push-out forces (failure loads) obtained from the 2D axisymmetric model, using 

both the cohesive surface and cohesive element approaches are shown in Fig. 13. The 2D model maximum load 

predictions are higher than those of the 3D solid element model because of the stress concentration at the base of the 

teardrop in the 3D solid element model. That feature was neglected in the 2D axisymmetric model. 

The failure loads of four test specimens are compared with the finite element analysis predictions in Fig. 14. The 

model predictions of the failure load differ from the average measured values by approximately 5%. This good 

correlation indicates that the rod push-out testing method may be adequate for evaluating the rod-wrap interfacial 

shear strength. However, the fracture properties used for these predictions need to be further confirmed. The strokes, 

predicted by the finite element models, shown in Fig. 13 are much less than those recorded in the test (see Fig. 7). 

The causes of this discrepancy may include the uncertainty of the supporting boundary conditions, the inaccuracy of 

the potting compound material properties, and the compliances of the test machine and fixture.  

A failed specimen, sectioned through the center of the rod, is shown in Fig. 15. The top part of the sectioned 

specimen can easily be removed from the aluminum tray indicating that the bonding between the potting compound 

and the aluminum tray has failed. Whether the failure occurred before or during the test is unknown. To study the 

effect of the bondline failure, the 2D axisymmetric model was altered by freeing all degrees of freedom of the right-

side edge nodes of the potting compound. The edge’s bottom corner node was still supported. Note that the 

aluminum tray has a very small rim of 0.059-in wide to support the bottom corner of the potting compound as shown 

in Fig. 15. In this new analysis, the contact between the potting compound and the aluminum tray wall was also 

modeled. 

The load-stroke curves shown in Fig. 16 show that the changes to the model result in a significant increase in the 

stroke predicted. Note that two different Young’s moduli, 615 ksi and 400 ksi, were used in the analyses to study the 

effect of changing the potting compound material properties. Fig. 16 shows that lowering the modulus of the potting 

compound can significantly increase the stroke predictions. The 2D axisymmetric model did not predict a significant 

change in the maximum failure load due to bondline failure or the change of the potting compound Young’s 

modulus. The analysis result, for the model with the potting compound Young’s modulus of 400 ksi, is shown in 

Fig. 17, along with the test data. Correlation between the analysis and test is much improved. It could be concluded 

that the bonding quality between the potting compound and the aluminum tray and the material properties of the 

potting compound need to be accurately characterized for obtaining better test and analysis correlations. 

Unfortunately, assessment of bondline quality will be very difficult because the available nondestructive inspection 

(NDI) techniques cannot be adequately applied deep within the aluminum block. One possible alternative is to 

increase the size of the cavities in the block while keeping the diameter of the exit hole the same to provide a much 

wider supporting rim. A larger volume of potting compound could be molded to the test specimen. The thicker 

potting material can provide a larger supporting area at the bottom of the specimen to eliminate a potential nonlinear 

material deformation in the supporting area. The wall of each cavity could be coated with a non-stick coating, so 

there is no bond between the wall and the outer surface of the potting compound.  The boundary conditions at the 

outer surface of the potting compound can be assumed as free. Hence, measured displacements would no longer be 

dependent on bondline quality between the potting compound and the aluminum block. Furthermore, the 

compliances of the testing machine and the loading pin will also affect the stroke data, so the displacement should 

be measured directly instead of being inferred from the stroke data. 

V. Concluding remarks 

The HWB aircraft requires innovative structural concepts such as PRSEUS to provide high bending rigidity for 

its box-like center cabin. PRSEUS stiffened structural panels can provide the structural efficiency required by this 

application. In the present study, FE models were developed to study the Boeing-developed test method for 

measuring the shear strength of the rod-wrap interface. The test method uses a short section of the rod-wrap stringer, 

which is bonded into a cavity in an aluminum block. Interfacial shear strength is assessed by applying a load to one 

end of the rod, which pushes the rod out through a hole at the bottom of the aluminum tray. 

 Two-dimensional and three-dimensional finite element models of the test configuration were created. The 

correlations between the model predictions and the test data demonstrated that the newly available ABAQUS
®
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cohesive debonding analysis capabilities could have the potential to accurately predict the interfacial shear strength 

of the PRSEUS rod-wrap interface. Although a VCCT analysis, performed at the debond initiation load, indicates 

that the fracture toughness properties used in the analyses are reasonable, they still need to be experimentally 

confirmed before the accuracy of the analysis presented could be assessed. The cohesive surface element approaches 

do not require the assumption of an initial debonding defect length, which reduces the effort of model creation.  

 Initial analyses assumed perfect bonding between the potting compound and the cavity wall of the aluminum 

block holding the specimen. The resultant failure loads were within approximately 5% of the average test failure 

loads of four specimens. Note that the fracture properties used in these predictions considered being reasonable, they 

need to be further confirmed. This good correlation indicates that the rod push-out testing method may be adequate 

for evaluating the rod-wrap interfacial shear strength.  However, the FE models predicted strokes that were much 

less than the test data. Examination of failed test specimens showed that the bond between the potting compound 

and the aluminum block had failed. A 2D analysis was subsequently performed by assuming that there was no 

bonding between the potting compound and the wall of the aluminum tray. The predicted displacements increased 

by nearly an order of magnitude, and therefore were in much closer agreement with the test data. Further analyses 

indicated that the predicted strokes were highly sensitive to the modulus of the potting compound. Accurate 

measurement of the mechanical properties of the potting compound and confidence in the bonding quality between 

the block wall and the potting compound will be required to improve the accuracy of the stroke predictions. 

 A simple method of eliminating the latter uncertainty is to increase the size of the cavities in the block and to coat 

them with non-sticking material.   Each specimen will be encapsulated within a larger volume of potting compound. 

This modified geometry provides a larger supporting surface for the bottom of the specimen. Furthermore, the lack 

of bond between the compound and the block wall establishes known boundary conditions. Future analyses using 

these well-defined boundary conditions and better material properties from an ongoing material characterization 

program are expected to show improved correlation between the FE analysis predictions and test data for strength 

and stroke. Here, the stroke is a direct measurement of the rod’s top-surface displacement to eliminate the effect of 

the machine compliance.  
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Fig. 1 Configuration of an experimental hybrid wing body aircraft (NASA Dryden Flight Center Photo 

Collection). 

 

 

 
Fig. 2  Hybrid wing body aircraft using flat stiffened fuselage panel [1,2]. 
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Fig. 3  Exploded view of stringer-frame intersection of PRSEUS panel [1,2].  
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Fig. 4  PRSEUS rod-wrap stringer specimen configuration. 
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 Fig. 5  Test specimens and aluminum tray. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 6  Rod push-out test set-up. 
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Fig. 7  Preliminary rod push-out test results. 

 
Fig. 8  2D axisymmetric and 3D solid finite element models. 
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Fig. 9  Cohesive Law. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10  Shear stress contour plots (2D axisymmetric model using cohesive surface for modeling rod-wrap 

interface).  
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Fig. 11 Shear stress contour plots (2D axisymmetric model using cohesive elements for rod-wrap interface resin 

layer). 
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a) Stroke =                in. 

 

 

    

 

 

 

 

 

 

 

 
b) Stroke =                  in. 

 

 

 

 

 

 

 

 

 

 
c) Stroke =                in. 

 
Fig. 12  Resin layer shear stress contour plots (Left) and deformation shape plots (Right). 
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Fig. 13  Predicted push-out forces as a function of stroke by 2D axisymmetric and 3D solid element models.   

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Fig. 14  Comparisions of test data and analysis results. 
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Fig. 15  Sectioned specimen revealing that potting compound and aluminum tray easily separated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 16  ABAQUS

®
 force-stroke relationship predictions depending on the bondling conditions between the 

potting compound and aluminum tray and the Young’s modulus of the potting compound.   

 

 

-3500

-3000

-2500

-2000

-1500

-1000

-500

0

500

-0.05-0.04-0.03-0.02-0.010

Perfect bond
Debond (615 ksi)
Debond (400 ksi)

F
o
rc

e
 (

lb
f)

Stroke(in)

P

Rod

Wrap

Potting

Compound

Aluminum 

Tray

Hole in Tray

Narrow Support Rim

about 0.059-in Wide

Portion of Rod 

Portion of Potting Compound and Wrap



 

American Institute of Aeronautics and Astronautics 
 

 

16 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 17  Better correlation of test data and analysis results achieved with the assumption of  debonding between 

the potting compound and the aluminum tray wall. 
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