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ABSTRACT

I obtain and examine the implications of one-dimensional analytic solutions

for return-current losses on an initially power-law distribution of energetic elec-

trons with a sharp low-energy cutoff in flare plasma with classical (collisional)

resistivity. These solutions show, for example, that return-current losses are not

sensitive to plasma density, but are sensitive to plasma temperature and the low-

energy cutoff of the injected nonthermal electron distribution. A characteristic

distance from the electron injection site, xrc, is derived. At distances less than xrc

the electron flux density is not reduced by return-current losses, but plasma heat-

ing can be substantial in this region, in the upper, coronal part of the flare loop.

Before the electrons reach the collisional thick-target region of the flare loop, an

injected power-law electron distribution with a low-energy cutoff maintains that

structure, but with a flat energy distribution below the cutoff energy, which is

now determined by the total potential drop experienced by the electrons. Modi-

fications due to the presence of collisional losses are discussed. I compare these

results with earlier analytical results and with more recent numerical simulations.

Emslie’s 1980 conjecture that there is a maximum integrated X-ray source bright-

ness on the order of 10−15 photons cm−2 s−1 cm−2 is examined. I find that this is

not actually a maximum brightness and its value is parameter dependent, but it

is nevertheless a valuable benchmark for identifying return-current losses in hard

X-ray spectra. I discuss an observational approach to identifying return-current

losses in flare data, including identification of a return-current “bump” in X-ray

light curves at low photon energies.

Subject headings: acceleration of particles — plasmas — Sun: flares — Sun: X-rays,

gamma rays
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1. Introduction

Solar flares, the most energetic explosive events in the solar system, provide a

nearby laboratory for developing our understanding of the physics of evolving, magnetized

cosmic plasma. Because of their proximity to Earth, they and related coronal mass

ejections (CMEs) have an increasingly significant impact on the power grid, space-

based communications and other equipment, and manned space programs. Therefore,

understanding the phenomenology and physics of solar flares is of considerable academic

and practical interest.

Accelerated electrons play an important role in the energetics of solar flares.

Understanding the process or processes that accelerate these electrons to high, suprathermal

energies depends in part on understanding the evolution of the electrons between the

acceleration region and the regions where they are observed through their hard X-ray or

radio emission (see Holman et al. 2011, for a review). Hard X-ray emission is usually

observed from the chromosphere and lower transition region, where the plasma density in

the solar atmosphere is highest. This is where they interact most frequent with ambient

ions, giving the highest flux of bremsstrahlung X-rays, and where they lose through

collisions their suprathermal energy and collisionally heat the ambient plasma. Thus the

region from which the X-ray emission is greatest is a thick target. The primary particle

acceleration region, however, is understood to be in the corona, above the hot soft X-ray

and EUV loops observed in flares. Radio emission is observed from the corona, but its

location and properties strongly depend on the magnetic field strength and structure. In

some flares hard X-ray emission is also observed from the corona, possibly even from the

acceleration region itself, but the proper interpretation of this coronal emission remains

elusive.

Theoretical arguments and observational results indicate that return-current energy



– 4 –

losses can have a significant impact on electrons accelerated in flares. Recognizing that the

high current in the beam of energetic electrons required to explain observed X-ray fluxes

would be pinched off by its associated magnetic field, Hoyng et al. (1976) argued that the

current must be neutralized by a return-current in the background plasma. Flare particle

acceleration mechanisms are not expected to produce co-streaming ions to neutralize

the beam of accelerated electrons (e.g., Miller et al. 1997). Also, Ramaty High Energy

Spectrosocpic Imager (RHESSI) observations have indicated that the γ-ray emission from

ions originates from different locations than that from electrons (Hurford et al. 2003, 2006).

For the electron beam to successfully propagate away from the acceleration region and for

charge conservation to be maintained, a co-spatial return current is required.

The return current is driven by an electric field induced in the plasma by the

streaming, energetic electrons in the beam (van den Oord 1990, and references therein).

This electric field, in addition to driving the return current, also extracts energy from the

beam electrons. The return current collisionally heats the plasma through Joule heating.

As the beam electrons lose energy, the current they carry, the return current, and the

return-current electric field decrease with propagation distance. To understand the impact

of return-current losses on flare hard X-ray emission, it is important to determine how these

losses change the electron distribution function with distance from the acceleration region.

A steady-state, one-dimensional (1-D, all electron velocities have zero pitch angle and,

therefore, are directed along the magnetic field) model for the beam/return-current system

was developed by Knight & Sturrock (1977). They apply their model to a discussion of

the additional heating of the flare plasma by the return current. Emslie (1980) extended

the model to include a non-zero electron pitch angle and collisional losses. He computed

the evolution of electron energy and pitch angle with depth (column density) and deduced

the existence of an upper limit to the flare X-ray emission. D’Iakonov & Somov (1988)
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estimated the hard X-ray spectrum and polarization of the bremsstrahlung radiation from a

hot, thermal tail of electrons escaping ahead of a thermal conduction front. Return-current

losses were included in their calculations. Litvinenko & Somov (1991) repeated these

calculations for a power-law distribution of electrons. The impact of the shape of the

low-energy cutoff to the energy distribution of the injected electrons on both collisional and

return-current heating of the flare plasma has been studied by Brown & McClymont (1987).

Numerical simulations of electron propagation with return-current losses and

computations of corresponding hard X-ray spectra have been performed by Zharkova &

Gordovskyy (2005, 2006). For an injected power-law electron energy distribution with low-

and high-energy cutoffs, they computed the steady-state electron distribution along the

flare loop and the resulting bremsstrahlung X-ray spectrum for several injected power-law

indices and electron energy flux densities. These computations included the response of the

flare plasma to the electron beam injection. Subsequent simulations (Siversky & Zharkova

2009; Zharkova et al. 2010) have included time-dependence of the particle injection (see

also Karlicky et al. 1990), electron pitch-angle anisotropy, and magnetic field convergence.

Papers addressing plasma instabilities in the electron beam/return-current system include

Emslie (1981), Rowland & Vlahos (1985), Karlický et al. (2008), Lee et al. (2008), Karlický

(2009), Karlický & Kašparová (2009), and Zharkova & Siversky (2011).

Observational evidence exists indicating that in some cases return-current losses do

have a significant impact on the hard X-ray emission from flares: (1) Sui et al. (2007) found

that the spectral break energy (and, therefore, the corresponding electron distribution

cutoff energy), was correlated with the X-ray flux for a sample of flares having relatively

flat, low-energy spectra. This correlation is expected if return-current losses are responsible

for the spectral break (see Sections 2.2 and 3.3 of this paper). (2) Alexander & Daou

(2007) have found that the integrated hard X-ray flux density (above 20 keV) does not
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monotonically increase with flare size, but levels off to a maximum value as the flare

size becomes large. This maximum value agrees with the upper limit deduced by Emslie

(1980). (3) Battaglia & Benz (2008) found that for two flares with well-observed coronal

X-ray emission, the difference between the spectral indices of the coronal and footpoint

spectra was greater than the largest difference expected in a simple thick-target model.

They argued that return-current losses were most likely responsible for this large difference

between the spectral indices.

Developing the ability to recognize the impact of return-current losses on flare hard

X-ray data is a crucial step to understanding electron acceleration and propagation in flares.

The energy spectrum of electrons injected from the acceleration region cannot be confidently

established without first understanding when and how return-current losses affect the

observed X-ray spectrum. Identifying return-current losses in turn provides information

about the induced potential drop in flare loops and its evolution and, consequently, about

the evolution of the plasma in the loops. This plasma evolution is coupled to the direct

collisional and indirect return-current heating of the plasma by the accelerated electrons.

Hence, return-current losses contribute to the flare plasma dynamics.

Although considerable work has been done on the origin of the return current and its

consequences, it is difficult to obtain from the existing literature a clear understanding of

how to recognize and interpret return-current losses in flare X-ray data. The purpose of this

paper is to derive relatively simple analytical and semi-analytical results for return-current

losses, with physical understanding and application to flare observations as primary goals,

although no direct application to flare X-ray data is included in this paper. Numerical

results are obtained throughout for estimating the impact of the losses. The analytical

results obtained here are also useful as limiting cases for testing numerical codes.

This paper focuses on a one-dimensional (1-D), steady-state model, where 1-D
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means that all electron velocities are directed along the loop magnetic field. These same

assumptions are usually included in the thick-target model (Brown 1971). The model is

the same as that of Knight & Sturrock (1977), but with a minor but generally important

extension to approximate the thermalization of electrons as their energies approach the

mean energy of electrons in the ambient thermal plasma. Except for this thermalization,

collisional losses are not incorporated into the model. This model is adequate for

understanding the primary qualitative effects of return-current losses and, as I show in

Section 3, for understanding the qualitative (and, to some extent, quantitative) results of

Zharkova & Gordovskyy (2006). Since the model is 1-D, it does not include the evolution of

electron pitch angles and the re-acceleration of reflected electrons (e.g., Karlicky 1993). It

can accommodate a non-classical value of the plasma resistivity, but not significant physical

changes in the particle distributions and their evolution due to plasma kinetic effects, such

as acceleration of electrons out of the thermal plasma as the return-current electric field

approaches and exceeds the Dreicer field (e.g., Karlický et al. 2004).

In Section 2 the model is described and the electron flux density distribution function

and all related physical quantities are derived. Formalism for generalizing these results

to the more realistic case of plasma resistivity varying with distance is derived. Heating

of the plasma by the beam/return-current system (excluding collisional heating by the

higher-energy primary beam electrons) is derived and discussed. Return-current and

collisional energy losses are compared. The impact of return-current losses on X-ray source

brightness is discussed, and I introduce a model in which collisional losses dominate in the

thick-target region and return-current losses dominate above this region. An approximation

to the X-ray brightness spectrum from this model is computed. I also examine the maximum

integrated X-ray brightness deduced by Emslie (1980) and find that this is not a maximum

value, but rather is characteristic of the integrated brightness when return-current losses

begin to degrade the flux density of the electron beam. Finally, a much higher limit on the
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maximum integrated X-ray brightness is identified and discussed.

An analysis and interpretation of the numerical results obtained by Zharkova &

Gordovskyy (2006) is presented in Section 3. I analyze and interpret results for the

return-current electric field, X-ray spectra, and X-ray spectral indices.

The evolution of the return-current low-energy cutoff (potential drop) and X-ray

spectral index with X-ray brightness, and of brightness with injected electron flux density,

are derived from the model in Section 4. The results are examined and a new feature, the

return-current “bump”, is identified.

The model results are summarized in Section 5 and, based on the results obtained

here, an approach to identifying and interpreting return-current losses in flare X-ray data

to deduce physical information is discussed.

2. Steady-State 1-D Model

The steady-state, one-dimensional model is based on the following assumptions:

1. All electron velocities are parallel (or all are anti-parallel) to the ambient magnetic

field, as in the collisional thick-target model of Brown (1971). The velocities of the

accelerated electrons are parallel to the direction of the return-current electric field.

2. The magnitude of the return-current density, Jrc statampere cm−2 in cgs units, has

had time to reach its steady-state value, and this is equal to the magnitude of the

current density J of the accelerated electrons. The time required to reach the steady

state is on the order of the thermal electron-ion collision time (van den Oord 1990)

which, from Huba (2009), is

τe =
3

4
(
me

2π
)1/2

(kT )3/2

nλe4
=

4.35× 10−2T
3/2
7

n10(λ/20)
s. (1)
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Here me and e are the electron mass and charge, respectively, and k is Boltzmann’s

constant. T and n are the plasma electron temperature (K) and density (cm−3),

respectively, and λ is the Coulomb logarithm. Notation such as T7 is shorthand

for (T/107), meaning that the temperature is normalized to the value 107 K. The

Coulomb logarithm is approximately (with ∼10% uncertainty)

λ = 8.96− ln(Zn1/2T−3/2), T < 1.16× 105Z2 (2a)

λ = 14.6 + ln(n−1/2T ), T > 1.16× 105Z2. (2b)

The atomic number Z in the solar atmosphere is approximately the relative-

ion-abundance-weighted mean 1.1, and the weighted mean Z2 is approximately

1.4.

In the flare corona, taking T to range from 1 MK to 50 MK and and n from

1 × 109 cm−3 to 1 × 1012 cm−3, λ ranges from 15 to 22 and τe ranges from 19 µs

to 4.4 s. Below the corona, with T ranging from 104 K to 1 MK and and n from

1 × 109 cm−3 to 1 × 1014 cm−3, λ ranges from 7 to 18 and τe ranges from 42 ns

to 15 ms. The steady-state assumption will be violated if the accelerated electron

distribution varies on timescales on the order of τe or less.

3. The resistivity of the plasma, η, is given by the classical, collisional Spitzer result

η =
me

1.96ne2τe
= 0.680(2πmee

4)1/2λ(kT )−3/2 = 4.63× 10−18

(
λ

20

)
T

−3/2
7 s, (3)

where me and e are the electron mass and charge, respectively (Huba 2009). Plasma

instabilities may result in a plasma resistivity exceeding this value and/or more

complex behavior in the beam-return-current system, especially when the drift speed

of the return current exceeds the ion sound speed. Since the purpose of this paper is to

better understand the impact of classical return-current losses on flare observational

data and to compare derived results with numerical simulations of return-current
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losses under classical conditions, I will assume that the plasma resistivity is given by

Eq. 3, even when instability is likely to affect the beam-return-current system.

With these assumptions, the strength of the electric field driving the return current,

Erc statvolt cm
−1, is given by Ohm’s law:

Erc = ηJrc = ηJ. (4)

4. The electrons are continuously injected from the acceleration region, taken to be

located at position x = 0, and have a power-law flux density distribution in electron

energy, E keV, with a low-energy cutoff, Ec keV:

F (E, x = 0) =

 (δ − 1)Eδ−1
c Fe0E

−δ electrons s−1 cm−2 keV−1 E ≥ Ec

0 E < Ec.
(5)

Here δ is the power-law index of the electron distribution and Fe0 (electrons s−1

cm−2) =
∫∞
0

F (E, 0)dE is the total flux density of accelerated electrons. The

power-law index δ is greater than 2 so that the total energy flux density carried by

the accelerated electrons is not infinite (see Holman et al. 2011). In this section I

assume that any high-energy cutoff to this distribution function is high enough that

it does not significantly affect the value of Fe0 and related quantities. A high-energy

cutoff is considered in Sections 3.2 and 3.3.

5. Only return-current losses are considered. In particular, collisional losses are not

included. This is done to isolate effects specifically due to return-current losses and

to allow relatively simple, analytical results to be obtained. The impact of collisional

losses on return-current losses is discussed in Section 2.5. Modifications to the electron

distribution function by other likely processes, such as electron pitch-angle scattering

and magnetic mirroring, are also not included.

6. When an accelerated electron’s energy is reduced by the return-current losses to a

value Eth, it is assumed to be lost from the electron distribution. When the electrons
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lose sufficient energy, they will be thermalized into the ambient plasma. This will

occur at energies somewhat greater than kT , where k is Boltzmann’s constant and

T is the temperature of the ambient plasma. I take this to be the discrete energy

Eth = βkT , where β is a constant greater than but on the order of 1. Emslie

(2003) found that thermalization starts becoming significant when E < 5kT , giving

1 < β < 5. The effective value of β is most likely ∼ 2 − 3. I will assume that above

Eth the electron flux density is conserved (see Section 2.2).

2.1. Return-Current Electric Field Electron Deceleration

The energy lost by the accelerated electrons in the return-current electric field Erc as

a function of distance x from the point of injection at x = 0 is determined by the simple

equation

dE

dx
= −eErc(x). (6)

The solution to this equation is

E = E0 − e

∫ x

0

Erc(x)dx = E0 − V (x). (7)

Here E0 is the initial value of the electron energy at x = 0 and V (x) is the potential drop

(in kV when the electron energies are given in keV) from x = 0 to x. Note that the energy

lost at position x is the same for all electrons and equal to the value of the potential drop.

However, the fractional energy lost, V (x)/E0, is greater for lower energy electrons than for

higher energy electrons. V (x) is an increasing function of x.

Since the direction of current is defined by the collective motion of positive charge

carriers, the current carried by the accelerated electrons is in the −x direction while the

return current and the return-current electric field are in the +x direction. The current

density carried by the accelerated electrons is J(x) = −e
∫∞
0

F (E, x)dE. I will usually drop
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the sign and refer only to the magnitude of the current, as in Equation 4.

Ohm’s law (Equation 4) and Equation 3 can now be used to compute the magnitude

of Erc at x = 0:

Erc0 ≡ Erc(0) = ηJ(0) = ηeFe0 = 2.22× 10−27

(
λ

20

)
T

−3/2
7 Fe0 statvolt cm−1

= 6.67× 10−28

(
λ

20

)
T

−3/2
7 Fe0 kV cm−1. (8)

Note that this result depends only weakly (through λ) on the density of the thermal plasma.

At this point it is useful to have an estimate of the magnitude of Fe0. Application of

the collisional thick-target model to the observed hard X-ray emission from flares gives

electron fluxes ranging from 1032 electrons s−1 to 1037 electrons s−1 (cf. Holman et al. 2003;

Warmuth et al. 2009). Reliable measurements of hard X-ray footpoint sizes have been

difficult to obtain, but estimates tend to fall in the 1′′– 10′′range (cf. Dennis & Pernak

2009). Taking a typical footpoint area to be 1017 cm2, Fe0 is estimated to range from

1015 electrons s−1 cm−2 to 1020 electrons s−1 cm−2. If the accelerated electron current is

filamented so that only a fraction of the observed footpoint area is emitting, this could be a

lower limit on the range of electron flux density values.

We see from Equation 8 that if the initial return-current electric field operates on

an electron over a distance of 109 cm with T = 10 MK, an electron flux density ∼ 1019

electrons s−1 cm−2 or greater is required to diminish the electron’s energy by 10 keV. This

reduces to ∼ 1018 electrons s−1 cm−2 or greater if T = 2 MK.

An upper limit on Fe0 can be estimated from the expectation that the number density

of nonthermal electrons, Nb, should be much less than the number density of electrons in

the ambient plasma, n. The number density of nonthermal electrons near the injection
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point, Nb0, is
∫∞
Ec
[F (E, 0)/v]dE. Using Equation 5, this gives

Nb0 =

(
δ − 1

δ − 0.5

)(
me

2Ec

)1/2

Fe0 = 1.2× 108
(

δ − 1

δ − 0.5

)(
20

Ec

)1/2 (
Fe0

1018

)
cm−3. (9)

A determination of the coronal plasma density in the impulsive phase of flares has been

difficult to obtain. Flare coronal plasma densities as high as 1013 cm−3 have been inferred

(e.g., Feldman et al. 1994; Phillips et al. 1996), generally for compact regions at times

during or soon after the impulsive phase. Impulsive-phase coronal densities as high as

1012 cm−3 are likely. Requiring Nb0 to be no higher than 1011 cm−3 gives an upper limit on

Fe0 of 1021 electrons s−1 cm−2.

The return-current electric field strength decreases with distance as electrons are lost

from the flux density distribution. An important insight is obtained upon recognizing that

electrons are not lost from the distribution until their energy is reduced to Eth. The lowest

energy electrons are the first to be thermalized, those with energy Ec. The return-current

electric field strength remains constant and equal to Erc0 until the distance xrc is reached at

which those electrons with initial energy Ec are thermalized and lost from the distribution.

This occurs when Eth = Ec − eErc0xrc, or when

xrc =
Ec − Eth

eErc0

= 1.50× 1027
T

3/2
7 (Ec − Eth)

(λ/20)Fe0

cm, (10)

where the energies Ec and Eth are in keV. For Fe0 = 1019 electrons s−1 cm−2, T = 10 MK,

Ec = 20 keV, and Eth = 2 keV, xrc = 2.7× 109 cm, on the order of the half-length of a flare

loop.

The return-current electric field strength Erc would not necessarily be constant below

xrc if the injected electron flux density distribution does not have a sharp low-energy

cutoff. For a flatter low-energy cutoff below some characteristic energy Ec, xrc becomes the

distance at which Erc begins a more rapid decrease.
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2.2. The Electron Distribution Function

The evolution of the electron flux density distribution function with distance x can be

derived assuming conservation of electron flux density:

F (E, x)dE = F (E0, 0)dE0, (11)

where E0 is the particle energy at x = 0. The assumption of flux conservation seems

incorrect, since electrons are lost from the distribution and, therefore, flux is not conserved.

However, we can make this assumption as long as the loss of electron flux can be treated

as a boundary condition. In our problem the boundary condition is that electrons are

thermalized and removed from the distribution at E = Eth. Above Eth flux is conserved.

Flux density is conserved only if the cross-sectional area of the electron beam (i.e.,

of the current carried by the accelerated electrons) remains constant. As long as any

changes in cross-sectional area are independent of electron energy, such a change scales

the magnitude of the flux density distribution function by A(x)/A(0), where A is the

cross-sectional area of the beam. Since the focus here is on return-current losses, I assume

that A remains constant.

Rewriting Equation 11 as F (E, x) = F (E0, 0)(dE0/dE), Equation 7 gives dE0/dE = 1

and E0 = E + V (x). F (E0, 0) is given by Equation 5. Therefore, the distribution function

at position x is

F (E, x) =

 (δ − 1)Eδ−1
c Fe0(E + V (x))−δ electrons s−1 cm−2 keV−1 E ≥ Ec − V (x)

0 E < Ec − V (x).

(12)

The original sharp low-energy cutoff moves downward in energy with increasing x until

V (x) = Ec or, more correctly, accounting for our boundary condition, until V (x) = Ec−Eth.

Once V (x) = Ec − Eth, the inequalities on the right side of Equation 12 become E ≥ Eth
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and E < Eth. The potential drop V (x) becomes a new, effective low-energy cutoff, with the

distribution function becoming flat for E ≪ V (x). If F (E0, 0) contained a high-energy cutoff

or break, this break energy would evolve with distance as Ebreak(x) = Ebreak(0) − V (x).

Since V acts as a cutoff energy to the electron distribution function, I will sometimes write

its units as keV instead of kV.

The remaining challenge is to determine the functional form of V (x). This is most

easily accomplished by recognizing that

dV

dx
= eErc(x) = e2ηFe(x), (13)

where

Fe(x) =

∫ ∞

0

F (E, x)dE. (14)

Integrating Equation 12 over E gives Fe(x):

Fe(x) =

 Fe0 V (x) ≤ Ec − Eth

Eδ−1
c Fe0(Eth + V (x))1−δ electrons s−1 cm−2 V (x) > Ec − Eth.

(15)

The inequalities on the right side of Equation 15 are equivalent to x ≤ xrc and x > xrc.

This result for the electron flux density can now be used in Equation 13 to solve for

V (x). For simplicity, I will assume here that η (primarily T ) has no spatial dependence

and, therefore, is constant. A spatially dependent resistivity is discussed in Section 2.3.

The spatial dependence of the potential drop is thus found to be, after some algebraic

manipulation,

V (x) =

 eErc0x = e2ηFe0x statvolt x ≤ xrc

Ec

[
δ
(

eErc0

Ec

)
(x− xrc) + 1

]1/δ
− Eth x > xrc.

(16)

The dependence on x of F (E, x), Fe(x), Erc(x) (= ηeFe(x)), and V (x) is now fully

determined. The potential drop increases linearly with x for x ≤ xrc since, as discussed
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above, Erc is constant below xrc. Beyond xrc, Erc is decreasing and, for x ≫ xrc, V (x)

increases slowly as x1/δ. While Fe and Erc are constant below xrc, they fall off as x−(1−1/δ)

for x ≫ xrc.

Fe and Erc are plotted as a function of distance in Figure 1 for δ = 5, a fixed plasma

temperature of 107 K, and several values of Fe0. The value of λ is fixed at 20. This

spatial dependence is also shown for δ = 3 and δ = 7 when Fe0 = 1021 electrons s−1 cm−2.

The initial low-energy cutoff and thermalization energy are taken to be Ec = 20 keV and

Eth = 2.5kT = 2.15 keV. The point at which the curves begin to decrease determines the

value of xrc (xrc = 2.7× 109 cm when Fe0 = 1019 electrons s−1 cm−2). Corresponding curves

for the potential drop V (x) are shown in Figure 2. Here the distance xrc is located where

the curves cross the level V = Ec − Eth. There is no dependence on δ until x > xrc. Above

xrc, Fe and Erc decrease more rapidly with x as δ increases and V increases less rapidly

with x as δ increases.

The solution obtained here agrees with that of Knight & Sturrock (1977) if we set

Eth = 0 and account for the difference in the assumed form of the injected electron flux

density distribution function. Instead of a sharp low-energy cutoff, Knight & Sturrock

assume an injected distribution function of the form F (E, 0) = K(E +E0)
−δ, a distribution

that already becomes flat below the initial cutoff energy E0.

2.3. Column Resistivity and Resistance

In this section I generalize the previous results to include spatial dependence of

the plasma resistivity. Just as collisional losses depend fundamentally on the column

density N(x) =
∫ x

0
n(x′)dx′, return-current losses depend on the column resistivity,



– 17 –

ρ(x) =
∫ x

0
η(x′)dx′. Equation 13 can then be rewritten as

dV

dρ
= e2Fe(V ), (17)

and Equation 16 becomes

V (ρ) =

 e2Fe0 ρ statvolt ρ ≤ ρrc

Ec

[
δ
(

e2Fe0

Ec

)
(ρ− ρrc) + 1

]1/δ
− Eth ρ > ρrc.

(18)

This equation contains a generalization of the return-current losses critical distance xrc to

the critical column resistivity ρrc, given by

ρrc =
Ec − Eth

e2Fe0

= 6.94× 109
(Ec − Eth)

Fe0

cm s, (19)

where, as in Equation 10, Ec and Eth are in keV. For the same values of Ec, Eth, and Fe0 as

in Equation 10, ρrc = 1.25× 10−8 cm s.

If the resistivity is classical (Equation 3) and we ignore the weak dependence of λ on

x, we can write T (x) = T0T̂ (x), giving η(x) = η0T̂ (x)
−3/2. The column resistivity then

becomes ρ = η0
∫ x

0
[T̂ (x′)]−3/2dx′. Note that if Eth has a significant dependence on x,

Equation 17 (or Equation 13) is no longer separable and must be solved numerically.

The column resistivity is related to the total resistance at position x, given by

R(x) = V (x)/I(x) = V (x)/(eFe(x)A), where I(x) = J(x)A is the total current at x and A

is the area of the electron beam (and return current). For ρ ≤ ρrc, R = ρ/A. At ρrc,

Rrc =
ρrc
A

= 6.94× 109
(Ec − Eth)

Fe0A
s cm−1 = 6.24× 1021

(Ec − Eth)

Fe0A
ohm. (20)

Using the same values as above and A = 1016 cm2, Rrc is only 1.12 × 10−12 ohm. The

corresponding current Irc is 4.8× 1025 statampere, or 1.6× 1016 ampere.
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2.4. Return-Current Plasma Heating

The heating rate per unit volume, Q(x) erg s−1 cm−3, of the thermal plasma resulting

from return-current losses is given by the spatial rate of change of the energy flux density

of the accelerated electrons:

Q(x) =
d

dx

∫
F (E, x)EdE =

∫
dF (E, x)

dx
EdE =

∫
dF (E, x)

dE

dE

dx
EdE. (21)

The last term suggests that when more than one energy loss mechanism is operating and

the total energy losses can be written as the sum of the losses from each mechanism, the

total heating rate can be obtained by simply summing the heating rate for each mechanism.

This is misleading, however, since the electron flux density distribution function, F (E, x),

is changed by the loss mechanisms.

Substituting Equations 6 and 8 (generalized to all positions x) for return current losses

into Equation 21 gives

Q(x) = −eErc(x)

∫
dF (E, x)

dE
EdE = −e2ηFe(x)

∫
dF (E, x)

dE
EdE. (22)

The minimum value of the lower limit to the integral is Eth and the upper limit is infinity.

Integrating by parts and using the requirement that EF (E, x) goes to zero at E = ∞ and

the definition of Fe(x) (Equation 14) gives

Q(x) = ηe2[Fe(x)]
2 + ηe2Fe(x)EthF (Eth, x). (23)

The first term in Equation 23 is Joule heating by the return current, JrcErc. The last

term is heating by the nonthermal electrons when their energy is reduced to Eth and

they are thermalized. For the sharp low-energy cutoff, this term does not contribute until

V (x) ≥ Ec − Eth or, equivalently, until x ≥ xrc. This gives a discontinuity at xrc, resulting

from the simplifying assumption that the electrons become thermalized at the discrete

energy Eth.
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Substituting Equations 12 and 15 into Equation 23, the volumetric heating rate

becomes

Q(x) =

 ηe2F 2
e0 erg s−1 cm−3 x < xrc

ηe2F 2
e0(δ

Eth

Ec
+ V (x)

Ec
)(Eth

Ec
+ V (x)

Ec
)1−2δ x ≥ xrc.

(24)

The two solid curves in Figure 3 show this volumetric heating rate as a function of distance

for Eth = 2.5kT = 2.15 keV and Eth = 18 keV, respectively, with Fe0 = 1019 electrons s−1

cm−2, T = 10 MK, λ = 20, Ec = 20 keV, and δ = 5. The results for Eth = 18 keV are

reduced by a factor of 100 to avoid overlapping curves. The vertical dashed lines show the

value of xrc for the two values of Eth. The dashed curves show the heating rate for Joule

heating alone (first term in Equation 23). The Joule heating rate (as well as the total

heating rate) is constant below xrc. At high values of x (x ≫ xrc) the Joule heating rate

falls off as x
2
δ
−2 if T (and λ) has no spatial dependence.

The dotted curves in Figure 3 show the contribution of electron thermalization (last

term in Equation 23) to the total volumetric heating rate. This term is negligible when

Eth ≪ Ec. For Eth = 2.15 keV, Figure 3 shows a small, but significant, contribution from

this term. Electron thermalization can exceed Joule heating above xrc, however, when

Eth is comparable to Ec, as is the case for Eth = 18 keV. The discontinuity in the total

heating rate at x = xrc results from our assumption that the electrons are thermalized at

the discrete energy Eth (assumption 6 in Section 2). This discontinuity would be smoothed

out in a more realistic model. When x ≫ xrc this term falls off somewhat faster, as x
1
δ
−2,

than the Joule heating term. The total return-current volumetric heating rate falls off as

x
2
δ
−2 when x ≫ xrc.

We can estimate the electron flux density required for the volumetric heating

to be significant in the upper, coronal part of the flare loop using the requirement

Q(x < xrc)∆t & nkT and Equation 24, where ∆t is the interval of time over which the

plasma is heated by the return current. This expression becomes Fe0 &
√
( nkT
e2η∆t

) or, using
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Equation 3,

Fe0 & 6.4× 1016
(
20

λ

n9

∆t

)1/2

T
5/4
6 electrons s−1 cm−2, (25)

where ∆t is in seconds. This result indicates that for a loop with typical active region

temperature and density, an electron flux density ∼ 1017 electrons s−1 cm−2 is required. If

the loop is already at a typical flare temperature, the electron flux density needs to be an

order of magnitude higher.

As shown in Equation 24, the volumetric heating rate where x < xrc varies with the

injected electron flux density as F 2
e0. The dependence is much weaker when x ≫ xrc, with

Q ∝ F
2
δ
e0. The total heating rate H(< xrc) (erg s−1) at distances less than xrc is easily

calculated, using equations 24 and 10, to be

H(< xrc) = Fe0(Ec − Eth)A = 3.2× 1026
(

Fe0

1018

)(
Ec − Eth

20

)
A16 erg s−1, (26)

where A16 is the area of the electron beam (and return current) in units of 1016 cm2. It is

interesting to compare this to the injected energy flux of the electron beam. The energy

flux density of the injected electrons is

Pe0 =

(
δ − 1

δ − 2

)
EcFe0 = 3.20× 1010

(
δ − 1

δ − 2

)(
Ec

20

)(
Fe0

1018

)
erg s−1 cm−2. (27)

From this we find that the ratio of the heating rate in the region x < xrc to the injected

electron energy flux is

H(< xrc)

Pe0A
=

(
δ − 2

δ − 1

)(
1− Eth

Ec

)
(28)

Thus, the fraction of the beam energy deposited in this region is greatest for a steep

electron distribution and Eth ≪ Ec. However, when Eth ∼ Ec, as shown in Figure 3, the

heat deposition is enhanced just beyond xrc. For the case in Figure 3 with Eth = 2.15 keV,

the ratio of the heating rate at x < xrc to the injected electron energy flux is 0.67.
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2.5. Comparison of Return-Current and Collisional Energy Losses

The energy lost by an electron per unit distance due to return-current losses is, from

Equation 6 or Equation 13,(
dE

dx

)
rc

= −dV

dx
= −e2ηFe(x) = −1.07× 10−17

(
λ

20

)
T

−3/2
7

(
Fe

1019

)
erg cm−1

= −0.668

(
λ

20

)
T

−3/2
7

(
Fe

1019

)
keV Mm−1. (29)

The energy lost per unit distance due to collisional losses is, from Equations 2.2 and 2.3 of

Holman et al. (2011),(
dE

dx

)
coll

= −K
n

E
= −4.80× 10−27

(
Λ

23

)
n

E
= −2.40× 10−18

(
Λ

23

)
n10

(
20

E

)
erg cm−1

= −0.150

(
Λ

23

)
n10

(
20

E

)
keV Mm−1. (30)

Here Λ is the Coulomb logarithm for the interaction of a high-energy electron with thermal

plasma and E is in keV. One Mm (= 108 cm) is approximately 1.′′38 at a distance of 1 AU.

Therefore, the ratio of the return-current loss rate to the collisional loss rate is

(dE/dx)rc
(dE/dx)coll

= 4.45

(
λ

20

)(
23

Λ

)
T

−3/2
7 n−1

10

(
E

20

)(
Fe

1019

)
. (31)

From this result we see that the return-current loss rate exceeds the collisional loss rate

at 20 keV when Fe & 2.2 × 1018n10T
3/2
7 electrons s−1 cm−2. Return-current losses will

dominate at even lower electron beam flux densities when the ambient plasma density

and/or temperature is lower. On the other hand, the return-current losses (when x > xrc

or, more generally, ρ > ρrc) and collisional losses reduce the value of Fe with increasing

distance.

In Figure 4 return-current energy losses as a function of distance x are plotted for

electrons with four initial energies, E0 = 20, 30, 40 and 50 keV (solid curves), and compared

with collisional energy losses for two values of the plasma density, n = 1010 cm−3 (dashed
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curves) and n = 1011 cm−3 (dotted curves). The return-current losses are for Fe0 = 7× 1018

electrons s−1 cm−2 (Pe0 = 3× 1011 erg s−1 cm−2), T = 10 MK, λ = 20, δ = 5, Ec = 20 keV,

and Eth = 2.5kT = 2.15 keV. The vertical dashed line shows the value of xrc (38 Mm). The

return-current energy loss curves are computed using Equations 7 and 16. The collisional

energy loss curves are computed using the solution to Equation 30, E(x) =
√

E2
0 − 2Knx.

For all initial electron energies in Figure 4, return-current losses exceed collisional losses

when n = 1010 cm−3, and collisional losses exceed return-current losses when n = 1011 cm−3,

consistent with results obtained from Equation 31. The return-current energy losses are

seen to slow at distances greater than xrc, when the electron flux density and, therefore,

the electric field strength begins to decrease. Even when the return-current energy losses

dominate below xrc, collisional energy losses can dominate at greater distance because of

this reduction in the rate of energy loss with distance.

The return-current energy loss rate is further slowed by collisional losses when

x > xcoll ≡ (E2
c −E2

th)/2Kn ≃ 0.17(E2
c −E2

th)/n10 Mm or, more generally, when the column

density N > Ncoll ≡ (E2
c − E2

th)/2K ≃ 1.7 × 1017(E2
c − E2

th) cm−2, a rate reduction not

reflected in Figure 4. The distance at which the electron flux density begins to decrease

will in fact be determined by xcoll if xcoll < xrc. This inequality can be written as n > ncoll,

where

ncoll =
e2ηFe0

2K
(Ec+Eth) = 2.23×1010

(
λ

20

)(
23

Λ

)
T

−3/2
7

(
Fe0

1019

)(
Ec + Eth

20

)
cm−3. (32)

For the parameters used in Figure 4, xcoll < xrc for the dotted curves, when n = 1011 cm−3

(ncoll = 1.7 × 1010 cm−3). Therefore, when n = 1011 cm−3 and the loss of electrons

due to collisions is included, the return-current loss rate will begin to decrease beyond

xcoll ≃ 6.7 Mm instead of xrc and the return-current energy losses beyond xcoll are less than

the results shown in Figure 4.
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2.6. X-Ray Source Brightness and Return-Current Losses

The bremsstrahlung X-rays from the nonthermal electrons accelerated in flares is

usually observed as thick-target emission from compact regions at the footpoints of flare

magnetic loops. The thickness of these regions is usually small compared to the height of

the flare loops, because of the rapid downward increase in plasma density in the relatively

thin transition region and chromosphere. Therefore, we can define a distance from the

electron injection region at x = 0 to the thick-target X-ray emission region, xtt. From

hard X-ray time delay studies, Aschwanden et al. (1996) have found this distance to range

from 6 – 60 Mm. A single value of xtt is a good approximation as long as the thickness

of the thick-target source region is small compared to the value of xtt. The value of xtt

becomes significantly dependent on electron energy if the corona becomes collisionally thick

to electron energies of interest, as might occur during chromospheric evaporation.

In general, X-rays of energy ϵ and below are affected by return-current losses when

V (xtt) ∼ ϵ. The electron flux density entering into the thick-target region is not diminished

by return-current losses until V (xtt) > Ec − Eth or, equivalently, until xrc < xtt (Equation

15). We can use this condition as an estimate of the minimum requirement for the X-ray

emission to be affected, although the lower end of the electron distribution function is

diminished somewhat before V (xtt) > Ec − Eth (Equation 12). Noting the dependence

of xrc on Fe0, we can derive a critical injected electron flux density above which the flux

density into the thick-target region begins to diminish, F tt
e0. Using Equation 10, we obtain

F tt
e0 =

Ec − Eth

e2ηxtt

= 1.0× 1019
(
20

λ

)
T

3/2
7

(
3× 109

xtt

)(
Ec − Eth

20

)
electrons s−1 cm−2. (33)

This result indicates that the injected electron flux density for which return-current losses

become significant is on the order of 1018 − 1019 electrons s−1 cm−2. In terms of electron

energy flux density (Equation 27), this corresponds to 4× 1010 − 4× 1011 erg s−1 cm−2 for

Ec = 20 keV and δ = 5. It is interesting that these injected energy flux densities are on the
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order of those for which the transition from gentile to explosive chromospheric evaporation

is estimated to occur (Fisher et al. 1985).

The dependence of Fe(xtt) on Fe0 is plotted in Figure 5, using Equations 15 and

16, for xtt = 30 Mm, T = 10 MK, λ = 20, δ = 4, Ec = 20 keV, and two values of Eth,

Eth = 2.5kT = 2.15 keV (solid curve) and Eth = 18 keV (long dashes). The dotted vertical

lines show the value of F tt
e0 for both cases. It is interesting that for Eth = 2.15 keV, as Fe0

increases a local maximum is reached at F tt
e0 followed by a local minimum and then Fe(xtt)

continues to increase after the local minimum. For Eth = 18 keV Fe(xtt) only increases

with increasing Fe0, but at a much lower rate. Both curves increase as F
1/δ
e0 well above F tt

e0

and the local minimum. We see that the increase of Fe(xtt) is so slow that it is effectively

limited to values on the order of F tt
e0, especially when δ is large and the local minimum is

present.

An analytical search for extrema in Fe(x) as a function of Fe0 shows that the local

maximum and corresponding minimum are obtained when Eth < δ−2
δ−1

Ec. The value of Fe(x)

at the local minimum is

Fmin
e (x) =

Ec

e2ηx
(δ − 1)

1
δ
−1

[
δ

(
1− Eth

Ec

)
− 1

] 1
δ

. (34)

The value of Fe0 at which this minimum occurs is

Fe0 =
Ec

e2ηx

[
δ

(
1− Eth

Ec

)
− 1

]
. (35)

The value of Fmin
e (xtt) and the corresponding value of Fe0 are indicated in Figure 5 by the

crossed short-dashed lines. The dotted curve in Figure 5 shows another result without a

local minimum. This curve is for δ = 2.1 and Eth = 2.15 keV. This curve is close to the

maximum rate at which Fe(xtt) can increase with Fe0 beyond F tt
e0.

The brightness spectrum of the X-rays emitted from the thick-target source region by

electrons experiencing energy losses at the rate dE/dt is given by (Brown 1971; Emslie
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1980; Holman 2003; Holman et al. 2011)

B(ϵ) =
1

4πR2

∫ ∞

ϵ

F (E0)

∫ ϵ

E0

ni(x)σ(ϵ, E)

dE/dx
dEdE0, (36)

where R is the distance from the observer to the source region, usually one astronomical

unit, ni is the plasma ion number density, and σ(ϵ, E) is the bremsstrahlung cross section.

F (E0) is the injected electron flux density distribution. The inner integral is the photon

flux distribution above energy ϵ (and below photon energy E0) emitted by a single electron

of energy E0. The outer integral integrates this result over the injected distribution of all

electrons with energies E0 ≥ ϵ. If ϵ < Ec, the lower limit of the outer integral becomes Ec.

The X-ray brightness spectrum rather than the usual flux spectrum is obtained because

F (E0) is the electron flux density distribution rather than the flux distribution (electrons

s−1 keV−1).

If we continue with our assumption that return-current losses are not significant in the

thick-target region and use the Kramers approximation to the bremsstrahlung cross section,

a simple analytic result is obtained for the X-ray brightness spectrum. In this case dE/dx

is the result for collisional losses alone (Equation 30) and F (E0) is given by Equation 12 at

xtt. The Kramers cross section is σ(ϵ, E) = Z2σ0/(ϵE), where σ0 = 7.90 × 10−25 cm2 keV

and Z2 ≃ 1.4 is the weighted mean square atomic number of the target plasma, weighted

by the number density of each ion species in the plasma. From Equation 36, the X-ray

brightness spectrum (for ϵ ≥ max[Ec − V (xtt), Eth] and for R = 1 AU) is

B(ϵ) ≈ 1.17× 10−34E
δ−1
c Fe0

δ − 2
ϵ−1(ϵ+ V (xtt))

2−δ photons cm−2s−1cm−2keV−1. (37)

This has the expected ϵ−(δ−1) dependence when ϵ ≫ V (xtt). It also has the expected ϵ−1

dependence when ϵ ≪ V (xtt).

Emslie (1980) estimated that in the presence of return-current losses the integrated

bremsstrahlung photon brightness above 20 keV will be limited to 10−15 photons cm−2 s−1
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cm−2. He estimated that this limiting brightness will be reached when the injected electron

flux density (above 20 keV) exceeds 1019 electrons cm−2 s−1. This estimate was obtained

by arguing that when return-current losses are large enough to dominate over collisional

losses, the integrand for computing the thick-target bremsstrahlung X-ray emission becomes

independent of the injected electron beam flux density. Here I show that this is not an

upper limit, but instead is roughly the integrated X-ray brightness when the electron flux

density and, consequently, the X-ray brightness begin to increase more slowly than linearly

as the injected electron flux density increases. The results derived here show how the

estimates scale with other physical parameters.

It is interesting to first look at the dependence of the integral of Equation 37 over all

photon energies above 20 keV, B(> 20 keV), on the injected electron flux density Fe0, even

though this result assumes that return-current losses do not dominate in the thick-target

region. The leading term gives a linear dependence on Fe0, but V (xtt) also depends on

Fe0. Results obtained by numerically integrating Equation 37 are shown in Figure 6 for

xtt = 10 Mm, T = 10 MK, λ = 20, Ec = 20 keV, Eth = 2.15 keV, and five values of δ. We

see that there is no maximum value ∼ 10−15 photons cm−2 s−1 cm−2 or higher, but the rate

of increase of the integrated X-ray brightness with Fe0 does decrease as Fe0 approaches the

value of F tt
e0 (as V (xtt) approaches 20 kV). For values of δ & 5, B(> 20 keV) goes through

a local maximum followed by a local minimum before continuing to rise at a reduced rate,

similar to the evolution of Fe(xtt) with Fe0 (Figure 5). The rate of increase of B(> 20 keV)

with Fe0 first decreases and then increases to the new, lower rate, as Fe0 exceeds F tt
e0 and

the electron flux density at xtt begins to decrease below the value of Fe0.

Let’s now consider the assumption that return-current losses dominate everywhere, so

dE/dx is given by Equation 29. Since return-current losses are proportional to Fe(x) and

Fe(x) becomes arbitrarily small as x increases (Equation 15), return-current losses cannot
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be everywhere smaller than collisional losses, as assumed. Nevertheless, we can formally

explore the consequences of this assumption. The dependence on Fe0 can best be seen by

making the potential drop V the integration variable. The inner integral in Equation 36

becomes, using Equations 7 and 29,

ν(ϵ, E0) =

∫ E0−ϵ

0

σ(ϵ, E0 − V )
ni(x(V ))

e2η(x(V ))Fe(V )
dV. (38)

The dependence of ni and η on V is obtained by solving Equation 18 for ρ, and then for x.

Substituting Equation 15 for Fe(V ) gives

ν(ϵ, E0) =
1

e2Fe0

×


∫ E0−ϵ

0
σ(ϵ, E0 − V )ni(x(V ))

η(x(V ))
dV V ≤ Ec − Eth∫ Ec−Eth

0
σ(ϵ, E0 − V )ni(x(V ))

η(x(V ))
dV

+ E1−δ
c

∫ E0−ϵ

Ec−Eth
σ(ϵ, E0 − V )ni(x(V ))

η(x(V ))
(Eth + V )δ−1dV V > Ec − Eth

(39)

As noted by Emslie (1980), the linear dependence on Fe0 cancels out, since F (E0)

in the outer integral is proportional to Fe0. The X-ray brightness still depends on Fe0

through ni(x(V ))/η(x(V )), however, since the relationship between V and x depends on

Fe0. Therefore, the fact that these leading terms cancel out does not lead to a clear upper

limit, independent of Fe0. However, it is interesting that if ni/η has no spatial dependence,

B(ϵ) is independent of Fe0. Therefore, although unrealistic, it is instructive to consider this

case next.

We again estimate the integrated X-ray brightness using the Kramers bremsstrahlung

cross section. Since we are interested in B(> ϵ), we use the integrated cross section for

all photons emitted by an electron of energy E above photon energy ϵ: σ(> ϵ,E) =

Z2σ0 ln(E/ϵ)/E. For constant ni/η, the integrated brightness becomes (Equations 36 and

39, together with Equation 3)

B(> ϵ) =
σ0/e

2

4πR2

(
ni

η

)
f

(
ϵ

Ec

, δ,
Eth

Ec

)
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≃ 4.21× 10−15n10T
3/2
7 f

(
ϵ

Ec

, δ,
Eth

Ec

)
photons cm−2s−1cm−2, (40)

where, writing ϵ̂ = ϵ/Ec, Êth = Eth/Ec, Ê0 = E0/Ec, and V̂ = V/Ec,

f
(
ϵ̂, δ, Êth

)
δ − 1

=

∫ 1−Êth+ϵ̂

ϵ̂

Ê−δ
0

∫ Ê0−ϵ̂

0

ln((Ê0 − V̂ )/ϵ̂)

Ê0 − V̂
dV̂ dÊ0 +∫ ∞

1−Êth+ϵ̂

Ê−δ
0

∫ 1−Êth

0

ln((Ê0 − V̂ )/ϵ̂)

Ê0 − V̂
dV̂ dÊ0 +∫ ∞

1−Êth+ϵ̂

Ê−δ
0

∫ Ê0−ϵ̂

1−Êth

ln((Ê0 − V̂ )/ϵ̂)

Ê0 − V̂
(Êth + V̂ )δ−1dV̂ dÊ0. (41)

Numerical computations of f(ϵ̂, δ, Êth) verses ϵ̂ for five values of the electron power-law

index δ are shown in Figure 7. The value of Êth is taken to be 0.108 (2.15 keV/20 keV).

The value of f(ϵ̂, δ, Êth) decreases as Êth approaches 1, since xrc and, therefore, the electron

flux density beyond xrc decreases as Eth increases. The increasing values of f(ϵ̂, δ, Êth)

as δ increases may be surprising, since the electron flux density beyond xrc decreases as

δ increases (Figure 1). However, the magnitude of the potential drop beyond xrc also

decreases with increasing δ (Figure 2) and, therefore, the electron energy loss rate is smaller.

The result is that more photons are emitted per electron and this dominates over the

increased loss of electron flux density.

Equation 40 is an upper limit to the integrated X-ray brightness if niT
3/2 is the highest

value of this quantity along the path of the streaming electrons. A lower value of ni means

fewer ions on which to scatter and, therefore, lower emission. A lower value of T means a

higher resistivity, greater electron energy losses and lower X-ray emission. The inclusion of

collisional losses would also decrease the emission. However, this upper limit depends on

the values of several physical parameters and, according to the numerical results obtained

here, is ∼ 200− 500 times greater than 10−15 photons cm−2 s−1 cm−2.



– 29 –

3. Comparison with Numerical Simulations

The analytical results obtained here are well suited for obtaining a deeper understanding

of the numerical results of Zharkova & Gordovskyy (2006) (hereafter, ZG06). These authors

compute steady-state electron distributions and resulting photon spectra for electrons

experiencing both return-current and collisional losses. The plasma resistivity is assumed

to be classical. Their electron distribution does include a spread in pitch angle, but

magnetic mirroring is not included and, as I show in the next two paragraphs, their electron

distribution is nearly one-dimensional (1-D).

ZG06 took the pitch-angle dependence of their electron distribution to be proportional

to exp{−[(µ− 1)/∆µ]2} (defined in Zharkova & Gordovskyy 2005), where µ is the cosine of

the electron pitch angle and ∆µ is taken to have the value 0.2. This electron distribution is

smaller by e−25 at 90◦ than its value at 0◦, highly concentrating the electron pitch angles

around 0◦.

The effectively 1-D character of their electron distribution is further demonstrated by

the plots of return-current electric field strength (normalized to the Dreicer electric field)

versus column density in their Figure 1. The electric field strength is constant (with a

slight rise to be discussed below) up to a column density that decreases with increasing

electron energy flux density. It then sharply drops off with increasing column density. This

behavior is characteristic of the 1-D model, as seen in Figure 1. The sharp drop-off occurs

at the column density Nrc corresponding to xrc. When electrons are decelerated by the

return-current electric field to the point that their pitch angle reaches 90◦, they begin to

propagate in the −x direction and are lost from the downward-streaming electron beam.

This decreases the beam flux density as the electrons are lost, resulting in a corresponding

decrease in the return-current electric field strength with distance at distance less than xrc

(and column densities less than Nrc) and a smoother drop-off at xrc. The absence of this
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decline in the ZG06 electric field plots indicates that the electron flux density distribution

can be treated as being 1-D.

3.1. Return-Current Electric Field Strength

The injected electron flux density energy distribution used by ZG06 is a single

power-law with a low-energy cutoff at Ec = 8 keV and a high-energy cutoff at 384 keV.

Collisional losses will affect these electrons and, therefore, the return-current electric field

at column densities N & E2
c /2K ≃ 1× 1019 cm−2. In Figure 1(c) of ZG06, for an injected

electron energy flux density of Pe0 = 1× 1012 erg s−1 cm−2, Nrc ≃ 1× 1018 cm−2. Therefore,

collisional losses should not be important in this case for column densities on the order of

and less than Nrc.

We have seen here that the electric field strength at distances less than xrc is

Erc0 = ηeFe0 (Equation 8) and is independent of the power-law index of the injected

electron flux density distribution. In ZG06’s Figure 1, however, Erc/ED below Nrc for δ = 7

is somewhat greater than for δ = 3. (In ZG06, γ denotes the electron distribution power-law

index and δ denotes the photon spectral index. Here, as elsewhere in this paper, I write δ

for the electron index and γ for the photon index, the more common usage.) This is because

the electron energy flux density, rather than the number flux density, is specified in each of

the three panels (and throughout the paper). From Equation 27, Fe0(δ = 7)/Fe0(δ = 3)

for fixed values of Pe0 and Ec is 1.67. (For Pe0 = 1 × 1012 erg s−1 cm−2, Ec = 8 keV,

and δ = 3, Fe0 = 3.91 × 1019 electrons s−1 cm−2.) This at least qualitatively explains the

differences in the initial values of Erc/ED. It also follows from Equation 10, however, that

xrc(δ = 3)/xrc(δ = 7) = Fe0(δ = 7)/Fe0(δ = 3) = 1.67. It is interesting that this difference

is not apparent in their Figure 1.
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Unfortunately, ZG06 do not explicitly show the plasma temperature and density

distributions used in their computations. From their Figure 1(c) we find that

Nrc ≃ 1 × 1018 cm−2 and Erc0/ED ≃ 150. (Note that, for this high value of the

ratio of Erc0 to ED, the plasma resistivity is expected to be enhanced above the

classical value and the evolution of the beam/return-current system may not be simple.

For this comparison, however, the assumption of classical resistivity is appropriate.)

ZG06 define ED as 2πe3nλ/kT (this is a factor of 2 smaller than the definition in

Holman (1985)). Taking the plasma density to be approximately constant in the

coronal part of the loop and using Equation 10 for xrc, these equations together give

n(Ec − Eth)/eED = kT (Ec − Eth)/(2πe
4λ) ≃ 1.5 × 1020 cm−2. No solution can be

obtained with Eth ∼ kT . Taking Eth = 0 gives T ≃ 570 MK, n ≈ 1 × 107 cm−3, and

xrc ≈ 1 × 1011 cm. These are extreme values for an actual flare loop! Also, 570 MK

corresponds to kT ≃ 49 keV, which is not consistent with the value of 8 keV for Ec when

collisional losses in the hot plasma are taken into account. Nevertheless, these are the

values I obtain that allow comparison with ZG06’s electric field results in Figure 1(c).

A plot of Erc/ED for δ = 3 and δ = 7 as a function of the column density N = nx for

these values of T and n is shown in Figure 8(a). As discussed above, the difference in the

values of Nrc = nxrc and of Erc0/ED for δ = 3 and δ = 7 are greater than in Figure 1(c) of

ZG06. Also, for N > Nrc, Erc/ED does not drop off nearly as fast with increasing N as in

Figure 1(c). Instead, Erc/ED falls off as N−(δ−1)/δ (see Section 2.2). The results obtained

here and by ZG06 agree qualitatively, however, in that Erc/ED for δ = 7 falls off more

rapidly than for δ = 3.

The differences between the results obtained here and those of ZG06 can be understood

in terms of spatial variations in the plasma temperature and density. The slight bump in

Erc/ED just before it begins to decrease with N must result from the plasma temperature



– 32 –

beginning to decrease significantly at this column density, since Erc/ED ∝ Fe0/(nT
1/2).

Since n increases with column density, only a decrease in T can cause an increase in Erc/ED.

The more rapid decrease of Erc/ED with N in Figure 1(c) must be caused be an increase

in plasma density with N . Collisional losses will also cause a more rapid decrease, but, as

discussed above, this should not be significant at N ≈ 1018 cm−2.

Figure 8(b) shows an example of the effect of spatially varying plasma temperature

and density on the dependence of Erc/ED on N . The plasma temperature is taken to

decrease exponentially as T0 exp(−x/xT ), with T0 = 570 MK and xT = 30 Mm. The

density increases exponentially as n0 exp(x/xn), with n0 = 9× 107 cm−3 and xn = 100 Mm.

As before, Ec = 8 keV, Eth = 0, and Pe0 = 1 × 1012 erg s−1 cm−2. The column

density is now N(x) = n0Ln(e
x/Ln − 1). From Equation 19 and the definition of ρ(xrc),

xrc =
2
3
LT ln(1 + 3

2
xrc0

LT
), where xrc0 is the value of xrc for T = T0 and for the value of Fe0

corresponding to the value of δ. The column density corresponding to xrc is now given by

Nrc = n0xn[(1 +
3
2
xrc0

xT
)
2xT
3xn − 1]. Vertical lines show the values of Nrc for δ = 3 and δ = 7, as

in Figure 8(a).

There is now an increase in Erc/ED below Nrc, similar to the increase in ZG06’s

Figure 1. This is caused by the decrease in temperature with distance. This same decrease

in temperature decreases, rather than increases, the rate of decline of Erc/ED beyond Nrc.

A substantially more rapid rate of decline is obtained because of the increase in density with

distance, however. This rapid decline is entirely due to the increase in ED with distance.

The difference between Nrc(δ = 3) and Nrc(δ = 7) is now substantially smaller than in

Figure 8(a), more consistent with the results of ZG06.

Figure 1(c) of ZG06 shows a flattening of Erc/ED at higher values of N , most notably

for δ = 3 in the range N ≈ 1020 − 1022 cm−2. This could be associated with a more rapid

decline in the plasma temperature and/or a less rapid increase in the plasma density. A
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decrease in the plasma ionization could also contribute to the flattening.

3.2. X-Ray Brightness Spectra

ZG06 show computed photon spectra in their Figure 10, and results derived from

these spectra in Figures 11 and 12. Here I compute thick-target bremsstrahlung X-ray

brightness spectra from the 1-D return-current electron flux density distribution function,

Equation 12, and compare the computed spectra with the results of ZG06. As discussed in

Section 2.6, I assume that return-current losses are solely important up to the thick-target

region at distance xtt, and insignificant beyond xtt, where collisional losses dominate. As in

Section 3.1, these assumptions are most likely to be valid for the highest electron energy

flux density considered by ZG06, 1012 erg s−1 cm−2.

With these assumptions and use of the Kramers bremsstrahlung cross section, it is

possible to obtain relatively simple analytical expressions for comparison with the numerical

results. Since the electron distribution of ZG06 contains a high-energy cutoff, denoted here

as in ZG06 as Eupp, and photon energies below the low-energy cutoff at Ec = 8 keV are

considered, I extend Equation 37 to account for these cutoffs:

B(ϵ) = 1.17× 10−34Fe0

(
δ − 1

ϵ

)
× (42)



[
Ec

δ−2
− ϵ+Vtt

δ−1
−

(
Ec

Eupp

)δ−1 (
Eupp

δ−2
− ϵ+Vtt

δ−1

)]
ϵ < max[Eth, Ec − Vtt][

Eδ−1
c (ϵ+Vtt)2−δ

(δ−1)(δ−2)
−
(

Ec

Eupp

)δ−1 (
Eupp

δ−2
− ϵ+Vtt

δ−1

)]
max[Eth, Ec − Vtt] ≤ ϵ < Eupp − Vtt

0 ϵ ≥ Eupp − Vtt,

where Vtt is shorthand for V (xtt).

The spectra in Figure 10 of ZG06 are normalized to their value at 4 keV and are

computed for δ = 3 and δ = 7. The only free parameter in the 1-D model for comparison
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to these results is the value of the potential drop at xtt, Vtt, since the low- and high-energy

cutoffs of the electron flux distribution injected at x = 0 are fixed at Ec = 8 keV and

Eupp = 384 keV.

In Figure 9 brightness spectra, normalized to their value at 4 keV, are computed using

Equation 42 and plotted for several values of Vtt for both values of δ. Points (diamond

symbols) from Figure 10(b) of ZG06, for Pe0 = 1012 erg s−1 cm−2, are shown for comparison.

None of the curves provide a good fit to the ZG06 results. For δ = 3, both Vtt = 15 kV

and Vtt = 315 kV provide a reasonable fit up to about 40 keV. For δ = 7, Vtt = 12 kV

provides a reasonable fit up to about 60 keV. The Kramers cross section is not best suited

for computing spectra from electron distributions containing cutoffs, however (cf. Brown et

al. 2008).

For a more accurate comparison I have computed the X-ray spectra using the

thick-target fitting function in the RHESSI data analysis software, which uses the Haug

(1997) bremsstrahlung cross section (cf. Holman 2003; Holman et al. 2003). The default

double-power-law electron distribution function is replaced with Equation 12, with the

addition of a sharp high-energy cutoff at Eupp−Vtt and with Vtt replacing V (x). The results

are shown in Figure 10. Better fits to the ZG06 results are obtained, but only at energies

of 100 keV and below. Agreement is not good above 100 keV, especially for δ = 3. These

fits give Vtt ≃ 130 kV for δ = 3 and Vtt ≃ 14 kV for δ = 7. The discrepancy is particularly

evident for δ = 3. For Vtt = 130 kV, the high-energy cutoff is at 384− 130 = 254 keV. The

ZG06 spectrum shows emission well above 254 keV, however.

It is interesting to compare these deduced values for Vtt with values expected from the

simple constant density and temperature model obtained in Section 3.1, represented by the

electric field plot in Figure 8(a). The corresponding potential drop curves for δ = 3 and

7 are plotted in Figure 11. The dotted diagonal line shows the column density N = E2

2K
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(Equation 30) at which an electron of energy E = V looses all its energy from collisional

losses alone. Since the electrons injected at N = 0 range in energy from 8 to 384 keV

(horizontal dotted lines), the thick target region (without return-current losses) ranges from

about 1.1 × 1019 cm−2 to 2.5 × 1022 cm−2 (vertical dotted lines). The intersection of the

potential drop curves with the start of the thick-target region gives Vtt ≃ 22 kV for δ = 3

and Vtt ≃ 15 kV for δ = 7.

The simple model is, of course, much too simple for quantitative conclusions. The

result for Vtt when δ = 7 agrees rather well with the result from the spectral comparison,

however. The results also agree qualitatively in that Vtt for δ = 3 is larger than Vtt for δ = 7

in both cases. But the quantitative results for δ = 3 do not agree. The model assumption

that V (N) is constant in the thick-target region is clearly violated for δ = 3. The increase of

V with N will be diminished by collisional losses and by the significant decrease in the value

of Eupp − V (N). Nevertheless, this flat electron distribution is more likely to violate the

model assumptions than the steep distribution with δ = 7, since in the thick-target region

V (N) is increasing as N1/δ for return-current losses alone (for n constant and N ≫ Nrc;

see the discussion after Equation 16). Further comparisons with numerical models that

combine return-current and collisional losses are needed to test the realm of validity of this

simple model.

3.3. X-Ray Spectral Index

The thick-target X-ray spectrum with return-current losses taken into account,

approximated by Equation 42, contains substantial deviations from the single-power-law

photon spectrum, B(ϵ) = B0(ϵ/ϵ0)
−γ. These deviations are caused by the return-current

energy losses, but they are also caused by the presence of a low-energy cutoff (Ec) and a

high-energy cutoff (Eupp) in the injected electron distribution. The local spectral index at
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energy ϵ, γ(ϵ) = −d logB(ϵ)/d log ϵ = −(ϵ/B)(dB/dϵ), can be obtained analytically from

Equation 42. The result is

γ(ϵ) = 1 +

(
ϵ

δ − 1

) 1−
(

Ec

Eupp

)δ−1

Ec

δ−2
− ϵ+Vtt

δ−1
+
(

Ec

Eupp

)δ−1 (
ϵ+Vtt

δ−1
− Eupp

δ−2

) ϵ < max[Eth, Ec − Vtt]

γ(ϵ) = 1 + ϵ
(ϵ+ Vtt)

1−δ − E1−δ
upp

(ϵ+Vtt)2−δ

δ−2
+ E1−δ

upp (ϵ+ Vtt − δ−1
δ−2

Eupp)
max[Eth, Ec − Vtt] ≤ ϵ < Eupp − Vtt.

(43)

For no high-energy cutoff (Eupp → ∞), these equations reduce to

γ(ϵ) = 1 + (δ − 2)
ϵ

(δ − 1)Ec − (δ − 2)(ϵ+ Vtt)
ϵ < max[Eth, Ec − Vtt]

γ(ϵ) = 1 + (δ − 2)
ϵ

ϵ+ Vtt

max[Eth, Ec − Vtt] ≤ ϵ < Eupp − Vtt. (44)

Plots of γ(ϵ) computed from Equations 43 and 44 are shown in Figure 12 for δ = 3

(top panel) and δ = 7 (bottom panel). The top dashed curve in each panel shows γ(ϵ) for

no high-energy cutoff and Vtt = 0 kV. The low-energy cutoff for all curves is Ec = 8 keV.

Above ϵ = Ec the spectrum has the expected thick-target power-law dependence with

γ = δ − 1. The dotted curves show γ(ϵ) with Eupp = 384 keV. For δ = 7 the power-law

dependence of the spectrum is retained below ∼100 keV. For δ = 3, no substantial part

of the spectrum is well described by a single power law. For an electron distribution this

flat, the X-ray emission from electrons with energies as high as 384 keV is still significant

at photon energies as low as 8 keV.

The three solid curves in each panel of Figure 12 are for Vtt = 14, 130, and 260 kV,

respectively. The three remaining dashed curves show the corresponding result when there

is no high-energy cutoff. Although 14 kV is a relatively small potential drop, it significantly

affects most of the X-ray spectrum over the plotted range of photon energies. For the

solid curves, the high-energy cutoff at xtt has been reduced from 384 keV to 370, 254, and
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124 keV, respectively. Comparison of the solid and dashed curves shows the substantial

impact of this high-energy cutoff on the X-ray spectrum, especially for δ = 3.

4. Spectral Evolution and the Return-Current “Bump”

ZG06 show plots of the photon spectral index at 20 and 100 keV and their difference

versus three values of the electron flux density distribution power-law index and three values

of the injected electron energy flux density. Since the power-law index and the injected

energy flux density are not observable quantities, here I will look at the dependence of Vtt

and spectral index, γ, on the hard X-ray brightness, B(ϵ), quantities that can be deduced

from spectral fits. These quantities are computed as a function of the injected electron flux

density, Fe0, assuming that all changes are due to changes in Fe0. Fe0 increases from 1015

to 1021 electrons s−1 cm−2. The plasma temperature and the distance to the top of the

thick-target region, xtt, are taken to be 10 MK and 3× 109 cm, respectively. The low-energy

cutoff is 20 keV and the high-energy cutoff is taken to be high enough to not affect the

results (i.e., no high-energy cutoff).

Figure 13 shows how Vtt varies with B(ϵ) for three values of the injected electron flux

density distribution power law index and for the X-ray brightness measured at two different

photon energies. Where Vtt ≪ Ec − Eth = 17.85 keV, Vtt and, therefore, the effective

low-energy cutoff, increases (or decreases) linearly with B(ϵ). In this regime both Vtt and

B(ϵ) are directly proportional to Fe0. At higher photon energies and values of δ, the X-ray

brightness is lower for a given value of Vtt (and Fe0). This linear relationship is lost when

Vtt ≃ Ec − Eth. When Vtt ≫ Ec − Eth, Vtt increases more slowly with B(ϵ) or, conversely,

B(ϵ) increases more rapidly with increasing Vtt.

An interesting feature appears where Vtt ≃ Ec − Eth in the curves for ϵ = 20 keV and
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δ = 5 and 7. For this lower value of ϵ and higher values of δ, as Vtt increases B(ϵ) decreases

somewhat and reaches a local minimum value before continuing to increase at a faster rate.

This behavior is similar to that in Figure 6. This would be observed as a small sub-peak,

or “bump”, on the rise (or fall) of the impulsive peak of a flare, followed by a more rapid

increase in the X-ray brightness with increasing Vtt. The increase in the rate of brightening

would be seen at all photon energies, but the sub-peak would only appear at lower energies.

This may provide a signature of return-current losses in flare light curves.

Figure 14 shows the evolution of spectral index with X-ray brightness for the same

parameters as in Figure 13. As Fe0 and B(ϵ) increase, γ remains constant until Vtt

becomes high enough to significantly decrease the energy of electrons of energy ϵ and above

(Vtt & 0.1ϵ). The spectrum then flattens with increasing rapidity until Vtt = Ec − Eth, after

which the spectrum continues to flatten, but at a lower rate. Only the spectral index at

20 keV for δ = 3 comes close to the lowest possible value, γ = 1. The dip in brightness seen

in Figure 13 for δ = 5 and 7 is also seen here as the spectrum flattens.

To explore more directly the possibility of seeing this bump in X-ray light curves, I end

this section by looking at the dependence of B(ϵ) on Fe0. This dependence is representative

of the X-ray light curve if Fe0 varies linearly with time or, at least, not too differently from a

linear dependence. Figure 15 shows this dependence for δ = 5 (top panel) and δ = 7 (bottom

panel). Each panel shows curves for nine values of the photon energy, starting at ϵ = 20 keV

(top curve) and increasing in steps of 10 keV to ϵ = 100 keV (bottom curve). The brightness

increases linearly with Fe0 for Vtt < Ec −Eth, and as F
2/δ
e0 for Vtt ≫ Ec −Eth. In addition to

this flattening of the dependence, the return-current bump appears in the curves at photon

energies ϵ less than (δ− 3)(Ec−Eth). It is interesting that there is no sub-peak when δ ≤ 3.

When ϵ satisfies this condition, the value of Fe0 at the local maximum is on the order of

and somewhat smaller than F tt
e0 (Equation 33). These interesting features may provide a
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valuable tool for recognizing return-current losses in flare data.

5. Summary and Conclusions

The 1-D, steady-state model examined here demonstrates how return-current losses

can have a substantial impact on the observed X-ray emission from flares, primarily through

the flattening of the nonthermal electron distribution function at low energies and enhanced

heating in the coronal part of flare loops. Both the electron energy losses and the heating

rate are sensitive to the injected electron flux density, Fe0. Since Fe0 is sensitive to the

low-energy cutoff, Ec, to the injected electron flux density energy distribution, the results

are also sensitive to the value of Ec.

When the energy of the nonthermal electrons becomes low enough because of

deceleration by the return-current electric field and collisional losses, they are thermalized

and lost from the beam. When enough electrons are thermalized to significantly decrease

the electron beam flux density, return-current losses and the heating rate begin to decrease

with distance from the injection point. The distance at which this occurs, xrc (Equation 10),

is sensitive to Ec and Fe0 and to the approximate energy at which the electrons are

thermalized, Eth, if it is comparable to Ec. The plasma resistivity is also important, which,

classically, is determined primarily by the plasma temperature. This evolution is only

sensitive to the plasma density, however, where collisional losses are important. If xrc

becomes smaller than the distance to the thick-target footpoints where most of the hard

X-ray emission is emitted, this decrease in the rate of return-current losses has interesting

observational consequences.

The flattening of the electron distribution by return-current losses results in a new

effective low-energy cutoff to the electron distribution that increases with distance x from
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the injection point. This low-energy cutoff is the potential drop V (x) corresponding the

the integral of the return-current electric field from the injection point to x. V increases

linearly with the column resistivity ρ (Equation 17) until the distance xrc is reached or,

more generally, until the corresponding column resistivity ρrc is reached (Equation 19).

Beyond this distance V increases at a much lower rate. This rate is further reduced by

collisional losses (Section 2.5).

How do we best recognize return-current losses in solar flare data, and how do we

use this recognition to deduce the electron flux density distribution injected from the

acceleration region, the subsequent evolution of the accelerated electrons, and their impact

on the flare plasma? As I briefly review in the Introduction, several methods and possible

identifications of return-current losses are already presented in the literature.

Zharkova & Gordovskyy (2006) emphasized comparing the spectral index at a low

and a high photon energy with numerical model results. Such a comparison was done for

two spectra from two flares in Zharkova et al. (2010). For each case an estimate of the

electron energy flux density at the times of the two spectra was obtained. This approach,

however, does not take full advantage of the spectral shape and does not provide a test

of the plausibility of the model. The spectral evolution for one of the flares, 2002 July

23 for example, has been found by Kontar et al. (2003) to be consistent with nonuniform

ionization of the target plasma. The spectral indices, as shown in Section 3.3, are also

sensitive to assumptions about low- and high-energy cutoffs to the injected electron flux

density distribution.

Alexander & Daou (2007) found evidence for the upper limit of 10−15 photons cm−2 s−1

cm−2 to the integrated X-ray brightness above 20 keV, deduced by Emslie (1980) to result

from return-current losses. In Section 2.6 I find that this is not an upper limit but, rather,

is roughly the point at which the rate of increase of brightness with increasing injected
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electron flux density significantly decreases because of the thermalization of beam electrons.

Nevertheless, return-current losses should be important when the integrated brightness

is of this magnitude and, therefore, this can be a valuable indicator that return-current

losses are significant. A difficulty with this test is that X-ray images can only provide an

upper limit to the area of the emission and, therefore, a lower limit to the integrated X-ray

brightness. Also, it is not clear why Alexander & Daou (2007) did not find any integrated

source brightnesses greater than this estimated value.

Comparison of coronal and footpoint hard X-ray spectra, as in Battaglia & Benz (2008),

provides an excellent tool for identifying return-current losses. As pointed out by Hannah &

Kontar (2011), however, another loss mechanism such as the bump-on-tail instability could

be responsible for energy loss between the coronal source and the footpoints. The scarcity

of observed nonthermal coronal X-ray sources also limits the usefulness of this method.

An important characteristic of return-current losses is the flattening of the X-ray

spectrum at low photon energies resulting from the flattening of the electron distribution at

low energies. This flattening has the character of a low-energy cutoff. The X-ray spectrum

flattens more slowly with decreasing photon energy than for a sharp low-energy cutoff.

This difference would be difficult to detect with current observations, however. Also, a

similar spectral flattening could result from a plasma instability such as the bump-on-tail

instability.

The most distinctive characteristic of return-current losses is the spectral evolution.

The spectrum flattens to higher energies with both distance from the injection point

and with increasing injected electron flux density, Fe0. Flattening of the spectrum with

distance is also a characteristic of collisional losses, but flattening of the integrated

spectrum with increasing Fe0 is not a characteristic of collisional losses. Thus, as the

X-ray brightness increases, so does the effective low-energy cutoff. This behavior has been
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noted in a sample of flare spectra studied by Sui et al. (2007). Although this evolution is

distinctive, it might also be produced in the acceleration region or, possibly, by a plasma

instability. Therefore, appropriate spectral evolution, together with one or more additional

observational characteristics, is most appropriate for confidently identifying return-current

losses.

The return-current “bump” and reduced rate of rise (increased rate of fall) in hard

X-ray light curves as peak brightness is approached (as the brightness declines) is another

feature that can be used to identify return-current losses (Section 4 and Figure 15). Related

features could also be identified in the time evolution of the low-energy cutoff (Figure 13)

and X-ray spectral index (Figure 14). A limitation of these identifiers is that this evolution

is a function of Fe0, a quantity not directly obtained from observations and, therefore,

with a time evolution that is not directly known. On the other hand, identification of the

bump and its dependence on photon energy in light curves could be a strong indicator of

return-current losses.

Perhaps the most interesting physical characteristic of return-current losses is that

spectral fitting to deduce the value of the low-energy cutoff provides a direct measure of

the potential drop in the flare loop. This is best done (in the context of the 1-D, analytical

model at least) by fitting the computed bremsstrahlung emission from Equation 12 to the

hard X-ray spectra. The time evolution of Vtt determined from these spectral fits gives the

time evolution of the potential drop. If the low-energy cutoff to the injected electron flux

distribution, Ec, is not hidden beneath the flare thermal bremsstrahlung emission, so the

early spectral evolution can be observed, the derived low-energy cutoff will first decrease as

Ec − Vtt while Vtt increases with time as Fe0 increases. When Vtt becomes comparable to

the observed photon energies, the increase in Vtt with Fe0 should be observed. Should a

high-energy cutoff, Eupp, be present in the injected electron distribution, it will also decrease
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as Eupp − Vtt (Equation 42).

As shown in Equation 18, the initial linear rise of Vtt with Fe0 is proportional to the

column resistivity, ρ. Therefore, the time evolution of the potential drop also give the time

evolution of the column resistivity. Since the classical resistivity depends primarily on the

plasma temperature, this can be compared with observations of the thermal plasma in the

flare loop. Of particular interest, an exceptionally high value of the resistivity as compared

to the classical resistivity would indicate the presence of anomalous resistivity in the loop.

Unless the early evolution of the spectra at low photon energies is observable, one of

the most difficult parameters to deduce is Ec. As seen in Equation 37, a spectral fit gives

Eδ−1
c Fe0, not Fe0 or Ec independently. The difference between Ec and the thermalization

energy, Ec − Eth, can be estimated, however, if the value of Vtt can be determined when its

dependence on X-ray brightness begins to change (Section 4). This gives an estimate for Ec

if Eth ≪ Ec or if an independent estimate of Eth can be obtained.

An additional test for return-current losses is to compare the results deduced from the

hard X-ray emission with the thermal evolution of the flare plasma. Direct heating of the

coronal plasma by the return current and thermalized electrons can be quite substantial

(Section 2.4). For the beam and plasma parameters used in Figure 3, the heating rate in

a coronal volume of 1025 cm3 is 1027 erg s−1. As discussed at the end of Section 2.4, the

return-current heating rate at distances less than xrc is 67% of the power carried by the beam

(for Eth = 2.15 keV). Therefore, for relatively high electron beam flux densities, heating

to > 10 MK flare temperatures should be more rapid than when return-current losses are

not significant. The inclusion of return-current losses in chromospheric evaporation models

should reveal more detailed aspects of how the thermal response is modified.

A weakness of the analytical model presented here is that, if the increase in the

potential drop within the thick-target region has a significant impact on the resulting X-ray
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emission, the use of the value of the potential drop at the top of the thick-target region, Vtt,

is not valid. The model results must then be computed with collisional and return-current

losses contributing simultaneously (as in Emslie 1980). The impact of collisional losses on

the model is discussed in Section 2.5. In future work a numerical model including both

loss mechanisms together will be developed, and the results compared to those from the

analytical model.

A potentially important signature of return-current losses is electrons temporarily

trapped in the top of the flare loops by the return-current electric field. In the 1-D model

considered here, no electrons are turned around by the electric field, so that they move

upward in the loop and are re-accelerated by the electric field. All electrons are thermalized

before they can be reflected. Electrons with high enough pitch angles would be reflected

and trapped in the loop as long as the electric field is sustained. The acceleration of

back-scattered electrons by the return-current electric field, including the presence of

magnetic mirroring, has been simulated and discussed by Karlicky (1993) and Karlicky &

Henoux (1993). These are also included in the simulations of Zharkova et al. (2010) and

Kuznetsov & Zharkova (2010). This interesting topic will be addressed in a future paper.
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Fig. 1.— Electron flux density (left axis) and return-current electric field strength in kilovolts

per centimeter (right axis) are plotted as a function of distance for three values of the injected

electron flux density. The results are for δ = 5 except for Fe0 = 1021 electrons s−1 cm−2,

where results for δ = 3 and δ = 7 are also shown. The plasma temperature is assumed to be

constant at T = 10 MK and the default value of λ = 20 is used. The initial cutoff energy is

Ec = 20 keV and Eth = 2.5kT = 2.15 keV.
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Fig. 2.— Potential drop is plotted as a function of distance for four values of the injected

electron flux density. The solid curves are for δ = 5. Several curves for δ = 3 and δ = 7 are

also shown (short dashes). Other parameters are the same as in Figure 1. The horizontal

line (long dashes) shows the value of Ec − Eth.
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Fig. 3.— Volumetric heating rate, Q(x), is plotted as a function of distance for Fe0 = 1019

electrons s−1 cm−2, T = 10 MK, λ = 20, δ = 5, Ec = 20 keV, and two values of Eth,

Eth = 2.5kT = 2.15 keV and Eth = 18 keV (solid curves). The two vertical dashed lines

show the value of xrc for the two values of Eth. The dashed curves show the value of Q(x)

for Joule heating alone. The dotted curves show the heating due to thermalization of the

electrons at Eth alone. The results for Eth = 18 keV are reduced by a factor of 100 to avoid

overlapping curves.
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Fig. 4.— Comparison of return-current and collisional energy losses as a function of distance

for electrons with four initial energies, E0 = 20, 30, 40 and 50 keV. The solid curves show the

decrease in electron energy resulting from return-current losses for Fe0 = 7× 1018 electrons

s−1 cm−2 (Pe0 = 3 × 1011 erg s−1 cm−2), T = 10 MK, λ = 20, δ = 5, Ec = 20 keV,

and Eth = 2.5kT = 2.15 keV. Collisional losses for n = 1010 cm−3 (dashed curves) and

n = 1011 cm−3 (dotted curves) are shown. The vertical dashed line shows the value of xrc.
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Fig. 5.— Electron flux density at the location of the thick-target footpoint, xtt, is plotted as

a function of the injected electron flux density for xtt = 30 Mm, T = 10 MK, λ = 20, δ = 4,

Ec = 20 keV, and two values of Eth, Eth = 2.5kT = 2.15 keV (solid curve) and Eth = 18 keV

(long dashes). The two vertical dotted lines show the value of F tt
e0 for the two values of Eth.

The crossed horizontal and vertical lines (short dashes) show the value of Fmin
e (xtt) and the

value of Fe0 at which this minimum occurs, respectively, for Eth = 2.15 keV. The dotted

curve is for δ = 2.1 and Eth = 2.15 keV.
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Fig. 6.— X-ray brightness integrated over all photon energies above 20 keV as a function of

the injected electron flux density when energy losses in the thick-target region are dominated

by collisional losses (Equation 37). Results are shown for five values of the injected electron

density distribution power-law index, δ. Other assumed parameter values are xtt = 10 Mm,

T = 10 MK, λ = 20, Ec = 20 keV, and Eth = 2.5kT = 2.15 keV. The dotted vertical line

shows the value of F tt
e0.
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Fig. 7.— Integrated X-ray brightness function f(ϵ̂, δ, Êth) (Equation 41) verses ϵ̂ for five

values of the electron power-law index δ and Êth = 0.108.
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Fig. 8.— (a) Return-current electric field normalized to the Dreicer electric field vs. column

density for δ = 3 (dashed curve) and δ = 7 (solid curve). The plasma temperature and

density, derived for comparison with Figure 1(c) of Zharkova & Gordovskyy (2006), are

taken to have the constant values (independent of column density) T = 570 MK and n =

1 × 107 cm−3. The low-energy cutoff is Ec = 8 keV, Eth = 0, and the electron energy flux

density is 1×1012 erg s−1 cm−2. The vertical lines are the corresponding values of Nrc = nxrc.

(b) Normalized return-current electric field when the plasma density increases exponentially

and the temperature decreases exponentially with distance (see Section 3.1).
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Fig. 9.— Thick-target X-ray brightness spectra, normalized to their value at 4 keV, computed

using Equation 42 for δ = 3 (top panel) and δ = 7 (bottom panel) and several values of Vtt. For

comparison with spectra from Figure 10(b) of Zharkova & Gordovskyy (2006), Ec = 8 keV

and Eupp = 384 keV. The symbols (diamonds) are points from the spectra in Figure 10(b).

The dotted curves are for Vtt = 0 kV. The solid curves in the upper panel (δ = 3) are, from

top to bottom, for Vtt = 15, 315, and 354 kV. The solid curves in the lower panel (δ = 7)

are, from top to bottom, for Vtt = 6, 12, and 24 kV.
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Fig. 10.— Thick-target X-ray brightness spectra, normalized to their value at 4 keV, com-

puted for Ec = 8 keV and Eupp = 384 keV using the Haug (1997) bremsstrahlung cross

section, for comparison with spectra from Figure 10(b) of ZG06. The symbols are from

Figure 10(b) and the curves are computed using the 1-D distribution function with return-

current losses (Equation 12). The diamond symbols and dashed curve are for δ = 3. The

square symbols and solid curve are for δ = 7. These fits give best values for the potential

drop at the top of the thick-target region of Vtt = 130 kV for δ = 3 and Vtt = 14 kV for

δ = 7.
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Fig. 11.— The computed potential drop V as a function of column density N for δ = 3 and

δ = 7 (solid curves) for comparison with the spectral fit results in Figure 10. The plasma

density and temperature are assumed to be everywhere n = 1× 107 cm−3 and T = 570 MK,

the values deduced from Figure 1(c) of ZG06. Ec = 8 keV and Eupp = 384 keV (dotted

horizontal lines) are the lower and upper cutoffs to the electron distribution. The thick-

target region is between the two dotted vertical lines. Vtt is the value of the potential drop at

the top of the thick-target region (dashed horizontal lines). The dotted diagonal line shows

the values of N at which the energy of electrons of energy V is reduced to zero by collisional

losses.
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Fig. 12.— Thick-target X-ray spectral index plotted as a function of photon energy for an

injected electron flux density distribution with a power-law index of 3 (top panel) and 7

(bottom panel), computed from Equations 43 and 44 with Ec = 8 keV. The dotted and solid

curves are for Eupp = 384 keV. The dashed curves are for no high-energy cutoff (Eupp → ∞).

The dotted and corresponding dashed curves are for Vtt = 0 kV. The solid curves and their

corresponding dashed curves are for Vtt = 14, 130, and 260 kV.
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Fig. 13.— Variation of the potential drop at the top of the thick-target region, Vtt, with

the thick-target X-ray brightness, B(ϵ), as the injected electron flux density increases from

1015 to 1021 electrons s−1 cm−2. The top panel shows the X-ray brightness at 20 keV and

the bottom panel shows the X-ray brightness at 100 keV. Each panel shows curves for three

values of the power-law index of the injected electron flux density distribution: δ = 3, 5,

and 7. The curves are computed using Equations 37 and 16 with T = 10 MK, Ec = 20 keV,

Eth = 2.15 keV, xtt = 3× 109 cm, and no high-energy cutoff.
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Fig. 14.— Variation of the thick-target spectral index, γ(ϵ), with the thick-target X-ray

brightness, B(ϵ), as the injected electron flux density increases from 1015 to 1021 electrons

s−1 cm−2. The top panel shows the X-ray brightness and spectral index at 20 keV, and

the bottom panel shows the X-ray brightness and spectral index at 100 keV. Each panel

shows curves for three values of the power-law index of the injected electron flux density

distribution: δ = 3, 5, and 7. The curves are computed using Equations 37 and 44 with

T = 10 MK, Ec = 20 keV, Eth = 2.15 keV, xtt = 3× 109 cm, and no high-energy cutoff.
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Fig. 15.— Variation of the thick-target photon brightness at energy ϵ, B(ϵ), with the injected

electron flux density, Fe0. The top panel shows the X-ray brightness for δ = 5, and the bottom

panel shows the X-ray brightness for δ = 7. Each panel shows curves for nine values of the

photon energy, starting at ϵ = 20 keV (top curve) and increasing in steps of 10 keV to

ϵ = 100 keV (bottom curve). The curves are computed using Equations 37 and 16 with

T = 10 MK, Ec = 20 keV, Eth = 2.15 keV, xtt = 3× 109 cm, and no high-energy cutoff.


