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Deterministic errors in angular rate gyros, such as thermal biases, can have a significant
impact on spacecraft attitude knowledge. In particular, thermal biases are often the domi-
nant error source in MEMS gyros after calibration. Filters, such as MEKFs, are commonly
used to mitigate the impact of gyro errors and gyro noise on spacecraft closed loop pointing
accuracy, but often have difficulty in rapidly changing thermal environments and can be
computationally expensive. In this report an existing nonlinear adaptive filter is used as
the basis for a new nonlinear adaptive filter designed to estimate and cancel thermal bias
effects. A description of the filter is presented along with an implementation suitable for
discrete-time applications. A simulation analysis demonstrates the performance of the filter
in the presence of noisy measurements and provides a comparison with existing techniques.

Nomenclature

wwwmeas angular rate measurement by a gyro
www true angular rate
bbbconst gyro bias constant (systematic error)
bbbtherm gryo thermal bias (systematic error)
vvv random gyro additive noise
ŵww angular rate estimate

b̂bb bias estimate
qqq attitude quaternion
q̂qq attitude estimate quaternion
R(qqq) rotation matrix parameterized by quaternion qqq
k scalar nonlinear adaptive observer tracking gain
α scalar nonlinear adaptive observer adaptation gain
ccc function approximation coefficient
Λ unit triangle function
t time
T temperature

I. Introduction

A fundamental problem for spacecraft control systems is the estimation of vehicle attitude and angular
rate. Spacecraft often have stringent pointing requirements to accommodate science or mission payloads.
Of course all physical attitude and angular rate sensors have stochastic noise and systematic errors in their
measurements which can propagate through a spacecraft attitude controller and result in poor pointing
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performance. The objective of an attitude filter is to decrease the impact of measurement noise and mea-
surement error on the attitude control system. This is critically important for small spacecraft (such as
CubeSats) since many small spacecraft do not have the mass or power budget to accommodate high quality
sensors. Many small spacecraft use MEMS gyros as an angular rate measurement sensor that can meet these
mass and power constraints, but MEMS gyros are well known to have large thermal bias errors that can
change dramatically depending on the spacecraft’s gyro’s temperature.

In current spacecraft implementations, angular rate gyro systematic errors are typically modeled as
constant biases and are estimated using a least squares approach or via an extended Kalman filter.3–5,7

Vik et al12 proposed a new method that directly utilizes nonlinear quaternion kinematics but assumes
biases that exponentially decay. Boskovic et al8,9 proposed a nonlinear bias observer based upon quaternion
kinematics; however, the convergence proof assumes the vehicle attitude never passes through ±180◦. Thienel
and Sanner1,2 proposed a nonlinear bias observer based upon the quaternion kinematics that they proved
to be exponentially stable and singularity free; however the observer assumes a constant bias is the only
systematic error in the gyro measurements. Mahony et al10,11 reformulated Thienel’s and Sanner’s observer
in rotation matrix space and provided a variation of the observer design that reduces sensitivity to high
frequency attitude noise at a cost of increased lag; but, similar to Thienel’s and Sanner’s work, the Mahony
filter assumes a constant bias is the only systematic error in the gyro measurements.

None of the above filtering schemes directly address gyro thermal bias as a deterministic error source;
instead all of the above approaches either model thermal bias as bias drift or lump in thermal bias with gyro
noise. In this work, we consider the use of a collection of observers as in Thienel and Sanner,2 each set up
to estimate bias at a specific (different) temperature. The bias estimates from all observers are then used
in a function approximation scheme to estimate gyro bias as a function of temperature. This resulting bias
estimate can thus be subtracted from the angular rate measurement to provide an estimate of the spacecraft
angular rate even in the presence of rapid thermal variation of the gyro.

This paper is organized into several parts. Section II presents an angular rate gyro measurement model
that includes a thermal bias. Next, Section III provides a brief overview of the nonlinear adaptive observer
originally presented by Thienel and Sanner.2 A collection of those observers is then assembled into a new
observer designed to estimate thermal bias in Section IV. A series of numerical simulations provides a
comparison of the new observer with the observer developed by Thienel and Sanner as well as a popular
extended Kalman filter in Section V. Finally, Section VI provides some key observations made by the authors
and lists some future directions for the work.

II. Measurement and System Models

A gyro measurement model is shown in Eq. (1). In this model, wwwmeas(t) is the output of a gyro and is
the only quantity directly available to an onboard flight computer. The goal of a gyro is to measure the true
angular velocity of the spacecraft www(t), but the measurement is corrupted by constant bias bbbconst, thermal
bias bbbtherm(T (t)), and random noise vvv(t). The constant bias bbbconst for a particular gyro can be determined
via calibration on the ground and merely subtracted from gyro measurements; however, as no calibration is
perfectly accurate and constant biases are known to slowly drift, it is common to refine an estimate of the
bias in an attitude filter. Thermal bias, bbbtherm(T (t)), is an additive bias that is an explicit function of gyro
temperature T (t) as depicted in Figure 1. This error source is modeled as a deterministic error, but as it is
difficult to determine a calibration for this function some filters lump this error in with the random noise
term or consider this error to be the source of bias drift. Finally, the random noise term vvv(t) is modeled as
zero mean analog white Gaussian noise.

wwwmeas(t) = www(t) + bbbconst + bbbtherm(T (t)) + vvv(t) (1)

The attitude of a spacecraft can be parameterized by a unit quaternion. A unit quaternion parameterizing
attitude consists of a vector part εεε and a scalar part η as shown in Eq. 2. Eq. 2 also shows the relation
between the unit quaternion parameterization of attitude and the Euler axis angle representation which
consists of the Euler axis eee, a unit vector, and the Euler angle φ.

qqq =

[
εεε

η

]
=

[
eee sin φ

2

cos φ2

]
(2)
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Figure 1. A complicated model of a thermal bias.

We let the unit quaternion represent the rotation from an inertial coordinate system to the spacecraft body
coordinate system. Note that ||qqq|| = 1 by definition. The attitude quaternion can be used to construct a
rotation matrix R(qqq) =

(
η2 − εεεTεεε

)
I + 2εεεεεεT − 2ηS(εεε) where I is an identity matrix and S(εεε) is a matrix

representation of the cross product operation

S(ε) =

 0 −εz εy

εz 0 −εx
−εy εx 0


.

The relative orientation between coordinate frames represented by qqq1 and qqq2 can be computed via

q̃qq =

[
ε̃εε

η̃

]
= qqq1 ⊗ qqq−12 =

[
η2I − S(εεε2) εεε2

εεεT2 η2

][
εεε1

η1

]

where q̃qq defines the rotation from the frame defined by qqq2 to the frame defined by qqq1. Note that when ||̃εεε|| = 0
and η̃ = ±1, frame 2 is aligned with frame 1.

The attitude kinematics of the spacecraft can be described with the differential equation

q̇qq =
1

2
Q(qqq(t))www(t) (3)

where

Q(qqq(t)) =

[
η(t)I + S(εεε(t))

−εεεT (t)

]
Finally, we use Eq. 4 to model attitude measurement. The attitude measurement qqqmeas(t) is simply the

true attitude qqq(t) corrupted by a small noise rotation qqqnoise(t). The noise rotation is constructed using a
small angle assumption, in which case the quaternion noise properties can be specified in terms of the x, y,
and z axes of the spacecraft. This is useful for specifying, for example, the larger noise about bore sight
than about transverse axes which is typical for a star tracker. The noise rotation is constructed according
to Eq. 5, where θx, θy, and θz are each chosen from zero mean normal distributions with variances chosen to
model attitude sensor performance.

qqqmeas(t) = qqq(t)⊗ qqqnoise(t) (4)

qqqnoise(t) = qqqx(θx(t))⊗ qqqy(θy(t))⊗ qqqz(θz(t)) (5)

where

qqqx(θx(t)) =


sin
(
θx(t)
2

)
0

0

cos
(
θx(t)
2

)
 qqqy(θy(t)) =


0

sin
(
θy(t)
2

)
0

cos
(
θy(t)
2

)
 qqqz(θz(t)) =


0

0

sin
(
θz(t)
2

)
cos
(
θz(t)
2

)
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III. Constant Bias Observer

A novel approach to the gyro filtering problem using nonlinear adaptive techniques was introduced by
Thienel and Sanner.2 This filter, which will hereafter be referred to as a Constant Bias Observer (CBO),
does not assume an explicit model for thermal bias as a function of temperature; instead it models the
gyro bias as a constant with drift that is slow compared to the dynamics of the filter. A clear distinction
between this filter and an extended Kalman filter is that the CBO assumes the star tracker measurements
qqqmeas,k are perfect. The CBO treats any discrepancy between the star tracker measurements and the gyro
measurements as the fault of the gyro. Any resulting discrepancy is then used as an error metric to both
drive convergence of the filter for angular rate estimation and to drive an adaptive law to learn a constant
gyro bias. A direct consequence of the design of this filter is that the attitude estimates produced by the
CBO are in general worse estimates of system attitude than the raw star tracker measurements.

The CBO equations originally presented by Thienel and Sanner2 are repeated below for convenience. The
CBO produces an estimate of the spacecraft angular rate by subtracting a bias estimate from the measured
angular rate as in Eq. 6. The CBO generates a bias estimate by comparing its quaternion estimate q̂qq(t) with
the measured attitude as in Eq. 7. The resulting quaternion difference q̃qq(t) is then used to form an error metric
term, ε̃εε(t)sign(η̃(t)), to drive the estimator dynamics. The CBO’s quaternion estimate is driven according to
Eq. 8. Note that Eq. 8 is a copy of the attitude kinematics, Eq. 3, with the error metric term added to the
angular velocity estimate and an extra rotation RT (q̃qq(t)) to resolve the angular velocity terms in the observer
frame. The scalar k that multiplies the error metric acts as a gain that controls the rate of convergence
of the observer. Indeed, when the attitude estimate q̂qq matches the measured attitude qqq, the error metric
term goes to zero and the estimator kinematics equation Eq. 8 simplifies to ˙̂qqq(t) = 1

2Q(q̂qq(t))ŵww(t), effectively

copying the true kinematics of Eq. 3. Finally, the bias estimate b̂bb(t) evolves according to the adaptive law
given in Eq. 9 which consists of multiplying the error metric by a scalar adaptive gain α that controls the
rate of adaptation of the bias estimate.

ŵww(t) = wwwmeas(t)− b̂bb(t) (6)

q̃qq(t) =

[
ε̃εε(t)

η̃(t)

]
= qqqmeas(t)⊗ q̂qq−1(t) (7)

˙̂qqq(t) =
1

2
Q(q̂qq(t))RT (q̃qq(t)) [ŵww(t) + kε̃εε(t)sign(η̃(t))] (8)

˙̂
bbb(t) = −1

2
αε̃εε(t)sign(η̃(t)) (9)

The CBO has a number of distinctive properties. For the case of no random noise, both the CBO’s
angular rate estimate ŵww(t) and gyro bias estimate b̂bb(t) are guaranteed to converge to their true values
exponentially fast. For the case of random gyro noise, the CBO is provably stable. This filter requires no
linearization. Thienel and Sanner proved that the CBO, when coupled with a stable attitude controller,
exhibits the separation principle; that is, the CBO is guaranteed to result in a stable closed loop system.
Again, note that the CBO models only a constant gyro bias. If the gyro has a time-varying bias and the
gyro temperature changes sufficiently fast, the CBO’s bias estimate b̂bb(t) will lag the true bias.

For implementation in our simulation, or for an actual flight mission, the differential equations in the
CBO need to be integrated. To integrate the quaternion estimate Eq. 8, we use the quaternion kinematic
integration technique described on page 565 of Wertz.14 We use Euler quadrature to integrate Eq. 9.

IV. Thermal Bias Observer

The Thermal Bias Observer, or TBO for short, is a new extension to the CBO discussed in the previous
section. While the CBO is proven, given some assumptions, to be able to learn a constant bias, the CBO
has a steady state error when trying to track a bias that varies with temperature. The steady state error of
the gyro bias estimation is proportional to the rate of change of the gyro temperature. The concept behind
the TBO is to get around this difficulty by partitioning the temperature range and providing a bias estimate
for each partition, effectively providing a model-independent approximation to the thermal bias function.
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A simple implementation of the concept of temperature range partitioning is illustrated in Figure 2. In
this figure, the width of each blue box is the size of a given temperature partition; the height of each box is the
bias estimate associated with that temperature partition. The TBO is essentially a collection of CBOs, one
CBO for each temperature partition. The TBO also includes some simple logic to generate a bias estimate
for the temperature partition corresponding to the current temperature of the gyro and to ensure that the
TBO only updates the bias estimate for the current temperature partition. An immediate consequence of
the design of the TBO is that the TBO can only estimate the thermal bias function for temperatures that
the gyro has experienced; this is a physical example of a persistency of excitation condition as discussed
in Khalil13 and should be expected of any filter that does not have an explicit model of the thermal bias
function.

Figure 2. A simple implementation of the TBO partitions the temperature range and assigns a bias, represented
as a blue box, for each partition. The TBO updates only the estimate for the partition which contains the
current temperature. If the temperature variation repeatedly spans the entire temperature range, the TBO
can estimate the entire thermal bias function.

Since the simple implementation of the TBO merely consists of a CBO for each temperature partition,
the performance of the TBO will be identical to that of the CBO if the gyro temperature stays within a
single temperature partition. Thus the TBO can be expected to have similar performance to the CBO for
slowly varying thermal biases. The main improvement with this technique is that the bias estimate for each
temperature partition is saved for future use. For example, consider the situation when the gyro dwells at
a temperature in partition A for some time, then abruptly changes to a temperature in partition D, dwells
there for some time, then abruptly changes back to a temperature in partition A, and repeats. In this
situation, the CBO would experience a transient in its bias estimate every time the temperature changed.
The TBO in this situation, however, only experiences an initial transient during the first few temperature
changes as the TBO’s estimates of the thermal bias function in the temperature partitions converge. The
TBO can be thought of as saving its work as it estimates the thermal bias. The TBO could also be said
to approximate the thermal bias function with a set of rectangle basis functions where each temperature
partition has a rectangle function with a width the size of the partition and unit height; multiplying a
rectangle function by its corresponding bias estimate yields the blue rectangles depicted in Figure 2. Of
course, this implementation of the TBO still experiences a steady state error in its bias estimate as the
gyro temperature can vary within a temperature partition, but this error can be made arbitrarily small by
dividing the temperature range into smaller partitions at a cost of increased initial settling time as there are
more bias estimates.

If a thermal bias function can be modeled as a piece-wise continuous function, a slightly more sophisticated
version of the TBO can be implemented. The idea behind the improvement is to construct an approximation
of the thermal bias function by interpolating between bias estimates at the edges of each partition. This
improvement can be realized by utilizing triangle basis functions such as in Eq. 10

Λ(Tcenter, Teval) =

1− |Tcenter−Teval|
Twidth

for |Tcenter − Teval| < Twidth

0 otherwise
(10)

where Tcenter is the location of the peak of the triangle function on the temperature axis, Teval is the
temperature at which we evaluate the triangle function, and Twidth is the temperature partition width.
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Using many triangle functions, one centered at the end of each partition of the temperature range over
which the observer is to estimate the gyro bias function, provides the basis functions needed to approximate
the unknown gyro bias function as graphically illustrated in Figure 3. The triangle functions are each
scaled by a coefficient and appear in the figure as thin green lines. Summing all the scaled triangle basis
functions produces the thick green line which is a piece-wise continuous function approximation. This
technique allows for a better function approximation and requires far fewer basis functions than the simple
implementation with rectangle basis functions at only a very small computational cost increase; the TBO is
still far computationally lighter than an extended Kalman filter.

The goal of the TBO is to thus estimate the scaling coefficients for each triangle basis function. This is
almost equivalent to the operation of the CBO. If the gyro temperature never changes, then the TBO will
update the scaling coefficients that correspond to the triangle functions that are nonzero at that temperature.

Figure 3. An implementation of the TBO using triangle basis functions to produce a piece-wise continuous
approximation of the thermal bias function.

The TBO can be implemented as shown in Eqs. 11-17. Just as with the CBO, the TBO produces an
estimate of angular rate by subtracting a bias estimate from the gyro measurement in Eq. 11. The TBO
compares its attitude estimate with the attitude measurement in Eq. 12 which is subsequently used in an
error metric ε̃εε(t)sign(η̃(t)). The error metric is used in the TBO’s differential equation for the quaternion
estimate in Eq. 13 in the same way as in the CBO.

ŵww(t) = wwwmeas(t)− b̂bb(t) (11)

q̃qq(t) =

[
ε̃εε(t)

η̃(t)

]
= qqqmeas(t)⊗ q̂qq(t)−1 (12)

˙̂qqq(t) =
1

2
Q(q̂qq(t))RT (q̃qq(t)) [ŵww(t) + kε̃εε(t)sign(η̃(t))] (13)

Next, the TBO needs to update its bias estimate; however, instead of applying the bias adaptation law
directly to the bias estimate as in the CBO, the TBO applies the bias adaptation law to the scaling coefficients
ĉcc(i, t) that are associated with the triangle basis functions. In general, we would need to apply the adaptive
law to each coefficient in proportion to how much they contribute to the current bias estimate. If we had
used a different choice of basis functions, such as radial basis functions, then we would need to update every
triangle coefficient. With our choice of triangle basis functions, however, only two triangle functions are
nonzero at any given temperature (or, equivalently, time). So the next step for the TBO is to determine
which triangle basis functions are nonzero at the current temperature (time), which is accomplished with
a simple search or lookup table. We note this step in Eq. 14; given the current temperature, the function
findCurrentBin identifies the index of the temperature partition. We denote this temperature partition’s
index as bin.

bin = findCurrentBin(T (t)) (14)

The index bin is such that it also denotes the triangle basis function whose center is on the left end of
the temperature partition. We can thus use the index bin to identify the coefficient for the triangle basis
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function whose center is on the left end of the temperature partition, ĉcc(bin, t), and the coefficient for the
triangle basis function whose center is on the right end of the temperature partition, ĉcc(bin + 1, t). This
index allows us to apply the adaptive law −α2 sign(η̃(t))ε̃εε(t) to the appropriate triangle basis function scaling
coefficients in proportion to their current contribution to the bias estimate as in Eq. 15-16. Finally, the
new bias estimate is constructed by summing the value of the scaled triangle basis functions at the current
temperature as in Eq. 17.

˙̂ccc(bin, t) = −α
2

sign(η̃(t))ε̃εε(t)Λ(locations(bin), T (t)) (15)

˙̂ccc(bin+ 1, t) = −α
2

sign(η̃(t))ε̃εε(t)Λ(locations(bin+ 1), T (t)) (16)

b̂bb(t) = ĉcc(bin, t)Λ(locations(bin), T (t)) + ĉcc(bin+ 1, t)Λ(locations(bin + 1), T (t)) (17)

V. Numerical Simulation Results

This section presents a collection of preliminary simulation results comparing the performance of both of
the above mentioned filtering algorithms. Additionally, a Multiplicative Extended Kalman Filter, or MEKF,
as described by Markley6 is included in the simulation study for comparison purposes. All simulations are
for a rigid nadir-pointing spacecraft at LEO. A thermal bias is assumed for all simulations, but is merely
a linear function of temperature. A variety of sensor suites were considered; the noise parameters of those
sensor suites are summarized in Table 1. Each filter was discretized and was provided measurements every
∆tmeasupdate seconds.

Noise Level None Low Medium High

Hardware Grade Ideal Navigation Tactical Commercial

∆tmeas update (s) 0.2 0.2 0.5 0.5

σvvv
(◦/hr√Hz

)
- 0.0090 2.1 17.1

σqqqnoise
(◦) - 0.0011 0.019 0.10

Table 1. Noise parameters for the various sensor suites considered.

For each of the simulations detailed below, the filters were tuned to the sensor models. This is straight-
forward for the MEKF as all of its tuning parameters are direct sensor specifications with the exception of
the estimate of the standard deviation of the bias drift rate. Since the thermal bias changes slowly for small
thermal changes, the variation of the thermal bias was assumed to be the dominant source of bias drift and
used to tune the MEKF. It is common to alter the tuning of an MEKF from its theoretically optimal tuning
based on heuristics and past experience; however, for this study the theoretically optimal tuning was chosen.

While a majority of the tuning parameters for the MEKF can be optimally chosen using sensor noise
specifications, the authors are unaware of any explicit optimization criteria for the nonlinear filter gains k
(tracking gain) or α (bias estimate adaptation gain) based on sensor models. Instead, a brute-force method
was utilized to choose the gains for both the CBO and TBO. For each sensor suite listed in Table 1, 625
simulations were performed with various guesses for k and α. The performance of the nonlinear filters for
each simulation, measured by each filter’s root mean square (RMS) angular rate estimation error, was then
used to construct a plot as seen in Figures 4 and 5.

There are several nuances to using this analysis as an ad hoc gain tuning paradigm. If the initial bias
estimate for the nonlinear filters is chosen to be very accurate, the resulting gain performance plots will
show poor performance for sets of gain values that favor adaptation since the filter starts with a good
guess. Similarly, if the initial bias estimate is off by a substantial margin but the simulation duration is
set to be very long, the resulting gain performance plots will favor steady state filter performance, again
favoring sets of gain values that have weak adaptation. Conversely, setting the simulation duration to be a
short period of time with a poor initial bias estimate yields gain performance plots that indicate the best
performance for filters with aggressive adaptation. Furthermore, the simulation scenario was programmed
to have temperature vary sinusoidally with a period of 20 minutes.
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For the purposes of this study, the gains were chosen by setting the initial bias estimate to be off by
10% and the simulation duration to 2 hours. After completing the simulation experiments detailed in this
report, it was clear that these gains were not the optimal choice for the simulation studies that follow. It is
possible to tailor the above gain tuning procedure to more accurately reflect the scenario for which a filter
will be used and thus produce a choice of gains that lead to better performance. Unfortunately, this brute
force tuning strategy can require a prohibitive amount of computing to try out many different gain choices
for simulations of long duration.

Figure 4. Two views of the measure of performance for various choices of gains for the CBO filter. In the
left plot, the three dimensional shape of the performance can be easily visualized. The right plot, an overhead
view of the same data, depicts good performance in blue and poor performance in red.

Figure 5. Overhead views of the TBO’s performance for various noise conditions (detailed in Table 1). The
filter gains chosen we chose are depicted with a star. Note that the filter’s performance varies dramatically
for different noise conditions.
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An analysis of the transient performance of the three filters was performed. For the transient analysis,
all filters were loaded with an initial bias estimate that was off by 10%. For the case of no noise, Figure 6
shows the transient response of the three filters across two timescales. The left plot indicates that all three
filters experience a transient on the order of a few seconds. Over a longer timescale, as shown in the right
plot in Figure 6, it is clear that the transient for the TBO actually occurs over a period of many hours.
In this simulation the TBO did not reach steady state until approximately 35 hours into the simulation.
The longer transient can be attributed to the TBO learning 15 coefficients for its approximation of the gyro
thermal bias functions while the CBO and MEKF each only need to learn three bias estimates.

Figure 6. For the case of no random noise and an incorrect initial bias estimate, the transient response of the
CBO and MEKF occur over a very short time scale as shown in the plot on the left. The right plot makes
clear, however, that the TBO’s transient is much longer.

Adding random measurement noise to the simulations dramatically reduces the settling time of the TBO
as shown in Figure 7. It was surprising to see that all three filters performed similarly for all noise levels.
The theoretical proof for the CBO makes no guarantees of filter performance in the presence of attitude
noise but does state that the CBO is exponentially stable, so the performance of the CBO and the TBO in
the presence of random attitude noise was of great interest. In Figure 7 the TBO not only has comparable
performance to the MEKF in all noise scenarios, it also has a lower RMS error in all cases. Note carefully
that the tuning of all three filters can be improved upon from the simulations seen here.

A study of the steady state performance of the three filters for various thermal periods was also performed.
The above studies all model the temperature of the gyro as varying sinusoidally with a period of 20 minutes.
In this analysis, 100 simulations were run, each simulation having a different thermal period. Figure 8 shows
the results for the no noise (ideal sensor) case in axes-equal scale on the left plot and in a semilog scale
in the right plot. As expected, all three filters perform similarly when thermal variation is very slow; the
performance is similar on the right side of the performance plots. When the thermal variation is made faster,
the thermal bias plays a more dominant role in the sensor error; the TBO continues to perform well while
the CBO and MEKF incur more error due to the lag of their bias estimates trying to track the bias as the
bias changes more rapidly.

The thermal period sensitivity analysis was repeated for the noisy sensor suites listed in Table 1. The
plots in Figure 9 indicate that the TBO performs better than the other filters for fast thermal variations as
should be expected; the TBO is specifically designed to mitigate the effect of changing thermal bias. The
TBO was able to perform the best even in the high noise scenarios for fast thermal variations. For medium
and high noise scenarios, the MEKF was able to outperform the other filters only when the thermal variation
was slow enough that the MEKF’s bias estimate could sufficiently track the thermal bias. Note again that
these results are contingent on the choice of gain and tuning parameters; it is likely that all three filters can
be tuned to perform better in these scenarios.
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Figure 7. The transient response of all three filters is very fast when random noise is present. The RMS error
of the TBO is smaller than that of the other filters for all cases even though the MEKF’s error is more tightly
bound for the medium noise case.

Figure 8. The period of the thermal variation is set to a different value for each of 100 simulations, producing
an analysis of the sensitivity of each filter to the thermal period. The TBO performs substantially better than
the other filters for fast thermal variation. As expected, the filters have similar performance for slow thermal
variation as seen where the lines meet on the axes-equal plot (left). A semilog plot (right) reveals that the
steady state error due to lagging bias estimates still result in a small but perceptible performance difference.
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Figure 9. Repeating the thermal period sensitivity analysis for differing noise levels indicates the TBO performs
the best for fast thermal variations. For high noise cases, the MEKF performs better so long as the thermal
variation is slow enough that the MEKF’s bias estimate can sufficiently track the thermal bias.
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VI. Conclusions and Future Work

This report presented a nonlinear adaptive filter, the Thermal Bias Observer, for attitude rate estimation
from gyro measurements subject to thermal bias errors. The TBO, comprised of a collection of CBOs and a
function approximation technique, retains a number of the stability and identification properties of the CBO.
A brute-force technique for tuning the nonlinear filter gains was presented. A simulation analysis studied the
performance of the CBO and TBO nonlinear filters in the presence of measurement errors and random noise
in comparison with an MEKF, a popular extended Kalman filter for attitude estimation. The MEKF and
CBO performed well in all scenarios where the thermal variation was slow but had poor performance for fast
thermal variation. The TBO performed well in all simulated scenarios. In particular, the TBO significantly
outperformed the other filters when gyro thermal bias varied quickly. The TBO’s excellent performance
in situations with rapidly varying thermal biases along with its low computational complexity (compared
to extended Kalman filter techniques) make the TBO a good candidate for future spacecraft missions with
MEMS gyros.

This particular filter is of considerable interest to CubeSat missions with precise pointing requirements.
Many CubeSats have low-cost MEMS gyros on board that are known for having significant bias variation
due to temperature, a systematic error that this filter is designed to directly address. While this filter does
require quaternion measurements, several star trackers designed for CubeSat missions are now available on
the market. Additionally, quaternion measurements can be constructed from a pair of vector measurements
using the TRIAD algorithm if a star tracker is not available; potential vector measurements include the local
Sun vector from a fine or coarse sun sensor, the local Moon vector from a sun sensor, the local magnetic
field using a magnetometer, the Earth horizon vector using a horizon sensor, or others.

There are several avenues for future development of this work. The nonlinear filters implemented in
simulation were tuned with an ad hoc approach consisting of a brute-force search of the gain parameter
space; the authors are presently working to derive a set of optimization criteria for the nonlinear adaptive
filter gain parameters based on sensor specifications. The scope of simulation studies can easily be broadened;
this study only considered simple thermal bias functions, only included slow spacecraft dynamics, and only
permitted a certain class of thermal variations. All filters discussed here can be appropriately modified to
treat gyro scale factor and alignment errors, common calibration issues that need to be resolved to make the
filtering scheme directly applicable to flight projects. Additionally, the discretization approach implemented
in the simulation software did not account for asynchronous measurements or sensor updates; these issues
can be directly handled with more code but deserve a detailed study in their own right. Finally, the sensor
models in the simulations performed were low fidelity, higher fidelity sensor models or even operation with
hardware-in-the-loop would provide a more meaningful test of the filters’ performance.
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