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A Few Memories, 1983 to 1988 … 



Around CVL, 1983 to 1988 … 



Context and Background 
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Image Registration  
          in the Context of Space Mi



Image Registration  
         in the Context of Earth Remote Sens



Spatial and Spectral Characteristics  
     of Some Operational Sensors (Ch. 14-22  



• Definition 
“Exact pixel-to-pixel matching of two different 

images or matching of one image to a map” 
 

• Multiple Source Data 
– Multimodal Registration 
– Temporal Registration 
– Viewpoint Registration 
– Template Registration 

 

What is Image Registration … 



• Remote Sensing vs. Medical or Other Imagery 
– Variety in the types of sensor data and the conditions of data acquisition 
– Size of the data 
– Lack of a known image model 
– Lack of well-distributed “fiducial points” resulting in lack of algorithms validation 

• Navigation Error 
• Atmospheric and Cloud Interactions 

 
 

 

Challenges in Image Registration  
                 for Re  

Three Landsat images over Virginia acquired in August, October, and November 1999 
(Courtesy: Jeffrey Masek, NASA Goddard Space Flight Center) 



Challenges in Image Registration  
                 for Re  

Atmospheric and 
Cloud Interactions 

Baja Peninsula, 
California; 4 different 

times of the day (GOES-8) 
(Reproduced from Le Moigne & 

Eastman, 2005) 



Challenges in Image Registration  
                 for Re  

Multitemporal 
Effects 

Mississippi and Ohio 
Rivers before & after 
Flood of Spring 2002 

(Terra/MODIS) 
(Reproduced from Le Moigne & 

Eastman, 2005) 



Challenges in Image Registration  
                 for Re  

Relief Effect 
SAR and Landsat-TM 

Data of Lopé Area, 
Gabon, Africa 

(Reproduced from Le 
Moigne & Eastman, 2005) 



• Navigation or Model-Based Systematic Correction 
– Orbital, Attitude, Platform/Sensor Geometric Relationship, Sensor 

Characteristics, Earth Model, etc. 
 

• Image Registration/Feature-Based Precision Correction  
– Navigation within a Few Pixels Accuracy 
– Image Registration Using Selected Features (or Control Points) to Refine 

Geo-Location Accuracy 
 

• Image Registration as a Post-Processing or as a Feedback to 
Navigation Model 

 

 

Image Registration or Precision Correction 



Misregistration 

• (Towsnhend et al, 1992) and (Dai & Khorram, 1998): small error in registration 
may have a large impact on global change measurements accuracy 

• e.g., 1 pixel misregistration error => 50% error in Vegetation Index (NDVI) 
computation (using 250m MODIS data) 

• Influence of image registration on products validation 
• Impact of misregistration on legal, economic and sociopolitical (e.g., resource 

management), etc.  

Human-induced land cover changes observed by Landsat-5 in Bolivia in 1984 and 
1998(Courtesy: Compton J. Tucker and the Landsat Project, NASA Goddard Space Flight 

Center) 



• Mathematical Framework 
– I1(x,y) and I2(x,y): images or image/map 

– find the mapping (f,g) which transforms I1 into I2: I2(x,y) = g(I1(fx(x,y),fy(x,y)) 
» f : spatial mapping 
» g: radiometric mapping 

– Spatial Transformations “f” 
– Translation, Rigid, Affine, Projective, Perspective, Polynomial, … 

– Radiometric Transformations “g” (Resampling) 
– Nearest Neighbor, Bilinear, Cubic Convolution, ... 

 

• Algorithmic Framework (Brown, 1992) 
1. Feature Extraction 
2. Feature Matching 
3. Image Resampling 

 
 

Image Registration Frameworks 



• 1994: First results on the utilization 
of orthogonal Daubechies wavelets 
for image registration 

NASA Goddard Image Registration Group 



• Study of rotation- and translation-invariant wavelet 
filters (Spline, Simoncelli) 

• Study of different matching strategies and metrics 
• Parallel implementations (SIMD/MasPar, Beowulf 

Cluster, MIMD/Cray-T3E, FPGA-Hybrid) 
 
 

NASA Goddard Image Registration Group 

• Development of 
image registration 
framework based 
on Brown’s 
framework  



• Synthetic Data Experiments 
 

Experiments … Datasets (1) 



Experiments (1) … Analysis Samples 

• Various Features; Convergence as a function of noise 
and radiometric variations  

(white areas – regions of convergence with errors less than threshold, e.g. 0.5) 

• Simoncelli-based methods outperform 
Spline pyramid-based methods 

• Optimization based on Mutual Information 
does not perfom better than L2-Norm 

• Simoncelli-LowPass better than Simoncelli-
BandPass for Low Noise and Same 
Radiometry and for Initial Guess Sensitivity 



• Multi-Temporal Data 
– Landsat-5 and -7 (chips and corresponding windows) 

Experiments … Datasets (2) 

7 Landsat chips 

1 Landsat chip  
and 4 corresponding windows 



• Multi-Sensor Data 
– EOS Validation Core Sites 
– IKONOS/Landsat-7/MODIS/SeaWiFS 

• Red and NIR bands for each sensor 
• Spatial resolutions: IKONOS: 4m; ETM+: 30m; MODIS: 500m; 

SeaWiFS: 1000m 

– 4 different sites: 
• Coastal Area: VA, Coast Reserve Area, October 2001 
• Agriculture Area: Konza Prairie in State of Kansas, July to 

August 2001 
• Mountainous Area: Cascades Site, September 2000 
• Urban Area: USDA Site, Greenbelt, MD, May 2001 

 
 

Experiments … Datasets (3) 



• Multi-Sensor Data 
 

 

Experiments … Datasets (3) 

ETM/IKONOS - Coastal 
VA Data 

ETM/IKONOS - 
Agricultural Konza Data 



Experiments (2 and 3) … Analysis Samples 

GOAL: DEFINE A “REGION OF CONVERGENCE” AND A “REGION 
OF DIVERGENCE” FOR EACH ALGORITHM 
 RECOMMENDATION FOR UTILIZATION OF ALGORITHMS AND 
ITS COMPONENTS  

Number of cases that converge (out of 32) for the DC dataset, running 4 
algorithms and different features with the initial guess varying between the 

origin (d=0.0) and ground truth (d=1.0) 

Global transformation vs. manual registration (or “ground truth”) 
parameters for 4 Scenes in DC mutitemporal dataset 

Self-Consistency Study of the Mutual 
Information Results 



Toolbox for Registration and Analysis (TARA) 

 

 



THE BOOK … 

• Image Registration for Remote Sensing, ed. J. Le Moigne, N.S. Netanyahu and 
R.D. Eastman, Cambridge, UK:Cambridge University Press 

• Foreword by Jón A. Benediktsson 
• Contributors: S. Baillarin/CNES; D.G. Baldwin/Univ. of Colorado; M. 

Bernard/SPOT Image; A. Bouillon/Institut Géographique National; J.L. Carr/Carr 
Astronautics; R. Chellappa/UMD; Q-S. Chen/Hickman Cancer Center; A. Cole-
Rhodes/Morgan State Univ.; R.I. Crocker/Univ. of Colorado; R. Davies/Univ. of 
Auckland; D.J. Diner/NASA JPL; W.J. Emery/Univ. of Colorado; A.A. 
Goshtasby/Wright State Univ.; V.M. Govindu/Indian Institute of Science; V.M. 
Jovanovic/NASA JPL; C.S. Kenney/UC Santa Barbara; B.S. Manjunath/UC Santa 
Barbara; J. Morisette/USGS; D.M. Mount/UMD; M. Nishihama/Raytheon 
@NASA GSFC; F.S. Patt/SAIC @NASA GSFC; S. Ratanasanya/form. UMD; K. 
Solanki/UC Santa Barbara; H.S. Stone/form. NEC Research Lab; J. Storey/SGT 
@USGS; S. Sylvander/CNES; B. Tan/ERT @NASA GSFC; P.K. 
Varshney/Syracuse Univ.; R.E. Wolfe/NASA GSFC; C. Woodcock/Boston Univ.; 
M. Xu/Syracuse Univ.; I. Zavorin/form. UMBC@NASA GSFC; M. Zuliani/UC 
Santa Barbara 

 
 



THE BOOK CONTENTS 

• Part I – The Importance of Image Registration for Remote 
Sensing 
 

• Part II – Similarity Metrics for Image Registration 
 

• Part III – Feature Matching and Strategies for Image 
Registration 
 

• Part IV – Applications and Operational Systems 
 

• Part V – Conclusion and the Future of Image Registration 
 

 



Feature Matching 
Feature (Extraction), Similarity Metrics, 

Transformations, and Matching Strategies 

Nathan S. Netanyahu 
Dept. of CS, Bar-Ilan University, Israel, 
and CfAR/UMIACS, Univ. of Maryland 



• Given a reference image, I1(x, y), and a sensed image I2(x, y), find 
     the mapping (Tp, g) which “best” transforms I1 into I2, i.e., 
 

 
where Tp denotes spatial mapping and g denotes radiometric 
mapping. 

•  Spatial transformations: 
– Translation, rigid, affine, projective, perspective, polynomial 

•  Radiometric transformations (resampling): 
– Nearest neighbor, bilinear, cubic convolution, spline 

 

2 1( , ) ( ( ( , ), ( , ))),p pI x y g I T x y T x y=

Problem Statement 



• Gray levels 
• Salient points 

– Edge-like, wavelet coefficients (Simoncelli and 
Freeman ‘95) 

– Corners (Kearny et al. ‘87, Harris and Stephens ’88, 
Shi and Tomasi ‘94)  

• Lines 
• Contours, regions (Govindu et al. ‘99) 
• Scale invariant feature transform (SIFT), Lowe ‘04  

 

Feature (Extraction) 



• L2-norm: 
– Minimize the sum of squared errors (SSD) over overlapping 

subimage 
  

 

  

Similarity Metrics 
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• Cross-correlation 
– Maximize cross-correlation over image overlap 

 
 
• Normalized cross-correlation (NCC) 

– Maximize normalized cross-correlation 
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Similarity Metrics (cont’d) 



• Mutual information (MI): 
     Maximizes the degree of statistical dependence between the images 

 
 

    or using histograms, maximizes 
 
 
      where M is the sum of all histogram entries, i.e., number of 
       pixels (in overlapping subimage) 
 
 

Similarity Metrics (cont’d) 
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Similarity Metrics (cont’d) 

MI vs.    -norm and NCC applied to Landsat-5 
images (source: H. Chen et al. ‘03) 
 

2L



• Partial Hausdorff distance (PHD): 
     
 
     where                  (Huttenlocher et al. ‘93, Mount et al. ‘99) 

Similarity Metrics (cont’d) 
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• Discrete Gaussian mismatch (DGM): 
     
      
      
     where          denotes the weight of point a, and 

 
 
     
     is similarity measure ranging between 0 and 1(Mount et al., Ch. 8) 

  

Similarity Metrics (cont’d) 
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• Translation-only, rigid 
• Rotation, scale, and translation (RST) 
• Affine (6 degrees of freedom) 
 

 
 

 
 
 

 
• Projective/homography (e.g., for perspective effects in image 

mosaicing; Govindu and Chellappa, Ch. 10); 8 parameters  
 

Transformation Functions 
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• Weighted linear transformation (Goshtasby, Ch. 7); adaptive 
transformation, continuous and smooth, applied to multiview 
images with local geometric differences, and maps an entire 
image to another 
– Interpolating surface is a weighted sum of planar patches, 

each of which passes through a control point and provides a 
desired gradient, i.e., 

 

Transformation Functions (cont’d) 
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Transformation Functions (cont’d) 

Source: Goshtasby, IR Tutorial, CVPR ‘11 

Reference Sensed 

Registered 



 
 

Correlation L2-norm MI Hausdorff distance 

FFT 

Robust 
feature 

matching 
Gradient  
descent 

Spall’s 
optimization 

Thévenaz, 
Ruttimann, 

Unser  
optimization 

Gray levels Spline or Simoncelli 
LPF 

Simoncelli  
BPF 

L2-norm  MI 

Gradient  
descent 

Spall’s 
optimization 

Thévenaz, 
Ruttimann, 

Unser  
optimization 

IR Components (Revisited) 

Features 

Similarity 
measure 

Matching 
strategy 



• Exhaustive search (exponential in dimensionality of space) 
• Fast Fourier transform (FFT) 
• Numerical optimization (e.g., steepest gradient descent wrt SSD, 

NCC, and MI (Thévenaz, Ruttimann, and Unser (TRU) ‘98; Spall 
‘92)) 

• Robust transformation estimate (e.g., RANSAC, LMS) if (most) 
correspondences are known (via SIFT-like) 

• “Correspondenceless”, e.g., correlation of descriptor 
distribution/feature consensus (Govindu et al. ‘99) 

• Robust feature matching (RFM), e.g., efficient subdivision and 
pruning of transformation space; Huttenlocher et al. ‘93, Mount et 
al. ’99, Netanyahu et al. ‘04  

 

Matching Strategies 



• Frequency domain-based approach (Stone, Ch. 4) 
– Efficient computation of correlation as inverse of 
      
– Practical implementation (extension to NCC, masking 

invalid pixels, optimized computation) 
– Finding (small) rotational and scale differences (by 

matching chips) 
– Subpixel registration for translation-only using phase 

estimate (also in case of image aliasing) 
– Rotation and scale estimate by casting to log-polar 

coordinates 

  

Matching Strategies (cont’d) 
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• Matched filtering (Q. Chen, Ch. 5) 
– Maximize SNR (using theory of linear systems) 
– Apply phase-only and symmetric phase-only matched filters for 

translation-only IR 
 

 
 

– Apply Fourier-Mellin transform for rotation and scale changes; 
transform represents these parameters as translational shifts in 
log-polar coordinates of magnitude of Fourier spectrum, i.e., 
first estimate rotation and scale, followed by translation estimate 

Matching Strategies (cont’d) 
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Matching Strategies (cont’d) 

Pair of SPOT images and their registration, using symmetric 
phase-only matched filters on their Fourier-Mellin transforms 
 

Rotation and 
scale estimate 

Translation 
estimate 



• Numerical optimization (Cole-Rhodes and Varshney, Ch. 6; 
Cole-Rhodes and Eastman, Ch. 12) 
– Powel’s, Brent’s (1-D), simplex, etc. 
 
– Steepest descent/ascent variants 

• Standard 
• Newton-Raphson 
• Levenberg-Marquardt 

– Apply to various similarity metrics, e.g., SSD (Eastman and Le 
Moigne ‘01), MI, etc. 

» Explicit computation of gradient (and Jacobian/Hessian), e.g., 
Thévenaz and Unser ‘00  

» Stochastic approx. (Spall ‘92); Cole-Rhodes et al. ’03; Cole-Rhodes 
and Varshney, Ch. 6 

 

Matching Strategies (cont’d) 
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Matching Strategies (cont’d) 

Pair of Landsat images over DC 

MI surfaces of above (level 1 and 4) images, using B-spline interpolation 
(Cole-Rhodes and Varshney, Ch. 6) 



• Alignment via local geometric distributions 
(Govindu and Chellappa, Ch. 10) 

 
 
 
 
 
 

Matching Strategy (cont’d) 

Rotated contours 

Slope angle distributions and their correlation 



• Robust feature matching (RFM) (Mount et al., Ch. 8) 
– Space of affine transformations: 6-D space 
– Subdivide: Quadtree or kd-tree.  Each cell T represents a set 

of transformations; T is active if it may contain     ; o/w, it is 
killed  

– Uncertainty regions (UR’s): Rectangular approximation to 
the possible images         for all   

– Bounds: Compute upper bound (on optimum similarity) by 
sampling a transformation and lower bound by computing 
nearest neighbors to each UR  

– Prune: If lower bound exceeds best upper bound, then kill the 
cell; o/w, split it 
 

Matching Strategy (cont’d) 
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Matching Strategy (cont’d) 

RFM-based registration of Landsat images over DC using wavelet 
features and PHD similarity measure (Netanyahu et al. ‘04) 



• Computational efficiency 
– “Culling” feature points via, e.g., condition theory 

(Kenney et al. ‘03, Ch. 9) 
– Efficient numerical or discrete algorithmic 

procedures 
– Hierarchical pyramid-like (wavelet) decomposition 
– Use landmark chip database (instead of a large 

scene) or alternatively, extract automatically 
corresponding regions of interest using 
mathematical morphology (Plaza et al. ‘05, ‘07)  
 

 

Matching Strategy (cont’d) 



• Use Cramér-Rao bounds as performance benchmark 
for performance evaluation of image registration (Xu 
and Varshney, Ch. 13) 

Miscellaneous 



From Theory to Practice 
Operational Requirements 

Roger D. Eastman 
Loyola University, Baltimore, 

Maryland 



Why isn’t this problem solved by now? 

 
• A wealth of approaches! 
• SIFT, ASIFT, BSIFT, SIFT/NCC, SIFT/FLOUR 

 
• Beat the problem to death with terminology 
• “Assume we have a Banach space …” 

 
• Many smart people wielding heavy mathematical weapons 

against a relatively fixed problem– why hasn’t the problem 
yielded? Why no gold standard algorithm? 

 
 

 



But it is solved … ask LANDSAT 

Operational Satellite Teams solve it every day 
 
•GOES –Carr, Chapter 15 
•MISR – Jovanovic et al, Chapter 16 
•AVHRR – Emery et al, Chapter 17 
•Landsat, Storey, Chapter 18 
•SPOT, Ballarin, Chapter 19 
•VEGETATION, Sylvander, Chapter 20 
•MODIS, Wolfe et al, Chapter 21 
•SeaWiFS, Patt, Chapter 22 
 

 
 



And it’s often solved the old-fashioned way (2008) –  
            Normalized Cross Co



Example: Landsat ETM+  

• Geodetic accuracy 
– Database of GCPs derived from USGS data 
– Normalized correlation 
– Updates navigation models 
– Results: RMSE ~54m 

• Band-to-band registration 
– Selected tie-points in high-freq. arid regions 
– Normalized correlation 
– Subpixel by second order fit to 3x3 neighborhood 
– Result: 0.1 to 0.2 subpixel  

 
 

 



Operational teams requirements   

• Know models of sensor/platform/ 
• Have access to complete data set 
• Have continuing demands/responsibility 
• Are registering same plots of land again and 

again – can invest effort in data preparation 
• Can’t take big risks on unproven methods 
 

 
 



Know platform: Landsat team knowledge 

• Sensor geometry 
– Band to band 

• Sensor to platform 
– Sensor to sensor 

• Orbit 
– Platform to Earth 

• Terrain data 
– DEM 

• Radiometric model 
 

Illustrations USGS/NASA 



Invest in data: ETM+ Chips 

 
 

 
 

 



Know data: GOES channel 1 (Baja) 

• Contrast reversal 
day to night 

• Requires use of  
contour matching 
 

 
 

 



Use DEMs: Digital Terrain Models 

Taking terrain into account in matching 
 

 
 

 



Use proven methods: Landsat 7 library 

• Clean data, go fast 
– Use Normalized Grey-Scale Correlation 

• Missing data/gaps, need robustness 
– Use Mutual Information 

• Available alternative 
– Use Robust Feature Matching 

 
 

 
 



End Users – Earth scientists 

• Know what data is for 
• Have to fuse many data sets 
• Have access to ancillary data 
• Know cultural and historical data 

 
• Don’t need one magic method – need toolbox 

of many approaches 
 

 
 

 



Missouri river 1804-2002 

 
 
 

 

Illustrations U Missouri 
Geography Department 



Institutional challenges to “solving” IR for RS 

• Different communities/literature/requirements 
– Photogrammetry 
– Computer vision/image processing 
– Operational teams 
– Remote sensing/Earth scientists/end users 

• Demanding/varying mission requirements 
– Caution in system design, new methods 

• Expensive sensors and images 
– Hard to share data or complete models 

 
 



Conclusion 

Jacqueline Le Moigne 
Nathan S. Netanyahu 

Roger D. Eastman 



THE FUTURE OF IMAGE REGISTRATION 

• Satellite sensing/imaging in full expansion 
– Explosion of commercial satellites 
– Exploring distant planets (Moon, Mars, etc.), e.g. Lunar Reconnaissance Orbiter 

(LRO) 
• Future research and challenges 

– Combining multiple band-to-band registrations (e.g., hyperspectral data) 
– Automatically extracting windows of interest (decreasing processing time and 

increasing accuracy) 
– Dealing with other data sources (e.g., planetary imagery, or verification of 

optical systems) 
– Integration and fusion of multiple source imagery (various satellites, vector map, 

airborne, ground data, etc.) 
– Onboard implementations on specialized hardware 
– Multistage registration algorithms combining multiple principles and approaches 

and utilizing interdisciplinary systems engineering approach , thus increasing 
algorithms robustness and applicability 
 
 



Other Memories, 1983 to 1988 … 



The Autonomous Land Vehicle (ALV) Project  
                 in Colo



Thank You! 

Jacqueline Le Moigne 
Nathan S. Netanyahu 

Roger D. Eastman 
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