The gas distribution in galaxy cluster outer regions

D. Eckert1,2, F. Vazza3, S. Ettori4,5, S. Molendi6, D. Nagai6, E. T. Lani6,7, M. Roncarelli8, M. Rossetti1,9, S. L. Snowden10, and F. Gastaldello1,11

1 INAF - IASF-Milano, Via E. Bassini 15, 20133 Milano, Italy
2 ISDC Data Centre for Astrophysics, Geneva Observatory, ch. d’Ecogia 16, 1290 Versoix, Switzerland
e-mail: Dominique.Eckert@unige.ch
3 Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
4 INAF - Osservatorio Astronomico di Bologna, Via Ranzani 1, 40127 Bologna, Italy
5 INFN, Sezione di Bologna, viale Berti Pichat 6/2, 40127 Bologna, Italy
6 Department of Physics, Yale University, New Haven, CT 06520, USA
7 Shanghai Astronomical Observatory, 80 Nandan Road, Shanghai 200030, China
8 Dipartimento di Astronomia, Università di Bologna, via Ranzani 1, 40127 Bologna, Italy
9 Dipartimento di Fisica, Università degli studi di Milano, via Celoria 16, 20133 Milano, Italy
10 NASA/Goddard Space Flight Center, Code 662, Greenbelt, MD 20771, USA
11 University of California at Irvine, 4129, Frederick Reines Hall, Irvine, CA, 92697-4575, USA

Preprint online version: November 2, 2011

ABSTRACT

\textbf{Aims.} We present the analysis of a local ($z = 0.04 - 0.2$) sample of 31 galaxy clusters with the aim of measuring the density of the X-ray emitting gas in cluster outskirts. We compare our results with numerical simulations to set constraints on the azimuthal symmetry and gas clumping in the outer regions of galaxy clusters.

\textbf{Methods.} We exploit the large field-of-view and low instrumental background of \textit{ROSAT}/PSPC to trace the density of the intracluster gas out to the virial radius. We perform a stacking of the density profiles to detect a signal beyond r_{200} and measure the typical density and scatter in cluster outskirts. We also compute the azimuthal scatter of the profiles with respect to the mean value to look for deviations from spherical symmetry. Finally, we compare our average density and scatter profiles with the results of numerical simulations.

\textbf{Results.} As opposed to some recent \textit{Suzaku} results, and confirming previous evidence from \textit{ROSAT} and \textit{Chandra}, we observe a steepening of the density profiles beyond $\sim r_{500}$. Comparing our density profiles with simulations, we find that non-radiative runs predict too steep density profiles, whereas runs including additional physics and/or treating gas clumping are in better agreement with the observed gas distribution. We report for the first time the high-confidence detection of a systematic difference between cool-core and non-cool core clusters beyond $\sim 0.3 r_{200}$, which we explain by a different distribution of the gas in the two classes. Beyond $\sim r_{500}$, galaxy clusters deviate significantly from spherical symmetry, with only little differences between relaxed and disturbed systems. We find good agreement between the observed and predicted scatter profiles, but only when the 1% densest clumps are filtered out in the simulations.

\textbf{Conclusions.} Comparing our results with numerical simulations, we find that non-radiative simulations fail to reproduce the gas distribution, even well outside cluster cores. Although their general behavior is in better agreement with the observations, simulations including cooling and star formation convert a large amount of gas into stars, which results in a low gas fraction with respect to the observations. Consequently, a detailed treatment of gas cooling, star formation, AGN feedback, and taking into account gas clumping is required to construct realistic models of cluster outer regions.

\textbf{Key words.} X-rays: galaxies: clusters - Galaxies: clusters: general - Galaxies: clusters: intracluster medium

1. Introduction

The outskirts of galaxy clusters are the regions where the transition between the virialized gas of clusters and the accreting matter from large-scale structure occurs and where the current activity of structure formation takes place. Around the virial radius, the assumption of hydrostatic equilibrium, which is a necessary assumption for the reconstruction of cluster masses from X-ray measurements, might not be valid any more (e.g., Evrard et al. 1996), which could introduce biases in X-ray mass proxies (Rasia et al. 2004; Piffaretti & Valdarnini 2008; Lau et al. 2003; Meneghetti et al. 2010; Fabjan et al. 2011). As a result, the characterization of the X-ray emitting gas in the outer regions of galaxy clusters is important for mapping the gas throughout the entire cluster volume, studying the formation processes currently at work in the Universe, and performing accurate mass estimates for cosmological purposes (e.g., Allen et al. 2011).

Because of the low surface-brightness of the X-ray emitting gas and the extended nature of the sources, measuring the state of the intra-cluster gas around the virial radius is challenging (Ettori & Molendi 2011). Recently, the \textit{Suzaku} satellite achieved a breakthrough in this domain, performing measurements of cluster temperatures out to r_{200} (Reiprich et al. 2009; Bautz et al. 2003; Kawaharada et al. 2010; Hoshino et al. 2010).

1 We define r_{Δ} as the radius within which the mean density is Δ times the critical density
We select objects in the redshift range $0.04 - 0.2$, such that r_{200} is easily contained within the FOV of the instrument and is large enough to allow for a sufficient sampling of the density profile. We restrict ourselves to observations with sufficient statistics to constrain the emission around the virial radius. Our final sample comprises 31 clusters in the temperature range 2.5-9 keV, with the addition of A2163 ($K_T \sim 18$ keV). Among our sample, we classify 14 clusters as cool-core (CC) following the classification of Cavagnolo et al. (2009) (i.e. they exhibit a central entropy $K_0 < 30$ keV cm2), and 17 as non-cool core (NCC, $K_0 > 30$ keV cm2). We recall that CC clusters exhibit a brightness emission. Its ability to detect cluster emission at large radii has been demonstrated by Vikhlinin et al. (1999) and Neumann (2005) (hereafter, V99 and N05). Because of the large FOV, it can perform simultaneous local background measurements, and therefore it is less affected than Suzaku by systematic uncertainties. Its main limitation, however, is the restricted band pass and poor spectral resolution, which makes it impossible to measure cluster temperatures.

In this paper, we present the analysis of a sample of 31 galaxy clusters observed with ROSAT/PSPC, with the aim of characterizing the cluster emission at large radii and comparing the results with three different sets of numerical simulations (Roncarelli et al. 2006; Nagai & Lau 2011; Vazza et al. 2010). The paper is organized as follows. In Sect. 2 we describe our cluster sample and the available data. We present our data analysis technique in Sect. 3 and report our results in Sect. 4. We compare our results with numerical simulations in Sect. 5 and discuss them in Sect. 6.

Throughout the paper, we assume a ΛCDM cosmology with $\Omega_m = 0.3$, $\Omega_\Lambda = 0.7$, $\Omega_b = 0.047$ and $H_0 = 70$ km s$^{-1}$ Mpc$^{-1}$.

2. The sample

We select objects in the redshift range $0.04 - 0.2$, such that r_{200} is easily contained within the FOV of the instrument and is large enough to allow for a sufficient sampling of the density profile. We restrict ourselves to observations with sufficient statistics to constrain the emission around the virial radius. Our final sample comprises 31 clusters in the temperature range 2.5-9 keV, with the addition of A2163 ($K_T \sim 18$ keV). Among our sample, we classify 14 clusters as cool-core (CC) following the classification of Cavagnolo et al. (2009) (i.e. they exhibit a central entropy $K_0 < 30$ keV cm2), and 17 as non-cool core (NCC, $K_0 > 30$ keV cm2). We recall that CC clusters exhibit a brightness emission. Its ability to detect cluster emission at large radii has been demonstrated by Vikhlinin et al. (1999) and Neumann (2005) (hereafter, V99 and N05). Because of the large FOV, it can perform simultaneous local background measurements, and therefore it is less affected than Suzaku by systematic uncertainties. Its main limitation, however, is the restricted band pass and poor spectral resolution, which makes it impossible to measure cluster temperatures.

In this paper, we present the analysis of a sample of 31 galaxy clusters observed with ROSAT/PSPC, with the aim of characterizing the cluster emission at large radii and comparing the results with three different sets of numerical simulations (Roncarelli et al. 2006; Nagai & Lau 2011; Vazza et al. 2010). The paper is organized as follows. In Sect. 2 we describe our cluster sample and the available data. We present our data analysis technique in Sect. 3 and report our results in Sect. 4. We compare our results with numerical simulations in Sect. 5 and discuss them in Sect. 6.

3. Data analysis

3.1. Data reduction

We use the ROSAT Extended Source Analysis Software (Snowden et al. 1994) for data reduction. We filter out time periods when the master veto count rate exceeds 220 cts/sec (using valid_times), and extract light curves for the whole observation using rate_pspc. We use the ao executable to model the atmospheric column density for the scattering of solar X-rays, and fit the light curves in each energy band to get the relative contributions of the scattered solar X-rays (SSX) and of the long-term enhancements (LTE), using the rate_fit executable.

We then extract event images in each energy band and the corresponding effective exposure maps, taking into account vignetting effects. We compute the contribution of the various background components, the LTE (lte_pspc), the particle background (cast_part), and the SSX (cast_sx), and combine them to get a total non-cosmic background map.

3.2. Surface-brightness profiles

The point-spread function (PSF) of ROSAT/PSPC is strongly angle-dependent, and ranges from ~ 15 arcsec on-axis to 2 arcmin in the outer parts of the FOV. Thus, the sensitivity of the instrument to point sources is higher on-axis, and a larger fraction of the cosmic X-ray background (CXB) is resolved. Consequently, when detecting sources in the image it is important to use a constant flux threshold, such that the same fraction of the CXB is resolved all over the FOV and the value measured in the source-free regions can be used to subtract the background. We detect point sources using the program detect with a minimum count rate of 0.003 cts/sec in the R3-7 band ($\sim 3 \times 10^{-14}$ ergs cm$^{-2}$ s$^{-1}$ in the 0.5-2.0 keV band) to resolve the same fraction of the CXB over the FOV, and mask the corresponding areas. To compute surface-brightness profiles, we extract count profiles from the event images in the R3-7 band (0.42-2.01 keV) with 30 arcsec bins centered on the surface-brightness peak, out to the radius of 50 arcmin. We divide each pixel by its corresponding exposure to account for the vignetting effects, following the procedure of Eckert et al. (2011a,b). We perform the same operation for the background map and subtract the non-cosmic background profile in each bin.

We tested this procedure on 4 different blank fields to estimate the accuracy in our determination of the CXB. We extracted the surface-brightness profile for the 4 observations from the center of the FOV, grouped the bins to ensure a minimum of 100 counts per bin, and fitted the resulting profiles with a constant (see Fig. 2). While the agreement is qualitatively good, significant deviations to

the model are found, leading to an excess scatter of \(\sim 6\% \), which we use as an estimate of the systematic uncertainties in the measurement of the CXB. This value encompasses both the cosmic variance and the true systematic uncertainties, e.g., in the vignetting correction or the determination of the particle background. The higher level of scatter in the central regions is explained by the small area of the corresponding annuli, which implies a large cosmic variance likely due to discrete sources with fluxes just under our exclusion threshold. Since, in most cases, the value of \(r_{200} \) is larger than 15 arcmin, our systematic error of 6% is a conservative estimate of the level of systematic uncertainties at the virial radius.

For each cluster, we then use temperature profiles from the literature (XMM-Newton, Snowden et al. 2008; Chandra, Cavagnolo et al. 2009; BeppoSAX, De Grandi & Molendi 2002) to estimate the virial temperature of the cluster. We approximate \(T_{\text{vir}} \) as the mean temperature in the 200-500 kpc region, i.e. excluding the cool core and the temperature decline in the outskirts (Leccardi & Molendi 2008). Using this estimate of \(T_{\text{vir}} \), we compute the value of \(r_{200} \) from the scaling relations of Arnaud et al. (2005). We then use the source-free region of the observation (\(r > 1.3 r_{200} \)) to fit the surface-brightness profile with a constant and get the cosmic background level for the observation, with the exception of the Triangulum Australis cluster, for which we use the range \(r > 1.1 r_{200} \) because of the large value of \(r_{200} \) (\(\sim 37 \) arcmin).

After having estimated the sky background for our observation, we extract again the surface-brightness profile in the radial range 0 to \(r_{200} \) with logarithmic bin size. The best-fit value for the CXB is subtracted from the profile and its error is added in quadrature to each bin. The systematic error of 6% on the CXB is also added in quadrature to account for the cosmic variance and systematic uncertainties. For comparison, we note that in most cases the statistical uncertainties in the profiles are of the order of 10% of the CXB value around \(r_{200} \).

3.3. Density profiles

To compute the density profiles, we first rebin our background-subtracted surface-brightness profiles to ensure a minimum of 200 counts per bin and a detection significance of at least 3\(\sigma \), to reach sufficient statistics in each bin. We use the procedure of Kriss et al. (1983) to deproject the observed profiles, and the PSPC response to convert the observed count rates into emission measure, through the normalization of the MEKAL model (see Eckert et al. 2011a for details),

\[
\text{Norm} = \frac{10^{-14}}{4\pi(d_A(1+z))^2} \int n_en_HdV, \tag{1}
\]

which is proportional to the emission measure. To this aim, we assume that the spectrum of our sources is described by an absorbed MEKAL model with \(N_H \) fixed to the 21cm value (Kalberla et al. 2005), abundance fixed to 0.3\(Z_\odot \), and...
the temperature profiles adopted from the literature (see Table 3), and fold the model with the PSPC response. The conversion from PSPC R3-7 count rate to emission measure is then inferred. Beyond the limit of the temperature profiles, the temperature of the outermost annulus is used. We note that the conversion from PSPC count rate to emission measure is largely insensitive to the temperature: between 2 and 8 keV the conversion factor changes at most by 4%. Once converted into the MEKAL normalization, we infer the density profiles, assuming spherical symmetry and constant density into each shell.

The error bars on the density profiles were estimated using a Monte Carlo approach. In every case, we generated 10^4 realizations of the surface-brightness profile using Poisson statistics, and performed the geometrical deprojection following the method described above. The 1σ error bars were then estimated by computing the root-mean square deviation (RMS) of our 10^4 realizations of the density profile in each density bin.

3.4. Azimuthal scatter profiles

For the purpose of this work, we are also interested in the deviations of the X-ray emission from spherical symmetry. To this aim, we divide our images into N azimuthal sectors with constant opening angle, and compute the surface-brightness profiles in each sector individually. We then compute the scatter of the various sectors with respect to the mean profile, following the definition introduced by Vazza et al. (2011b),

$$\Sigma^2 = \frac{1}{N} \sum_{i=1}^{N} \frac{(SB_i - \langle SB \rangle)^2}{\langle SB \rangle^2}, \tag{2}$$

where \(\langle SB \rangle\) is the mean surface-brightness and \(SB_i, i = 1..N\) denotes the surface-brightness computed in the various sectors. Since the statistical fluctuations of the data also introduce a certain level of scatter, it must be noted that the quantity computed through expression (2) gives the sum of the statistical and intrinsic scatter,

$$\Sigma^2 = \Sigma_{\text{stat}}^2 + \Sigma_{\text{stat}}^2, \tag{3}$$

The statistical scatter \(\Sigma_{\text{stat}}\) is given by the mean of the individual relative errors,

$$\Sigma_{\text{stat}}^2 = \frac{1}{N} \sum_{i=1}^{N} \frac{\sigma_i^2}{\langle SB \rangle^2}, \tag{4}$$

and must be subtracted from Eq. 2 to estimate the level of intrinsic scatter. The validity of the aforementioned formula for the statistical scatter was verified through a set of simulations of a source with no intrinsic scatter. The uncertainties in the scatter are then estimated through Monte Carlo simulations.

In our analysis, we group the bins of the total surface-brightness profiles to reach a minimum of 8σ per bin, and then divide our images into 12 sectors with an opening of 30°. The result of this analysis is a profile describing the intrinsic azimuthal scatter of the X-ray surface brightness, in percent.

It must be noted that the method presented here is sensitive to all kinds of deviations from spherical symmetry, whether it is induced by the asymmetry of the large-scale structure (e.g., filaments), by gas clumping or by ellipticity. The cause of the observed asymmetry cannot be determined from the azimuthal scatter alone.

4. Results

4.1. Emission measure and density profiles

In Fig. 5 we show the scaled emission measure profiles (left, following Eq. 1) and the deprojected density profiles (right) for the 31 clusters of our sample. A self-similar scaling was applied to the emission-measure profiles (Arnaud et al. 2002), i.e. each profile was rescaled by the quantity

$$\Delta_{\text{SSC}} = \Delta_z^{2/3}(1+z)^{3/2} \left(\frac{kT}{10 \text{ keV}}\right)^{1/2}. \tag{5}$$

The density profiles were rescaled by \(E^2(z) = \Omega_m (1+z)^3 + \Omega_A\) following their expected evolution with redshift (Croston et al. 2008). As already noted by several authors (e.g., Vikhlinin et al. 1999; Neumann 2003; Croston et al. 2008; Leccardi et al. 2010), the profiles show a remarkable level of self-similarity outside of the core \(r > 0.2r_{200}\). On the other hand, the large scatter observed in the central regions reflects the distinction of the cluster population into CCs, showing a prominent surface-brightness peak, and NCCs, which exhibit a flat surface brightness profile in their cores, as expected from the standard β-model (Cavaliere & Fusco-Femiano 1976),

$$SB(r) = SB_0 \left(1 + \left(\frac{r}{r_c}\right)^{\beta}\right)^{−3\beta+0.5} \tag{6}$$

In the radial range 0.2 – 0.7r_{200}, the scatter of the density profiles is 10-20%, in excellent agreement with the Chandra (Vikhlinin et al. 2000) and XMM-Newton results (Croston et al. 2008). However, Croston et al. (2008) needed to rescale the profiles by \(T^{−1/2}\) to account for the lower gas fraction in low-mass objects. In our case, performing such a rescaling does not further reduce the scatter of the profiles. This is probably explained by the relatively narrow temperature range spanned in our sample (all but one objects have a temperature higher than 3 keV), such that the clusters in our sample should show little dependence on gas fraction.

4.2. Stacked emission-measure profiles

To compute the mean profile of our sample, we interpolated each profile following a pre-defined binning, and performed a weighted mean to compute stacked profiles. The errors on the interpolated points were propagated to the stacked profiles. We also divided our sample into the two classes (CC and NCC) to look for differences between them.

In Fig. 4 we show the stacked emission-measure (EM) profile for the entire sample (black) compared to the profiles stacked for the two populations separately (see also Appendix B). Interestingly, we note a clear distinction between the two classes in cluster outskirts (see the bottom panel of the Figure). Namely, beyond \(0.3r_{200}\) NCC profiles systematically exceed CCs. We stress that this effect is
really a difference between the two classes, i.e. it is not introduced by a biased distribution of another quantity (such as temperature or redshift). Indeed, grouping the profiles according to the temperature or the redshift did not show any particular behavior, which indicates that we are really finding an intrinsic difference between the CC and NCC classes. This result could follow from a different distribution of the gas in the two populations or from a higher clumping factor in disturbed objects (see Sect. 4).

Alternatively, the observed difference could be explained by an inaccurate determination of r_{200} for NCC clusters. Indeed, the scaling relations of Arnaud et al. (2005) were computed under the assumption of hydrostatic equilibrium, which is better fulfilled in CC clusters. This explanation is, however, unlikely. Indeed, to recover self-similarity, our value of r_{200} should have been systematically under-estimated by $\sim 10\%$ for NCCs, i.e. since $r_{200} \propto T_{\text{vir}}^{1/2}$ the virial temperature of the NCC clusters should have been under-estimated by more than 20%. From mock Chandra observations of a sample of simulated galaxy clusters, Nagai et al. (2007b) determined that the spectroscopic temperatures of unrelaxed clusters differs from that of relaxed clusters by $\sim 5\%$, which is insufficient to explain the observed difference. It is therefore unlikely that such a large error on the virial temperature would be made.

We fitted the mean scaled emission-measure profiles from Fig. 4 with the standard β-model (Eq. 6), adding a second β component in the case of the CC clusters to take the cool core into account. The (double) β model gives a good representation of the data in the radial range $0 \sim 0.7r_{200}$ ($\sim r_{500}$), but significantly exceeds the observed profiles above this radius, in agreement with the results of V99, N05 and Ettori & Balestra (2009). For CC clusters, the best-fit model gives $\beta = 0.717 \pm 0.005$, while for NCC clusters we find $\beta = 0.677 \pm 0.002$. Fitting the radial profiles in the range $0.65-1.3r_{200}$, we observe a significant steepening, with a slope $\beta = 0.963 \pm 0.054$ for CCs and $\beta = 0.822 \pm 0.029$ for NCCs. As explained above, the slope of the NCC profile is flatter than that of the CC profile beyond r_{500}. In more detail, the fits of the profiles in various radial ranges are reported in Table 2 to quantify the steepening.

Given the limited number of objects in our sample, we have to verify that this result is not a chance realization. To this aim, we fitted all the emission-measure profiles at $r > 0.3r_{200}$ with a β profile, fixing the value of β to 0.7 and r_c to 0.12r_{200}, and extracted the best-fit normalization for all profiles. We then sorted the normalization values into the CC and NCC classes, and performed a Kolmogorov-Smirnov test to determine the probability that they originate from the same parent distribution. Using this procedure, we found that the chance probability for this result is very small, $P \sim 6 \times 10^{-7}$. Therefore, we can conclude with good confidence that we are indeed finding an intrinsic difference between the two classes.

4.3. Stacked density profiles

We stacked the density profiles shown in the right panel of Fig. 3 following the same method as the EM profiles.

Fig. 3. Scaled emission measure (left, in units of cm$^{-6}$ Mpc) and density profiles (right) for the 31 clusters of our sample (see Table 3).

Fig. 4. Stacked emission measure profile (in units of cm$^{-6}$ Mpc) for the entire sample (black), and the two populations individually (CC, red; NCC, blue). See also Appendix B. The bottom panel shows the ratio between the CC and NCC populations.
compared to CCs above, the mean value (see also Table 1). At r < r_200, the mean density is n_{200} = (3.8 ± 0.4) × 10^{-5} E^2(z) cm^{-3}, with 25% scatter. For comparison, it is interesting to note that the density of PKS 0745-191 claimed in the Suzaku analysis of George et al. (2008) at r_200 deviates from our mean value by more than 5σ, which casts even more doubts on this measurement (Eckert et al. 2011a).

As for the EM, we also extracted mean density profiles individually for the two classes of clusters in our sample. The same behavior is observed at large radii, i.e. the density of NCC clusters is systematically higher (by ~15%) compared to CCs above r ∼ 0.3r_200. A global steepening of the density profiles is also observed beyond ∼ r_200.

Our density profiles are in good agreement with the results of V99. However, while V99 estimated the density from β-model fitting, we performed a geometrical deprojection of the data using temperature profiles to infer the mean density profile. This method has the advantage of being model-independent.

4.4. Gas mass

We computed the gas mass from our deprojected density profiles and stacked them in the same way as described above. In the self-similar model, the gas mass is expected to follow the relation M ∝ T^{3/2} (e.g., Bryan & Norman 1998). However, observational works indicate that the actual M_{gas} ∝ T relation is steeper than the expected self-similar scaling (Neumann & Arnaud 2001; Arnaud et al. 2007; Croston et al. 2008) because of the lower gas fraction in groups and poor clusters. For this work, we use the relation determined from the REXCESS sample (Croston et al. 2008) to rescale our gas mass profiles,

\[M_{\text{gas}} \propto E(z)^{-1} \left(\frac{kT}{10 \text{ keV}} \right)^{1.86} \]

As above, we divided the sample into CC and NCC classes, and stacked the two classes individually. In Fig. 6 we show the mean gas mass profiles for CC (red) and NCC clusters (blue). As expected, CCs have a higher gas mass in their inner regions, since their central densities are higher. More interestingly, we see that the two profiles converge in

Table 1. Mean emission-measure and density profiles computed from our sample. Column description. 1 and 2: Inner and outer bin radius in units of r_200; 3: Emission measure rescaled by Δ_{SSC} in units of cm^{-6} Mpc; 4: Average proton density in units of 10^{-3} cm^{-3}; 5: Scatter of the various profiles relative to the mean value in percent.

<table>
<thead>
<tr>
<th>R_{in}</th>
<th>R_{out}</th>
<th>ScEM</th>
<th>n_H E(z)^{-1}</th>
<th>σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.03</td>
<td>0.06</td>
<td>(1.57 ± 0.01) × 10^{-5}</td>
<td>12.17 ± 0.04</td>
</tr>
<tr>
<td>0.03</td>
<td>0.06</td>
<td>0.09</td>
<td>(1.086 ± 0.004) × 10^{-5}</td>
<td>6.05 ± 0.02</td>
</tr>
<tr>
<td>0.06</td>
<td>0.09</td>
<td>0.12</td>
<td>(6.52 ± 0.03) × 10^{-6}</td>
<td>3.44 ± 0.01</td>
</tr>
<tr>
<td>0.09</td>
<td>0.12</td>
<td>0.15</td>
<td>(4.46 ± 0.02) × 10^{-6}</td>
<td>2.21 ± 0.01</td>
</tr>
<tr>
<td>0.12</td>
<td>0.15</td>
<td>0.18</td>
<td>(3.01 ± 0.01) × 10^{-6}</td>
<td>1.58 ± 0.007</td>
</tr>
<tr>
<td>0.15</td>
<td>0.18</td>
<td>0.21</td>
<td>(2.09 ± 0.01) × 10^{-6}</td>
<td>1.175 ± 0.006</td>
</tr>
<tr>
<td>0.18</td>
<td>0.21</td>
<td>0.24</td>
<td>(1.42 ± 0.007) × 10^{-6}</td>
<td>0.919 ± 0.006</td>
</tr>
<tr>
<td>0.21</td>
<td>0.24</td>
<td>0.27</td>
<td>(1.05 ± 0.006) × 10^{-6}</td>
<td>0.728 ± 0.006</td>
</tr>
<tr>
<td>0.24</td>
<td>0.27</td>
<td>0.3</td>
<td>(8.16 ± 0.05) × 10^{-7}</td>
<td>0.508 ± 0.005</td>
</tr>
<tr>
<td>0.27</td>
<td>0.3</td>
<td>0.33</td>
<td>(6.05 ± 0.04) × 10^{-7}</td>
<td>0.501 ± 0.005</td>
</tr>
<tr>
<td>0.3</td>
<td>0.33</td>
<td>0.37</td>
<td>(4.64 ± 0.04) × 10^{-7}</td>
<td>0.422 ± 0.004</td>
</tr>
<tr>
<td>0.33</td>
<td>0.37</td>
<td>0.42</td>
<td>(3.54 ± 0.03) × 10^{-7}</td>
<td>0.350 ± 0.004</td>
</tr>
<tr>
<td>0.37</td>
<td>0.42</td>
<td>0.47</td>
<td>(2.56 ± 0.02) × 10^{-7}</td>
<td>0.284 ± 0.004</td>
</tr>
<tr>
<td>0.42</td>
<td>0.47</td>
<td>0.52</td>
<td>(1.77 ± 0.02) × 10^{-7}</td>
<td>0.225 ± 0.003</td>
</tr>
<tr>
<td>0.47</td>
<td>0.52</td>
<td>0.59</td>
<td>(1.27 ± 0.01) × 10^{-7}</td>
<td>0.188 ± 0.003</td>
</tr>
<tr>
<td>0.52</td>
<td>0.59</td>
<td>0.66</td>
<td>(8.58 ± 0.12) × 10^{-8}</td>
<td>0.145 ± 0.003</td>
</tr>
<tr>
<td>0.59</td>
<td>0.66</td>
<td>0.74</td>
<td>(5.74 ± 0.10) × 10^{-8}</td>
<td>0.120 ± 0.003</td>
</tr>
<tr>
<td>0.66</td>
<td>0.74</td>
<td>0.83</td>
<td>(4.13 ± 0.09) × 10^{-8}</td>
<td>0.099 ± 0.002</td>
</tr>
<tr>
<td>0.74</td>
<td>0.83</td>
<td>0.93</td>
<td>(2.66 ± 0.08) × 10^{-8}</td>
<td>0.073 ± 0.002</td>
</tr>
<tr>
<td>0.83</td>
<td>0.93</td>
<td>1.05</td>
<td>(1.59 ± 0.07) × 10^{-8}</td>
<td>0.059 ± 0.002</td>
</tr>
<tr>
<td>0.93</td>
<td>1.05</td>
<td>1.17</td>
<td>(8.08 ± 0.59) × 10^{-9}</td>
<td>0.039 ± 0.002</td>
</tr>
<tr>
<td>1.05</td>
<td>1.17</td>
<td>1.20</td>
<td>(4.75 ± 0.53) × 10^{-9}</td>
<td>0.028 ± 0.002</td>
</tr>
</tbody>
</table>

Fig. 5. Average proton density profile for the entire sample. The dashed lines indicate the positive and negative scatter of the profiles around the mean value.

Fig. 6. Enclosed gas mass profiles for CC (red) and NCC systems (blue). The data were rescaled by E(z)kT^{-1.86} as observed in the REXCESS sample (Croston et al. 2008).
cluster outskirts, and exhibit a gas mass around the virial radius that is consistent within the error bars. At r_{200}, the universal gas mass is

$$M_{\text{gas},200} = (2.41 \pm 0.05) \times 10^{14} E(z)^{-1} \left(\frac{kT}{10 \text{ keV}} \right)^{1.968} M_\odot,$$

(8)

with a scatter of 17% around the mean value. This result follows from the higher density measured in average beyond $\sim 0.3r_{200}$ in NCC clusters and the steeper slope of CC profiles in the outskirts (see Sect. 4.2). The lower density of CC clusters in the outer regions compensates for the well-known excess observed in the cores, such that the total gas mass contained within the dark-matter halo follows a universal relation. We also estimated the average gas fraction by computing the expected value of $M_{\text{gas},200}$ using the scaling relations of Arnaud et al. (2005). For our sample, we find a mean gas fraction within r_{200} of

$$f_{\text{gas},200} = (0.15 \pm 0.01) \left(\frac{kT}{10 \text{ keV}} \right)^{0.478},$$

(9)

in good agreement with previous works (e.g., Vikhlinin et al. 2006; McCarthy et al. 2007), which for the highest mass objects corresponds to $\sim 89\%$ of the cosmic baryon fraction (Jarosik et al. 2011).

4.5. Azimuthal scatter

Following the method described in Sect. 3.4, we computed the azimuthal scatter of the surface-brightness profiles for all the clusters in our sample, and rescaled the scatter profiles by our estimated value of r_{200}. We then stacked the profiles using the same procedure as described above and computed the mean azimuthal scatter. We recall that since the surface brightness depends on n_e^2, the variations in density are less important than the ones computed here.

In Fig. 7 we plot the average scatter profile (black), compared to the mean value for CC (red) and NCC clusters (blue). The increase in the innermost bin is an artifact introduced by the small number of pixels in the center of the images, and therefore it should be neglected. At small radii ($r < 0.5r_{200}$) we find a clear difference between CC and NCC clusters, that is easily explained by the more disturbed morphology of the latter. In this radial range, CC profiles exhibit a scatter of 20-30%, which corresponds to density variations of the order of 10%, in good agreement with the value predicted by Vazza et al. (2011b) from numerical simulations. Conversely, beyond $r \sim r_{500}$ the profiles for CC and NCC clusters are similar, and indicate a large scatter value (60-80%).

We investigated whether any systematic effect could affect our result in cluster outskirts, where the background is dominating with respect to the source. Indeed, in such conditions, the total scatter is dominated by the statistical scatter. In case the mean level of systematic uncertainties in the CXB reconstruction exceeds our adopted value of 6%, Eq. 8 immediately implies that the intrinsic scatter would be over-estimated. The presence of both intrinsic and statistical scatter could also introduce some covariance term, which is not taken into account in Eq. 8. To test this hypothesis, we ran a set of simulations including source and background, where we introduced a given level of intrinsic scatter for the source and a systematic error in addition to the Poisson statistics for the background. We then computed the intrinsic level of scatter following Eq. 8. Our simulations indicate that even when increasing the level of systematic uncertainties to 12% of the CXB value, a significant bias in the measured scatter only appears when the source-to-background ratio is of the same order as the systematic uncertainties. Since, by construction, we never detect a signal when the source is less than $\sim 15\%$ of the CXB value, our results are unaffected by these effects, and we can conclude with good confidence that the high level of scatter measured beyond r_{500} is an intrinsic property of our cluster sample.

V99 also investigated the deviations from spherical symmetry by measuring the value of β in 6 sectors in the radial range $r > 0.3r_{180}$, and concluded that the assumption of spherical symmetry is relatively well satisfied in cluster outskirts, at variance with our results (see Fig. 7). However, when fitting a β-model the fit is mostly driven by the shape of the profile in the innermost region, where the statistics is higher. Conversely, our method is model-independent, and directly stacks the data at similar radii. For relaxed objects, our data also indicate little deviation from spherical symmetry at $r < r_{500}$, and a significant scatter is only observed beyond r_{500}, so it is probable that these deviations would not be reflected in the β-model fit. For instance, the case of A2029 is striking. While, in agreement with V99, we find little azimuthal variations of β_{outer}, we observe a high level of scatter in this object beyond r_{500}, which is explained by the presence of a possible filament connecting A2029 to its neighbor A2033 in the North (see Gastaldello et al. (2010) and Appendix A). Moreover, V99 deliberately excluded a number of systems with obviously disturbed morphologies, such as A3558 and A3266, which we included in our sample. Therefore, our results are not in contradiction with the ones of V99.

5. Comparison with numerical simulations

In this section, we compare our observational results with three different sets of numerical simulations (Roncarelli et al. 2006; Nagai et al. 2007b; Vazza et al. 2011). We analyze the results of a composite set of cosmo-
logical runs, obtained by the different authors with slightly different cosmological and numerical setups. In addition, the preliminary data reduction was made on each data-set following independent post-processing techniques, aimed at assessing the role of gas clumping on the comparison between simulated mock and real X-ray observations. Our aim in this project is to test the most general and converging findings of such different runs, against our observations with ROSAT/PSPC.

5.1. Simulations

5.1.1. ENZO

We use a sample of 20 simulated clusters from the high resolution and non-radiative resimulations of massive systems presented in Vazza et al. (2010). In this set of simulations, Adaptive Mesh Refinement in the ENZO 1.5 code (Norman et al. 2007) have been tailored to achieve high resolution in the innermost regions of clusters (following the raise of gas and DM overdensity), and also in the outermost cluster regions, following the sharp fluctuations of the velocity field, associated with shocks and turbulent motions in the ICM. For a detailed presentation of the statistical properties of the thermal gas (and of turbulent motions) in these simulated systems we refer the reader to Vazza et al. (2010, 2011a).

5.1.2. ART

We analyze a sample of 10 simulated clusters with $T_x > 2.5$ keV from the sample presented in Nagai et al. (2007a,b). These simulations are performed using the Adaptive Refinement Tree (ART) N-body+gas-dynamics code (Kravtsov 1999, Kravtsov et al. 2002), which is an Eulerian code that uses adaptive refinement to achieve high spatial resolution (a few kpc) in self-consistent cosmological simulations. To assess the impact of cluster physics on the ICM properties, we compare two sets of clusters simulated with the same initial conditions but with different prescription of gas physics. In the first set, we perform hydrodynamical cluster simulations without gas cooling and star formation. We refer this set of clusters as non-radiative (NR) clusters. In the second set, we turn on the physics of gas dynamics in three different radial ranges ($0 < r < 200 \, r_{200}$), $200 < r < 500 \, r_{200}$) and $r > 500 \, r_{200}$). In the inner regions, the non-radiative run (dotted magenta) shows the best agreement with the data. We note that NR runs (ENZO, red; ART, dotted cyan; GADGET, dashed green) predict steeper profiles than the runs including cooling, star formation and feedback effects (ART, magenta; GADGET, dashed blue). CSF profiles also have lower normalizations, since radiative cooling transforms a fraction of the gas into stars. The profile including the effects of clumping (dotted magenta) shows the best agreement with the data.

5.1.3. GADGET

This set includes 4 massive halos simulated with the GADGET-2 Tree-SPH code (Springel 2005), with $M_{200} > 10^{15} M_\odot$ (for a detailed description see Roncarelli et al. 2006) and references therein. Each object was simulated following two different physical prescriptions: a non-radiative run (referred to as NR in Roncarelli et al. 2006) and a run including cooling, star formation and supernovae feedback (CSF).

In order to eliminate the dense clumps that dominate the density and surface brightness in the outskirts, when computing the profiles for every radial bin we excise the 1 per cent of the volume that corresponds to the densest SPH particles. This empirical method mimics the procedure of masking bright isolated regions from the analysis of observed clusters.

5.2. Comparison of gas density profiles

We compared the simulations with our observed mean ROSAT density profile (see Fig. 5 and Table 1). We present the detailed comparison in Fig. 8 with the non-radiative (NR) simulations (left panel) and with the CSF simulations (right). From the figures, we find a relatively good agreement between all the different sets of simulations, especially beyond $0.7 r_{200}$. The non-radiative GADGET run has a lower normalization than the corresponding grid codes, because in GADGET the fraction of baryons virializing into clusters is smaller than the cosmic value ($\sim 78\%$ of the cosmic baryon fraction), while grid codes predict a baryon fraction in clusters very close to the cosmic value. In general, we see that the predicted density profiles are too steep compared to the data. We note that NR runs (ENZO, red; ART, dotted cyan; GADGET, dashed green) predict steeper profiles than the runs including cooling, star formation and feedback effects (ART, magenta; GADGET, dashed blue). CSF profiles also have lower normalizations, since radiative cooling transforms a fraction of the gas into stars. The profile including the effects of clumping (dotted magenta) shows the best agreement with the data.

To quantify this effect, we fitted the various profiles in three different radial ranges ($0.2 - 0.4 r_{200}$; $0.4 - 0.65 r_{200}$, and $0.65 - 1.2 r_{200}$) in the inner regions, the effects of additional physics are expected to be important, thus highlighting the differences between NR and CSF runs. The radial range $0.4 - 0.65 r_{200}$ ($\sim 0.6 - 1.7 r_{200}$) is a good range for the comparison with the data, since the effects of radiative cooling should be small, and data from several different satellites are available for cross-check. On the observational side, the density profiles in this radial range are well-fitted by the β-model (see Eq. 9), and several independent works converge to the canonical value of $\beta \sim 0.7$ (e.g., Mohr et al. 1999; Ettori & Fabian 1999; Vikhlinin et al. 1999; Croston et al. 2008; Ettori & Balestra 2009; Eckert et al. 2011b).

As a benchmark, we computed the values of β for our average density profile and the various sets of simulations, fixing the core radius to $0.12 r_{200}$ (e.g., Mohr et al. 1999). The results of this analysis are shown in Table 2. The fits to the observational data were performed on the emission-measure profiles (see Sect. 4.2) to take advantage of the larger number of bins and minimize the uncertainties linked to the deprojection procedure.
Fig. 8. Comparison between the mean ROSAT density profile for our sample and the different sets of numerical simulations. The shaded area indicates the data and 1σ scatter as shown in Fig. 5. The bottom panels show the ratio between data and simulations as a function of radius. Left: Comparison with non-radiative simulations. The dotted red curve represents the ENZO profile (Vazza et al. 2010), the solid green curve shows the ART simulations (Nagai et al. 2007b), and the dashed blue curve is the GADGET profile (Roncarelli et al. 2006). Right: Same with CSF simulations. The dashed blue line shows the GADGET simulations, while the green curves show the ART profiles, for the total density (solid) and corrected for clumping (dotted, Nagai & Lau 2011).

Table 2. Values of the β parameter (Cavaliere & Fusco-Femiano 1976) in several radial ranges for the average ROSAT profiles and the various sets of simulations. The core radius was fixed to 0.12r200 in all cases. The subscript cl indicates the profiles corrected for the effect of clumping using the method described in Nagai & Lau (2011).

<table>
<thead>
<tr>
<th>Data set</th>
<th>$\beta_{0.2-0.4}$</th>
<th>$\beta_{0.4-0.65}$</th>
<th>$\beta_{0.65-1.2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data, total</td>
<td>0.664 ± 0.002</td>
<td>0.720 ± 0.009</td>
<td>0.886 ± 0.024</td>
</tr>
<tr>
<td>Data, CC</td>
<td>0.702 ± 0.004</td>
<td>0.712 ± 0.016</td>
<td>0.970 ± 0.053</td>
</tr>
<tr>
<td>Data, NCC</td>
<td>0.638 ± 0.003</td>
<td>0.731 ± 0.011</td>
<td>0.855 ± 0.029</td>
</tr>
<tr>
<td>ENZO</td>
<td>0.744</td>
<td>0.945</td>
<td>0.952</td>
</tr>
<tr>
<td>ART, NR</td>
<td>0.801</td>
<td>0.956</td>
<td>0.983</td>
</tr>
<tr>
<td>ART, CSF</td>
<td>0.808</td>
<td>0.842</td>
<td>1.005</td>
</tr>
<tr>
<td>ART, NR, cl</td>
<td>0.701</td>
<td>0.824</td>
<td>0.854</td>
</tr>
<tr>
<td>ART, CSF, cl</td>
<td>0.803</td>
<td>0.718</td>
<td>0.902</td>
</tr>
<tr>
<td>GADGET, NR</td>
<td>0.856</td>
<td>0.857</td>
<td>0.971</td>
</tr>
<tr>
<td>GADGET, CSF</td>
<td>0.756</td>
<td>0.864</td>
<td>0.944</td>
</tr>
</tbody>
</table>

These numbers confirm the visual impression that the simulated gas density profiles are steeper than the observed ones. In the 0.4 – 0.65r200 range, while all our datasets converge to a β value very close to the canonical value, all the simulations lead to significantly steeper gas profiles, with β values larger than 0.85, with the exception of the ART profile including CSF and clumping. Therefore, we can see that at this level of precision the effects of additional physics cannot be neglected, even in regions well outside of the cluster core.

The results presented in Table 2 also highlight the differences between NR and CSF runs. Inside r500, the simulations including additional physics lead to flatter density profiles compared to the NR runs. In this case, gas cooling is converting a fraction of the X-ray emitting gas into stars. Since the cooling efficiency decreases with radius, more gas disappears from the X-ray range in the central regions, which results in flatter density profiles and lower normalizations. We note, however, that this effect is probably overestimated in the CSF simulations. Indeed, it is well-known that these simulations predict a stellar fraction which is well above the observed value (e.g., Kravtsov et al. 2005, Borgani & Kravtsov 2009). This effect is particularly strong in the ART CSF simulation, for which nearly one third of the gas is converted into stars. Beyond r500, there is little difference between NR and CSF runs, i.e. the effects of additional physics are not important. At large radii, the effect of gas clumping (Nagai & Lau 2011) dominates and flattens the observed profiles. As we can see in Table 2 and in the right panel of Fig. 8, the ART profile including both additional physics and a post-processing treatment of clumping reproduces better the behavior of the data, even though it is still slightly too steep.

5.3. Azimuthal scatter

A study of the azimuthal scatter in the radial profiles of density, temperature, entropy and X-ray brightness of simulated ENZO clusters has been presented in Vazza et al. (2011b). In this case, we differ from the analysis reported there by computing the azimuthal scatter from a larger number of angular sectors, N=12, compared to the cases of N=2, 4 and 8 explored in Vazza et al. (2011b). In the simulations, a number of dense clumps are present, which may bias the predicted scatter high. To overcome this problem, we computed the scatter of the simulated clusters both for the total gas distribution and by filtering out the 1% most...
objects considered, we ignored the
plied our point-source detection algorithm to remove the
method as the observational data (see Sect. 3.4), and ap-
this case, we analyzed mock X-ray images using the same
simulations, both for the non-radiative and CSF runs. In
this analysis. For a comparison between
GADGET
with the
from non-radiative simulation runs is in good agreement
We remark that even if in this case the azimuthal scatter
detected as point sources and were masked for the analysis.
clumps are indeed present in the observations, but were
were filtered out (dashed red). This may indicate that some
enzyntactic coverage is more important, which create
r/r
200
200
200
200
ART
simulations (non-radiative: cyan;
and
Ettori & Balestra 2009), but at variance
eral offset
was obtained along two narrow arms, covering less than
10% of the cluster’s extent at r_{200}. Moreover, using several
offsets ROSAT/PSPC pointings of the Perseus cluster,
Ettori et al. (1998) observed clear azimuthal variations in
density and gas fraction. Therefore, it is likely that the
mentioned measurements are not representative of the cluster as a whole. This picture is supported by our analysis
of azimuthal variations in cluster outskirts, which suggests
that even CC clusters exhibit significant departures from
spherical symmetry around r_{200}. Consequently, a full az-
imuthal coverage is required to study the global behavior of cluster outer regions.

An important and previously unknown result of this
work is the systematic difference between CC and NCC
cluster populations observed beyond ∼0.3r_{200} (see Fig. 4). As explained in Sect. 3, this effect seems to be an intrinsic
difference between the two classes, since it does not correspond to a biased distribution of our sample in temperature or redshift. Our scaled gas mass profiles provide
a natural explanation for this result (see Fig. 5). Indeed,
when the appropriate scaling is applied, the steeper dens-
ity profiles of CCs in the outskirts compensate exactly for
the excess density in the central regions, such that clus-
ters with the same virial mass have the same gas mass en-
closed within r_{200}, albeit distributed in a different way for
relaxed and disturbed objects. This result was expected in
the old cooling-flow scenario (Fabian 1994), in which radi-
teering causes the gas to flow inwards and accumulate in
the central regions. While in the central regions AGN
feedback prevents the gas from cooling below a certain level
e.g., McNamara & Nulsen 2007), the entropy injected by
the central AGN is not sufficient to balance the flow in
the outer regions of clusters, which explains the steep dens-
ity profiles seen in Fig. 4. Conversely, merging events are
able of injecting a very large amount of energy in the ICM, which results in an efficient redistribution of the gas
between the core and the outer regions, and creates the
flatter density profiles measured for NCC clusters.

We also determined the typical scatter in surface-
brightness as a function of radius (see Fig. 7), and split the
data into the CC and NCC classes. In the central re-
gions, we observe a systematic difference between CC and
each radii, which makes it a rather robust proxy of cluster
asymmetries over large ∼Mpc scales.
NCC clusters, NCC clusters showing a higher level of scatter than CC. This result is easily explained by the larger number of substructures generally observed in NCC clusters (e.g., Sanderson et al. 2009). For CC clusters, we measure a scatter of 20 − 30% below 0.5r_{200}, which corresponds to small variations (∼ 10%) in gas density. This indicates that the azimuthal scatter in the inner regions (r < 0.5r_{200}) can be used as an estimator of the X-ray state of clusters, as suggested by Vazza et al. (2011b). Conversely, in cluster outskirts the scatter of CC profiles increases, and there is no observed difference between the two classes. Interestingly, we note that for CC clusters the turnover in Fig. 7 occurs around r_{500}, which coincides with a radius beyond which large scale infall motions and filamentary accretions are generally non-negligible (e.g., Evrard et al. 1996). Inside r_{500}, the gas is virialized in the cluster’s potential well, and shows only little deviations from spherical symmetry. Beyond r_{500} accretion processes are important, and the gas is located mostly along preferential directions (i.e., filaments). As a result, the distribution of the gas becomes strongly anisotropic, even for clusters which exhibit a relaxed morphology in their inner regions.

6.2. Comparison with simulations

Comparing our density profiles with numerical simulations, we find that all non-radiative simulations predict very steep profiles already starting from ∼ 0.2r_{200}, with values of the β parameter larger than 0.85 in the 0.4 − 0.5r_{200} range (see the left panel of Fig. 8 and Table 2). This indicates that the inclusion of non-gravitational effects is needed to reproduce the observed slope, even well outside of cluster cores. The runs including additional physics are in better qualitative agreement with the observations (see the right panel of Fig. 8), although because of overcooling their gas fraction is too low (∼ 10% compared to ∼ 15%). However, it seems unlikely that star formation and galactic winds (as in the CSF runs explored here) are the only necessary feedback mechanisms needed to reproduce observed clusters. Indeed, simple feedback models still face severe problems in matching the properties of the stellar components inside galaxy clusters, as well as the properties of galaxies within them (e.g., Borgani & Kravtsov 2009 for a recent review).

As illustrated in Table 2 gas clumping may also play a role in reconciling simulations with observations. Indeed, if an important fraction of the gas in cluster outskirts is in the form of dense gas clumps, as suggested in simulations (Nagai & Lau 2011), the emissivity of the gas would be significantly increased, thus leading to an overestimation of the gas density when the assumption of constant density in each shell is made. Our results show that the treatment of gas clumping slightly improves the agreement between data and simulations (see the right panel of Fig. 8). In addition, gas clumping also provides an alternative interpretation for our observed difference between the CC and NCC populations beyond 0.3r_{200}. Indeed, simulations predict a larger clumping factor in unrelaxed clusters compared to relaxed systems for the same average density, which would result in a higher observed density in the former. At the moment, it is not clear whether this difference is caused by gas redistribution or clumping, or if both of these effects play a role to some extent.

On the other hand, we find that numerical simulations can reproduce qualitatively the observed azimuthal scatter in the galaxy cluster gas density profiles (see Fig. 9). Interestingly, we find that the observed azimuthal scatter is reproduced accurately when the 1% most-luminous clumps are filtered out, whereas the non-radiative simulations with no filtering overestimate the observed level of azimuthal scatter at all radii. Two possible interpretations can be put forward to interpret this result. Observationally, it is possible that the dense clumps were detected as point sources and were filtered out of our observations. If this is the case, long exposures with high-resolution X-ray telescopes (Chandra or XMM-Newton) should allow us to characterize the point sources and discriminate between dense clumps and background AGN, possibly unveiling the population of accreting clumps in cluster outskirts. Conversely, if such observations do not confirm the existence of the clumps, it would imply that non-radiative simulations significantly over-estimate the amount of clumping in cluster outskirts, which would weaken the case for the interpretation recently put forward to explain the flattening of the entropy profiles observed in a few cases (Simionescu et al. 2011; Urban et al. 2011).

As shown in Fig. 9, radiative cooling may also help to reconcile the non-radiative simulations with the data. Indeed, radiative cooling lowers the entropy of the gas and makes it sink into the potential well, which produces clusters with more spherical morphologies (Lau et al. 2011) and thus reduces the azimuthal scatter. Since we know that this effect is overestimated in our CSF simulations, radiative cooling likely reduces the azimuthal scatter with respect to non-radiative simulations, although not as much as what is predicted here.

Alternatively, AGN feedback may be an important ingredient which is rarely taken into account in numerical simulations. Recently, Pratt et al. (2010) observed an anticorrelation between entropy and gas fraction, such that multiplying cluster entropy profiles by the local gas fraction allows to recover the entropy profiles predicted from adiabatic compression. I.e., the excess entropy observed in cluster cores is balanced by a lower gas fraction, and the total entropy follows the predictions of gravitational collapse. Mathews & Ged (2011) interpreted this result in terms of the total feedback energy injected in the ICM through various giant AGN outbursts, which they estimated to be as large as 10^{53} ergs. In this scenario, feedback mechanisms are preventing the gas from collapsing into the potential well, causing a deficit of baryons in the inner regions of clusters, and thus flattening the observed density profiles. Moreover, it is well known that this mechanism also takes place at group and galaxy scale, leading to shallower density profiles in the accreting clumps. As a result, the gas distribution in cluster outskirts would be more homogeneous than predicted in non-radiative simulations, in agreement with our observed azimuthal scatter profiles. Therefore, although its implementation into numerical simulations is challenging (Sijacki et al. 2008), AGN feedback could be an important effect to reconcile simulations with observations. A more complex picture of the ICM, possibly including also the detailed treatment of magnetic fields, cosmic rays, thermal conduction (and of the instabilities arising from these ingredients), would still represent a challenge for present day cosmological simulations.
7. Conclusion

In this paper, we presented our analysis of a sample of local \((z = 0.04 - 0.2)\) clusters with ROSAT/PSPC, focusing on the properties of the gas in cluster outskirts. We then compared our observational results with numerical simulations (Roncarelli et al. 2006; Nagai & Lau 2011; Vazza et al. 2011b). Our main results can be summarized as follows.

- We observe a general trend of steepening in the radial profiles of emission-measure and gas density beyond \(\sim r_{500}\), in good agreement with earlier works from Vikhlinin et al. (1999), Neumann (2002) and Ettori & Balestra (2009). As a result, the shallow density profiles observed in several clusters by Suzaku (Bautz et al. 2009, Simionescu et al. 2011) are probably induced by observations in preferential directions (e.g., filaments) and do not reflect the typical behavior of cluster outer regions.

- We note for the first time a difference between the density profiles of CC and NCC systems beyond \(\sim 0.3r_{500}\), which cannot be easily explained by any selection effect. We interpret this result by a different distribution of the gas in the two populations: the well-known density excess in the core of CC clusters is balanced by a slightly steeper profile in the outskirts, which leads to the same gas mass enclosed within \(r_{200}\) in the two populations (see Fig. 9). Alternatively, this result could be caused by a larger clumping factor in disturbed objects, leading to an overestimate of the gas density of NCC clusters in the external regions.

- We also observe a clear difference in the azimuthal scatter between the two populations in the central regions, which is easily explained by the more disturbed morphology of NCC clusters. Conversely, beyond \(\sim r_{500}\) both populations show a similar level of asymmetry (60-80%), which suggests that a signification fraction of the gas is in the form of accreting material from the large-scale structures.

- Comparing our ROSAT density profile with numerical simulations, we find that all non-radiative numerical simulations fail to reproduce the observed shape of the density profile, predicting density profiles which are significantly too steep compared to the data (see Table 2 and Fig. 8). This implies that non-gravitational effects are important well outside the core region. The runs including additional physics (cooling, star formation, SN feedback) predict flatter profiles, although still too steep compared to the observations. Besides, it is well known that these simulations over-predict the stellar fraction in clusters (Borgani & Kravtsov 2009). A slightly better agreement is found when a treatment of the observational effects of gas clumping is adopted (Nagai & Lau 2011).

- Non-radiative simulations are able to predict with good accuracy the observed azimuthal scatter profile, but only when the 1% most-luminous cells are filtered out (see Fig. 9). This result implies that either the clumps are quite bright and were masked as point sources in our analysis pipeline, in which case offset XMM-Newton and Chandra observations will be able to characterize them spatially and spectrally, or the non-radiative simulations significantly overestimate the effects of clumping on the observable X-ray properties.

- As an alternative explanation, we suggest that AGN feedback might be important even at large radii, and could help to reconcile observations and simulations. Indeed, recent works (Pratt et al. 2010, Mathews & Guo 2011) indicate that feedback mechanisms may be responsible for the well-known deficit of baryons in cluster cores, thus leading to flatter gas distributions out to large radii. Moreover, the existence of such mechanisms at group and galaxy scale could also dilute the accreting material at large radii, leading to a smaller azimuthal scatter.

Acknowledgements. We acknowledge Klaus Dolag for kindly providing the data of his GADGET runs. SE and SM thank the support from the National Science Foundation under Grant No. NSF PHY05-51164 for attending the workshop on “Galaxy Clusters: The Crossroads of Astrophysics and Cosmology”, where part of this project has been discussed. DN thanks the organizers of the KITP conference. DE was supported by the Occhialini fellowship of IASF Milan. MR and FG acknowledge the financial contribution from contracts ASI-INAF I/023/05/0 and I/088/06/0. FV acknowledges the collaboration of G.Brunetti, C.Ghieller and R.Brunino in the production of the GISST runs studied in this work. DN was supported in part by the NSF AST-1009811, by NASA NNX11AE07G, and by the facilities and staff of the Yale University Faculty of Arts and Sciences High Performance Computing Center.

References

Ettori, S. & Fabian, A. C. 1999, MNARS, 305, 834
Ettori, S., Fabian, A. C., & White, D. A. 1998, MNARS, 300, 837
Ettori, S. & Molendi, S. 2011, Memorie della Societa Astronomica Italiana Supplementi, 17, 47
Fabjan, D., Borgani, S., Rasia, E., et al. 2011, MNARS, 416, 801
Kravtsov, A. V. 1999, PhD thesis, New Mexico State University
<table>
<thead>
<tr>
<th>Cluster</th>
<th>Exposure [ks]</th>
<th>z</th>
<th>N_H [10^{22} cm$^{-2}$]</th>
<th>$kT_{200-500}$ [keV]</th>
<th>r_{200} [kpc]</th>
<th>r_{200} [arcmin]</th>
<th>n_0 [10^{-3} cm$^{-3}$]</th>
<th>K_0 [keV cm$^{-2}$]</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>A85</td>
<td>10.065</td>
<td>0.0556</td>
<td>0.028</td>
<td>6.3 ± 0.1</td>
<td>1873</td>
<td>29.17</td>
<td>18.9 ± 0.25</td>
<td>12.5 ± 0.1</td>
<td>1</td>
</tr>
<tr>
<td>A119</td>
<td>14.758</td>
<td>0.0442</td>
<td>0.037</td>
<td>5.0 ± 0.1</td>
<td>1673</td>
<td>32.04</td>
<td>2.1 ± 0.34</td>
<td>233.9 ± 1.1</td>
<td>2</td>
</tr>
<tr>
<td>A133</td>
<td>19.429</td>
<td>0.0566</td>
<td>0.0164</td>
<td>4.0 ± 0.09</td>
<td>1494</td>
<td>22.68</td>
<td>14.0 ± 0.18</td>
<td>17.3 ± 0.1</td>
<td>1</td>
</tr>
<tr>
<td>A401</td>
<td>7.519</td>
<td>0.07366</td>
<td>0.0095</td>
<td>7.9 ± 0.15</td>
<td>2077</td>
<td>24.72</td>
<td>5.3 ± 0.66</td>
<td>166.9 ± 2.3</td>
<td>2</td>
</tr>
<tr>
<td>A478</td>
<td>23.019</td>
<td>0.0881</td>
<td>0.0131</td>
<td>6.56 ± 0.08</td>
<td>1883</td>
<td>19.05</td>
<td>18.8 ± 0.19</td>
<td>7.8 ± 0.13</td>
<td>1</td>
</tr>
<tr>
<td>A644</td>
<td>10.310</td>
<td>0.0704</td>
<td>0.0075</td>
<td>7.7 ± 0.1</td>
<td>2054</td>
<td>25.48</td>
<td>9.4 ± 0.29</td>
<td>132.4 ± 0.7</td>
<td>2</td>
</tr>
<tr>
<td>A665</td>
<td>37.0866</td>
<td>0.1819</td>
<td>0.0431</td>
<td>8.0 ± 0.2</td>
<td>1987</td>
<td>10.82</td>
<td>5.6 ± 0.18</td>
<td>134.6 ± 0.7</td>
<td>1</td>
</tr>
<tr>
<td>A1068</td>
<td>10.822</td>
<td>0.1375</td>
<td>0.0173</td>
<td>4.9 ± 0.17</td>
<td>1587</td>
<td>10.89</td>
<td>15.0 ± 0.24</td>
<td>9.1 ± 0.14</td>
<td>1</td>
</tr>
<tr>
<td>A1651</td>
<td>7.630</td>
<td>0.084945</td>
<td>0.0156</td>
<td>6.7 ± 0.2</td>
<td>1913</td>
<td>20.00</td>
<td>8.8 ± 0.50</td>
<td>89.5 ± 0.72</td>
<td>2</td>
</tr>
<tr>
<td>A1689</td>
<td>14.291</td>
<td>0.1832</td>
<td>0.0186</td>
<td>9.2 ± 0.2</td>
<td>2126</td>
<td>11.51</td>
<td>13.8 ± 0.22</td>
<td>78.4 ± 0.72</td>
<td>1</td>
</tr>
<tr>
<td>A1795</td>
<td>35.494</td>
<td>0.06248</td>
<td>0.0121</td>
<td>6.02 ± 0.08</td>
<td>1828</td>
<td>25.31</td>
<td>20.1 ± 0.12</td>
<td>19.0 ± 0.72</td>
<td>1</td>
</tr>
<tr>
<td>A1991</td>
<td>21.956</td>
<td>0.0586</td>
<td>0.0248</td>
<td>2.4 ± 0.1</td>
<td>1064</td>
<td>15.64</td>
<td>16.1 ± 0.22</td>
<td>1.5 ± 0.14</td>
<td>1</td>
</tr>
<tr>
<td>A2029</td>
<td>13.089</td>
<td>0.07278</td>
<td>0.0323</td>
<td>7.7 ± 0.2</td>
<td>2054</td>
<td>23.40</td>
<td>20.2 ± 0.20</td>
<td>10.5 ± 0.15</td>
<td>1</td>
</tr>
<tr>
<td>A2142</td>
<td>19.410</td>
<td>0.0909</td>
<td>0.0383</td>
<td>9.0 ± 0.3</td>
<td>2209</td>
<td>21.73</td>
<td>10.3 ± 0.17</td>
<td>68.1 ± 0.72</td>
<td>3</td>
</tr>
<tr>
<td>A2163</td>
<td>7.267</td>
<td>0.203</td>
<td>0.109</td>
<td>18.8 ± 1.3</td>
<td>3008</td>
<td>15.01</td>
<td>8.2 ± 0.92</td>
<td>438.0 ± 0.72</td>
<td>2</td>
</tr>
<tr>
<td>A2204</td>
<td>5.346</td>
<td>0.1526</td>
<td>0.0561</td>
<td>8.3 ± 0.2</td>
<td>2057</td>
<td>12.93</td>
<td>33.3 ± 0.76</td>
<td>9.7 ± 0.14</td>
<td>1</td>
</tr>
<tr>
<td>A2218</td>
<td>43.179</td>
<td>0.1756</td>
<td>0.0266</td>
<td>6.7 ± 0.3</td>
<td>1825</td>
<td>10.22</td>
<td>4.6 ± 0.10</td>
<td>288.6 ± 0.72</td>
<td>1</td>
</tr>
<tr>
<td>A2255</td>
<td>13.676</td>
<td>0.0806</td>
<td>0.0250</td>
<td>6.1 ± 0.1</td>
<td>1817</td>
<td>19.9</td>
<td>2.3 ± 0.32</td>
<td>529.1 ± 0.72</td>
<td>2</td>
</tr>
<tr>
<td>A2256</td>
<td>17.000</td>
<td>0.0581</td>
<td>0.0418</td>
<td>6.2 ± 0.1</td>
<td>1865</td>
<td>27.63</td>
<td>3.0 ± 0.47</td>
<td>349.6 ± 0.72</td>
<td>1</td>
</tr>
<tr>
<td>A2597</td>
<td>7.426</td>
<td>0.0852</td>
<td>0.0246</td>
<td>3.64 ± 0.06</td>
<td>1405</td>
<td>14.65</td>
<td>18.0 ± 0.22</td>
<td>10.6 ± 0.72</td>
<td>1</td>
</tr>
<tr>
<td>A3112</td>
<td>7.829</td>
<td>0.07525</td>
<td>0.0137</td>
<td>4.8 ± 0.1</td>
<td>1613</td>
<td>18.82</td>
<td>18.3 ± 0.26</td>
<td>11.4 ± 0.14</td>
<td>1</td>
</tr>
<tr>
<td>A3158</td>
<td>3.123</td>
<td>0.0597</td>
<td>0.0138</td>
<td>5.1 ± 0.1</td>
<td>1681</td>
<td>24.27</td>
<td>3.8 ± 0.20</td>
<td>166.0 ± 0.72</td>
<td>1</td>
</tr>
<tr>
<td>A3206</td>
<td>13.967</td>
<td>0.0589</td>
<td>0.0158</td>
<td>9.2 ± 0.3</td>
<td>2260</td>
<td>33.05</td>
<td>5.3 ± 0.49</td>
<td>72.5 ± 0.72</td>
<td>3</td>
</tr>
<tr>
<td>A3558</td>
<td>28.751</td>
<td>0.048</td>
<td>0.0402</td>
<td>5.06 ± 0.05</td>
<td>1687</td>
<td>29.89</td>
<td>7.2 ± 0.23</td>
<td>126.2 ± 0.72</td>
<td>1</td>
</tr>
<tr>
<td>A3562</td>
<td>20.518</td>
<td>0.049</td>
<td>0.0376</td>
<td>4.8 ± 0.3</td>
<td>1635</td>
<td>28.41</td>
<td>5.7 ± 0.26</td>
<td>77.4 ± 0.72</td>
<td>2</td>
</tr>
<tr>
<td>A3667</td>
<td>12.462</td>
<td>0.0556</td>
<td>0.0452</td>
<td>5.31 ± 0.05</td>
<td>1721</td>
<td>26.56</td>
<td>4.5 ± 0.36</td>
<td>160.4 ± 0.72</td>
<td>2</td>
</tr>
<tr>
<td>A4059</td>
<td>5.684</td>
<td>0.0475</td>
<td>0.0122</td>
<td>4.07 ± 0.08</td>
<td>1513</td>
<td>27.08</td>
<td>4.7 ± 0.33</td>
<td>7.1 ± 0.14</td>
<td>1</td>
</tr>
<tr>
<td>Hydra A</td>
<td>18.541</td>
<td>0.0539</td>
<td>0.0468</td>
<td>4.0 ± 0.06</td>
<td>1495</td>
<td>23.75</td>
<td>22.1 ± 0.17</td>
<td>13.3 ± 0.14</td>
<td>1</td>
</tr>
<tr>
<td>MKW 3s</td>
<td>9.781</td>
<td>0.045</td>
<td>0.0272</td>
<td>3.52 ± 0.06</td>
<td>1409</td>
<td>26.54</td>
<td>13.5 ± 0.22</td>
<td>23.9 ± 0.72</td>
<td>1</td>
</tr>
<tr>
<td>PKS 0745-191</td>
<td>9.627</td>
<td>0.1028</td>
<td>0.0405</td>
<td>8.4 ± 0.3</td>
<td>2121</td>
<td>18.70</td>
<td>31.9 ± 0.45</td>
<td>12.4 ± 0.72</td>
<td>1</td>
</tr>
<tr>
<td>Triangulum</td>
<td>7.343</td>
<td>0.051</td>
<td>0.114</td>
<td>8.9 ± 0.2</td>
<td>2229</td>
<td>37.31</td>
<td>5.9 ± 0.79</td>
<td>313.0 ± 0.72</td>
<td>1</td>
</tr>
</tbody>
</table>
Appendix A: Notes on individual objects

- **A85**: A sub-cluster located ∼ 10′ South of the cluster center is currently merging with the main cluster. This sub-structure was masked for the analysis.

- **A401**: The cluster is connected through a filament to its neighbor A399, located ∼ 35′ South-West of the center of A401. We extracted the surface-brightness profile in a sector of position angle 340-250° to avoid any contamination of A399 to our measurement of the CXB.

- **A478**: The combination of a favorable temperature/redshift and of a good-quality ROSAT observation allow us to reach the highest signal-to-noise ratio in the sample at r_{200} for this strong CC cluster. As a result, the data from this cluster may contribute strongly when a weighted mean is performed.

- **A644**: This NCC cluster exhibits an unusual decreasing azimuthal scatter profile, showing a large (close to 100%) scatter in its central regions, but no significant scatter around r_{200}.

- **A2029**: A probable filament is connecting A2029 to A2033, located ∼ 35′ North of the center of A2029. The surface-brightness profile was extracted in a sector with position angle 140-80° to measure the CXB level.

- **A2142**: Several PSPC observations of this famous cold-front cluster exist. For this work, we used the longest available observation, which was pointed 16′ South of the center of A2142. This is the only case in the sample for which the observation was not pointed on the target.

- **A3558 and A3562**: These two clusters are located in the Shapley super-cluster and connected by a filament. Consequently, they show an unusually high azimuthal scatter in the outskirts. The CXB level was estimated by excluding the direction of the filament.

- **A3667**: This very disturbed cluster shows the highest emission-measure and density in the sample beyond ∼ 0.2r_{200}, and hence it could bias our average profiles, in particular when computing the difference between the CC and NCC classes. However, removing it from the sample did not lead to any significant difference, either quantitative or qualitative.

- **A4059**: This is the most azimuthally-symmetric cluster in the sample. The azimuthal scatter for this cluster is consistent with 0 at all radii.

- **Hydra A**: A tail of emission (filament?) extends out to ∼ 20′ South-East of the cluster core. This leads to a very high azimuthal scatter (> 100%) around r_{200}.

Appendix B: Mean emission-measure profiles

In Table B.1 we give the mean self-similar scaled emission-measure profiles for the CC and NCC classes and the whole sample, as shown in Fig. 4.
<table>
<thead>
<tr>
<th>R_{in}</th>
<th>R_{out}</th>
<th>Total</th>
<th>CC</th>
<th>NCC</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.02</td>
<td>(1.80 ± 0.01) · 10^{-7}</td>
<td>(9.48 ± 0.05) · 10^{-7}</td>
<td>(1.13 ± 0.01) · 10^{-6}</td>
</tr>
<tr>
<td>0.02</td>
<td>0.04</td>
<td>(1.26 ± 0.01) · 10^{-5}</td>
<td>(4.83 ± 0.02) · 10^{-5}</td>
<td>(8.32 ± 0.06) · 10^{-6}</td>
</tr>
<tr>
<td>0.04</td>
<td>0.06</td>
<td>(9.63 ± 0.04) · 10^{-6}</td>
<td>(2.28 ± 0.01) · 10^{-5}</td>
<td>(6.90 ± 0.04) · 10^{-6}</td>
</tr>
<tr>
<td>0.06</td>
<td>0.08</td>
<td>(7.39 ± 0.03) · 10^{-5}</td>
<td>(1.23 ± 0.01) · 10^{-5}</td>
<td>(5.70 ± 0.03) · 10^{-6}</td>
</tr>
<tr>
<td>0.08</td>
<td>0.1</td>
<td>(5.45 ± 0.02) · 10^{-5}</td>
<td>(7.72 ± 0.04) · 10^{-6}</td>
<td>(4.49 ± 0.02) · 10^{-6}</td>
</tr>
<tr>
<td>0.1</td>
<td>0.12</td>
<td>(4.12 ± 0.02) · 10^{-6}</td>
<td>(5.27 ± 0.03) · 10^{-6}</td>
<td>(3.52 ± 0.02) · 10^{-6}</td>
</tr>
<tr>
<td>0.12</td>
<td>0.14</td>
<td>(3.20 ± 1.36) · 10^{-8}</td>
<td>(3.63 ± 0.02) · 10^{-6}</td>
<td>(2.91 ± 0.02) · 10^{-6}</td>
</tr>
<tr>
<td>0.14</td>
<td>0.16</td>
<td>(2.47 ± 0.01) · 10^{-6}</td>
<td>(2.60 ± 0.02) · 10^{-6}</td>
<td>(2.37 ± 0.01) · 10^{-6}</td>
</tr>
<tr>
<td>0.16</td>
<td>0.18</td>
<td>(3.91 ± 0.01) · 10^{-6}</td>
<td>(1.95 ± 0.01) · 10^{-6}</td>
<td>(1.88 ± 0.01) · 10^{-6}</td>
</tr>
<tr>
<td>0.18</td>
<td>0.2</td>
<td>(1.51 ± 0.01) · 10^{-6}</td>
<td>(1.48 ± 0.01) · 10^{-6}</td>
<td>(1.54 ± 0.01) · 10^{-6}</td>
</tr>
<tr>
<td>0.2</td>
<td>0.22</td>
<td>(1.23 ± 0.01) · 10^{-6}</td>
<td>(1.19 ± 0.01) · 10^{-6}</td>
<td>(1.26 ± 0.01) · 10^{-6}</td>
</tr>
<tr>
<td>0.22</td>
<td>0.24</td>
<td>(1.02 ± 0.01) · 10^{-6}</td>
<td>(9.47 ± 0.09) · 10^{-7}</td>
<td>(1.07 ± 0.01) · 10^{-6}</td>
</tr>
<tr>
<td>0.24</td>
<td>0.26</td>
<td>(8.40 ± 0.05) · 10^{-7}</td>
<td>(7.61 ± 0.08) · 10^{-7}</td>
<td>(8.95 ± 0.07) · 10^{-7}</td>
</tr>
<tr>
<td>0.26</td>
<td>0.29</td>
<td>(6.91 ± 0.05) · 10^{-7}</td>
<td>(6.09 ± 0.07) · 10^{-7}</td>
<td>(7.59 ± 0.06) · 10^{-7}</td>
</tr>
<tr>
<td>0.29</td>
<td>0.31</td>
<td>(5.32 ± 0.04) · 10^{-7}</td>
<td>(4.73 ± 0.06) · 10^{-7}</td>
<td>(5.77 ± 0.05) · 10^{-7}</td>
</tr>
<tr>
<td>0.31</td>
<td>0.34</td>
<td>(4.30 ± 0.04) · 10^{-7}</td>
<td>(3.74 ± 0.06) · 10^{-7}</td>
<td>(4.70 ± 0.05) · 10^{-7}</td>
</tr>
<tr>
<td>0.34</td>
<td>0.38</td>
<td>(3.20 ± 0.03) · 10^{-7}</td>
<td>(2.77 ± 0.04) · 10^{-7}</td>
<td>(3.60 ± 0.04) · 10^{-7}</td>
</tr>
<tr>
<td>0.38</td>
<td>0.41</td>
<td>(2.49 ± 0.02) · 10^{-7}</td>
<td>(2.10 ± 0.04) · 10^{-7}</td>
<td>(2.76 ± 0.03) · 10^{-7}</td>
</tr>
<tr>
<td>0.41</td>
<td>0.45</td>
<td>(1.86 ± 0.02) · 10^{-7}</td>
<td>(1.57 ± 0.03) · 10^{-7}</td>
<td>(2.11 ± 0.03) · 10^{-7}</td>
</tr>
<tr>
<td>0.45</td>
<td>0.50</td>
<td>(1.48 ± 0.02) · 10^{-7}</td>
<td>(1.27 ± 0.03) · 10^{-7}</td>
<td>(1.63 ± 0.02) · 10^{-7}</td>
</tr>
<tr>
<td>0.50</td>
<td>0.55</td>
<td>(1.07 ± 0.02) · 10^{-7}</td>
<td>(9.05 ± 0.24) · 10^{-8}</td>
<td>(1.18 ± 0.02) · 10^{-7}</td>
</tr>
<tr>
<td>0.55</td>
<td>0.60</td>
<td>(7.99 ± 0.14) · 10^{-8}</td>
<td>(6.82 ± 0.22) · 10^{-8}</td>
<td>(8.87 ± 0.19) · 10^{-8}</td>
</tr>
<tr>
<td>0.60</td>
<td>0.66</td>
<td>(5.73 ± 0.12) · 10^{-8}</td>
<td>(4.97 ± 0.18) · 10^{-8}</td>
<td>(6.30 ± 0.16) · 10^{-8}</td>
</tr>
<tr>
<td>0.66</td>
<td>0.72</td>
<td>(4.28 ± 0.11) · 10^{-8}</td>
<td>(3.78 ± 0.17) · 10^{-8}</td>
<td>(4.62 ± 0.14) · 10^{-8}</td>
</tr>
<tr>
<td>0.72</td>
<td>0.79</td>
<td>(3.06 ± 0.11) · 10^{-8}</td>
<td>(2.75 ± 0.18) · 10^{-8}</td>
<td>(3.21 ± 0.13) · 10^{-8}</td>
</tr>
<tr>
<td>0.79</td>
<td>0.87</td>
<td>(2.22 ± 0.10) · 10^{-8}</td>
<td>(1.77 ± 0.16) · 10^{-8}</td>
<td>(2.51 ± 0.13) · 10^{-8}</td>
</tr>
<tr>
<td>0.87</td>
<td>0.95</td>
<td>(1.35 ± 0.09) · 10^{-8}</td>
<td>(8.57 ± 1.49) · 10^{-9}</td>
<td>(1.63 ± 0.11) · 10^{-8}</td>
</tr>
<tr>
<td>0.95</td>
<td>1.05</td>
<td>(7.77 ± 0.85) · 10^{-9}</td>
<td>(5.85 ± 1.40) · 10^{-9}</td>
<td>(8.88 ± 1.07) · 10^{-9}</td>
</tr>
<tr>
<td>1.05</td>
<td>1.15</td>
<td>(5.32 ± 0.80) · 10^{-8}</td>
<td>(4.19 ± 1.35) · 10^{-9}</td>
<td>(5.92 ± 0.99) · 10^{-9}</td>
</tr>
<tr>
<td>1.15</td>
<td>1.26</td>
<td>(4.74 ± 0.81) · 10^{-8}</td>
<td>(3.75 ± 1.40) · 10^{-9}</td>
<td>(5.24 ± 0.97) · 10^{-9}</td>
</tr>
</tbody>
</table>