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ABSTRACT 25 

Water availability plays an important role in the socio-economic development of a region. It is 26 

however, subject to the influence of large-scale circulation indices, resulting in periodic excesses 27 

and deficits. An assessment of the degree of correlation between climate indices and water 28 

availability, and the quantification of changes with respect to major climate events is important for 29 

long-term water resources planning and management, especially in transboundary basins as it can 30 

help in conflict avoidance. In this study we first establish the correlation of the Pacific Decadal 31 

Oscillation (PDO) and El Niño-Southern Oscillation (ENSO) with gauged precipitation in the Rio 32 

Grande basin, and quantify the changes in water availability using runoff generated from the Noah 33 

land surface model. Both spatial and temporal variations are noted, with winter and spring being 34 

most influenced by conditions in the Pacific Ocean. Negative correlation is observed at the 35 

headwaters and positive correlation across the rest of the basin. The influence of individual ENSO 36 

events, classified using four different criteria, is also examined. El Niños (La Niñas) generally cause 37 

an increase (decrease) in runoff, but the pattern is not consistent; percentage change in water 38 

availability varies across events. Further, positive PDO enhances the effect of El Niño and dampens 39 

that of La Niña, but during neutral/transitioning PDO, La Niña dominates meteorological conditions. 40 

Long El Niños have more influence on water availability than short duration high intensity events. 41 

We also note that the percentage increase during El Niños significantly offsets the drought-causing 42 

effect of La Niñas.  43 

Keywords: Climate variability, PDO, ENSO, MEI, EMI, Noah LSM, Rio Grande, Water 44 

Availability 45 
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1 INTRODUCTION 47 

Large-scale climate patterns have a significant influence on local atmospheric and hydrologic 48 

variables, and consequently on water availability. Several studies have investigated the influence of 49 

climate variability using either a single index or a combination of indices on precipitation [e.g., 50 

McCabe and Dettinger, 1999; Piechota and Dracup, 1996; Ropelewski and Halpert, 1986; 51 

Woolhiser et al., 1993], streamflow [e.g., Barlow et al., 2001; Kahya and Dracup, 1993; Redmond 52 

and Koch, 1991], and drought [e.g., Özger et al., 2009; Schoennagel et al., 2005] in the United 53 

States (US). In the southern US, the Pacific Decadal Oscillation (PDO) and the El Niño-Southern 54 

Oscillation (ENSO) have been found to be the two most dominant climate teleconnections 55 

influencing regional hydrological conditions.  56 

ENSO is a coupled ocean-atmosphere phenomenon related to sea surface temperature (SST) 57 

anomalies (SSTA) in the central and eastern equatorial Pacific and associated sea-level pressure 58 

difference known as the Southern Oscillation [Rasmusson and Carpenter, 1982]. It has a recurrence 59 

pattern of 3 to 6 years and every event normally lasts for about a year. El Niño events, the positive 60 

or warm phase of ENSO, are often, but not always, followed by La Niña events, also referred to as 61 

the negative or cold phase of ENSO. More recently, a new type of El Niño, occurring more 62 

frequently, with inter-annual variability, has been observed [Ashok et al., 2007]. It has been named 63 

El Niño Modoki (Japanese for “similar but different”). It occurs with a shift in the warming center 64 

from the eastern equatorial Pacific, which is the case with regular El Niño, to central equatorial 65 

Pacific, and both the eastern and western regions are flanked by anomalously cool temperatures, 66 

thus resulting in an SST gradient that generates a two-cell Walker Circulation in the troposphere 67 

with a wet region over the central Pacific. When coupled with other ongoing atmospheric 68 

disturbances, a dry rim arises around the wet central tropical Pacific. Given the similarities between 69 

canonical ENSO and this new occurrence, it is easy to confuse between their impacts. Partial 70 
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correlation and regression analyses suggest that they are distinct phenomena in both space and time 71 

and do not appear as an evolving phase of one or the other [Weng et al., 2007].  72 

PDO is a long-lived El Niño-like pattern of Pacific climate variability with a cycle of about 20 to 30 73 

years [Mantua and Hare, 2002]. PDO influences the hydrological cycle in the same way as ENSO, 74 

but with more pronounced influence in the extra tropics and secondary influence in the tropics. The 75 

similarities in the signature between ENSO and PDO have led to the hypothesis that the two 76 

teleconnections may be related, or PDO may be forced by ENSO [Zhang et al., 1997]. Statistical 77 

analysis by Newman et al. [2003] showed that PDO is dependent on ENSO on all timescales. When 78 

the PDO is in its positive or warm phase, above normal SST is observed along the west coast of 79 

North America and below normal SST along the central and western North Pacific around 45°N. 80 

The Aleutian low strengthens and winter precipitation increases in the southern US [Mantua et al., 81 

1997]. 82 

Recently Kurtzman and Scanlon [2007] examined the impacts of ENSO and PDO on winter 83 

precipitation in 165 climate divisions in southern and central US and found a significant increase 84 

(decrease) with respect to El Niño (La Niña). The correlation with PDO was weaker, but when both 85 

indices were combined, it was noted that La Niñas occurring during the cold phases of PDO 86 

exhibited strong influence in central US and El Niños occurring during the warm phases of PDO 87 

dominated southwest and southeast US. Redmond and Koch [1991] noted that if events in the 88 

Pacific Ocean are causally related to remote meteorological variables, it would be separated by a 89 

time lag. They found statistically significant correlations with lags ranging between 0 to 6 months 90 

between the Southern Oscillation Index (SOI) and precipitation in the western US. Kumar and 91 

Hoerling [2003] found that the maximum correlation between observed zonal mean tropical 200-mb 92 

heights and SST in the Pacific occurs with a lag of 1 to 3 months and this results in a lag of one 93 
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season between rainfall in the tropical Pacific and Niño 3.4 SSTA. The robustness of these results 94 

was confirmed using an atmospheric general circulation model (GCM).  95 

While these information, on the degree of association between hydrologic variables and climate 96 

patterns, are valuable, they are only of qualitative nature and their use in water management is 97 

limited. Water planning and management is driven by demand, priority, and availability. Demand is 98 

influenced by demographic and economic changes, while priority is an institutional variable defined 99 

by legal, social, and economic constraints. Availability, on the other hand, is a natural variable 100 

subjected to the whims of climate.  101 

In this paper we investigate the influence of large-scale climate indices, namely ENSO and PDO, on 102 

the water availability within the Rio Grande/Río Bravo del Norte basin (RG). RG is a transboundary 103 

basin shared between three states in the US and straddles US and Mexico, two countries very 104 

dissimilar economically. It is a vital source of water for the region, but is already in a state of 105 

absolute water scarcity, with less than 500 m3/person/day; the only transboundary basin in this 106 

category [Wolf, 2002]. This region is also extremely vulnerable to droughts; records show that it 107 

suffers from both short-term and long-term droughts [Quiring and Goodrich, 2008]. Subjected to a 108 

burgeoning population, which will further increase the stress on water allocation, and climate 109 

change, which will likely result in a decrease in precipitation [IPCC, 2007], the potential for 110 

conflicts cannot be overlooked. It is therefore imperative to understand the mechanisms driving 111 

water availability and quantify any change for long-term sustainable water planning and 112 

management.  113 

The study is divided into two main sections. We first establish the correlation between large-scale 114 

circulation indices and gauged precipitation to explore the spatial and temporal influence of ENSO 115 

and PDO separately on the basin. The correlation structure of precipitation with two canonical 116 
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ENSO indices (Niño 3.4 and the Multi-ENSO index (MEI)) were compared to that of the El Niño 117 

Modoki index (EMI) to determine which index shows maximum correlation and is best suited for 118 

water management within the basin.  119 

Runoff is not linearly related to precipitation, but affected by natural processes and subjected to 120 

other meteorological variations such as temperature, evapotranspiration, wind speed, etc. which are 121 

also influenced by remote climate teleconnections. Streamflow is often used as a measure of surface 122 

water availability, but in large basins, stream gage records are not a realistic representation of actual 123 

flow as they are affected by dams, diversions, return flows, reduction in base flows by excessive 124 

groundwater pumping, and urbanization [Legates et al., 2005], thus obscuring climate influences. 125 

We therefore use a land surface model (LSM), but keep land-use-land-cover constant, to generate 126 

runoff as it incorporates all necessary factors in the process. The basin is divided into six sub-127 

regions and the temporal variations in water availability with respect to climate indices are 128 

examined.  129 

All ENSO events are not similar and coincide with different phases of PDO (positive, negative, or 130 

transitioning from one phase to another). We compare and rank individual El Niño and La Niña 131 

events based on their durations, maximum (or minimum) SSTA recorded, and intensities – a new 132 

metric that we propose in this study. The percentage change in water availability in each sub-region, 133 

with respect to individual El Niño and La Niña events and coincident PDO phases is then examined.  134 

The paper is organized as follows. Section 2 discusses the methodology and the choice of LSM 135 

adopted for this study. A description of the study basin is given in section 3. Section 4 describes the 136 

datasets for precipitation and climate indices, and forcing and parameters for the LSM. The first part 137 

of section 5 discusses the hydroclimatology of the basin, the correlation between climate indices and 138 

gauged precipitation, and the differences between ENSO events. In the second part we discuss the 139 
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model output and validation, and investigate the lags and changes in water availability with respect 140 

to climate variability. The main conclusions drawn from the study are given in section 6.  141 

2 METHODOLOGY 142 

Pearson correlation is used to determine the relationship between climate indices and gauged 143 

seasonal precipitation data. Kriging interpolation is employed to map the spatial variation of the 144 

correlation coefficient across the study area. Runoff, which is a proxy for surface water availability, 145 

is obtained from an LSM. The factors considered in the selection of the most appropriate LSM for 146 

the region is discussed. Continuous wavelet transform is used to investigate the temporal structure 147 

and influence of climate variability on water availability.  148 

2.1 CORRELATION 149 

The Pearson correlation coefficient, xyρ , is a measure of linear association between two time series:  150 

x  and y . The lag-correlation coefficient, ( )kxyρ , is the cross-correlation for lag k  between the time 151 

series. The range for ( )kxyρ  is [-1, 1], with larger xyρ  implying greater ability of x  to predict y152 

[von Storch and Zwiers, 2003]. The correlation coefficient can be used as a statistical test of 153 

independence to help make inferences about the degree of association between variables. The null 154 

hypothesis is that the two time series are independent and identically distributed (iid) normal 155 

random variables ( )0xy =ρ . 156 

2.2 LAND SURFACE MODELING 157 

LSMs compute terrestrial water, energy, momentum, and bio-geochemical exchange processes by 158 

solving the governing equations of the soil-vegetation-snowpack medium [Peters-Lidard et al., 159 

2007]. A number of LSMs have been developed over the last 30 years and are constantly being 160 

refined as our understanding of the physics underlying earth system processes improves, and 161 
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computing capabilities increases. Four LSMs, namely Mosaic, Noah, the Variable Infiltration 162 

Capacity (VIC), and Sacramento models, were evaluated over the Continental US (CONUS) as part 163 

of the North American Land Data Assimilation System (NLDAS) project [Mitchell et al., 2004]. 164 

Lohmann et al. [2004] evaluated these models for their performance in partitioning water balance 165 

terms (evapotranspiration, runoff, and storage change) across four different quadrants over CONUS, 166 

and their ability to reproduce streamflow at different timescales (daily, monthly, and annual) and 167 

noted that at the continental scale the results varied significantly in the wet eastern US but were 168 

generally in agreement over the drier western region. The Mosaic and Sacramento models 169 

underestimate runoffs, and VIC produced more runoff, while Noah’s predictions fell in between. In 170 

small- to medium-sized catchments, the models showed similar bias gradients in the east, increasing 171 

from north to south. VIC, for example, produced the right annual runoff in the northeast US but 172 

more runoff towards the south. Noah predicts less runoff in the northeast US, more in the south, and 173 

the right runoff in the middle.  174 

Noah was also found to exhibit the lowest regional bias. Lohmann et al. [2004] further speculated 175 

that the high runoff produced by the models in the southwestern US may be attributed to farming 176 

and irrigation which is not included within the NLDAS setup. Seasonal analysis showed that Noah 177 

produced correct runoff in a number of basins for the cold season with the same north-south annual 178 

bias. Both VIC and Noah produced soil moisture anomalies close to observed values. However, in 179 

the Little River Experimental Watershed, Sahoo et al. [2008] found that Noah produced higher soil 180 

moisture, which, as a result of the model physics governing partitioning, produced less surface and 181 

subsurface runoff. Nevertheless Lohmann et al. [2004], found that the Sacramento and Noah 182 

reproduced daily streamflow better, with Noah having the highest overall score based on the Nash-183 

Sutcliff efficiency. The study also evaluated the model performance over nine large basins in the 184 

US. RG was not included, but the sizes of the basins examined are comparable. There was 185 
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disagreement between modeled and measured runoff in high and less regulated basins. In high 186 

regulated basis, which comprise a number of dams and reservoirs, smaller seasonal signals were 187 

observed, whereas in less regulated ones, seasonality was closely captured. This confirms that the 188 

models were actually effectively reproducing seasonal variations, which is being dampened by 189 

engineering infrastructures in the highly regulated basins, thus lending credence in using an LSM in 190 

modeling RG which has a large number of dams, diversions, and reservoirs.  191 

2.2.1 Noah LSM 192 

The community Noah LSM’s [Chen et al., 1996; Koren et al., 1999] legacy extends into modeling 193 

efforts carried in the 1980s [Mahrt and Ek, 1984; Mahrt and Pan, 1984; Pan and Mahrt, 1987] and 194 

has been further refined in the 1990s under the GEWEX/GCIP/GAPP Program Office of 195 

NOAA/OGP, led by the National Centers for Environmental Prediction (NCEP) and benefitting 196 

from the collaboration of investigators from both public and private institutions. Noah has been a 197 

candidate in major off-line land surface experiments, such as the Project for Intercomparison of 198 

Land-surface Parameterization Schemes [PIPLS; Henderson-Sellers et al., 1996] and the Global Soil 199 

Wetness Project [GSWP; Dirmeyer et al., 1999] among others. It has been validated in both coupled 200 

and uncoupled modes [Mitchell, 2005]. 201 

Noah is a stand-alone 1-D column model that can simulate soil moisture (both liquid and frozen), 202 

soil temperature, skin temperature, snowpack depth, snowpack water equivalent, canopy water 203 

content, and water and energy flux terms of the surface water and energy balance [Mitchell, 2005]. 204 

The model has a snow layer and a canopy layer. The soil profile extends to a depth of 2 m divided 205 

into four layers from the ground surface to the bottom: 0-0.1 m, 0.1-0.4 m, 0.4-1 m, and 1-2 m. The 206 

root zone is limited to the upper 1 m of soil, and the lower 1 m layer acts as a reservoir with gravity 207 

drainage at the bottom. The snow layer simulates snow accumulation, sublimation, melting, and heat 208 

exchange at snow-atmosphere and snow-soil interfaces. Precipitation is deemed snow if the 209 
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temperature of the lowest atmospheric layer is below 0°C. The total evaporation, in the absence of 210 

snow, is the sum of direct evaporation from the topmost soil layer [Mahfouf and Noilhan, 1991], 211 

evaporation of precipitation intercepted by plant canopy, and transpiration from canopy of 212 

vegetation [Jacquemin and Noilhan, 1990; Noilhan and Planton, 1989]. Surface runoff is the excess 213 

after infiltration [Schaake et al., 1996]. A complete description of the model physics and order in 214 

which computations are carried out is available in Chen and Dudhia [2001].  215 

Lohmann et al. [2004] point out that one notable difference between Noah and other LSMs 216 

considered in the NLDAS project is the earlier onset of runoff in snowmelt season when compared 217 

to other models and observed values. This may make Noah a less likely candidate for streamflow 218 

studies in snow dominated watersheds. In Noah, snow can either sublimate or melt as there is no 219 

horizontal transport. Sheffield et al. [2003] and Pan et al. [2003] evaluated the four LSMs 220 

considered in the NLDAS project for snow cover extent and simulated snow water equivalent. 221 

Systematic low biases were observed in the snow cover extent and snow water equivalent in the 222 

simulations for all four models and larger discrepancies were observed at higher elevations. Noah 223 

consistently underestimates the snow cover extent at all elevations. This under-prediction is partly 224 

explained by its higher snow water equivalent threshold for large snow cover values as compared to 225 

other models. Noah also tends to melt snow earlier, which is due to the low albedo values in each 226 

snow covered grid, which leads to higher available energy at the surface creating a positive feedback 227 

mechanism which enhances snowmelt and sublimation.  228 

Hogue et al. [2005] evaluated the transferability of calibrated parameters in Noah between two 229 

semi-arid sites in the southern US for evaluating model performance under the different climatic 230 

conditions these regions are subjected to. They found that generally Noah accurately simulated 231 

sensible heat, ground heat, and ground temperature. However discrepancies were noted during brief 232 

periods of moist air influx responsible for monsoon or during El Niño. When compared against 233 
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other LSMs Noah reproduced streamflow with high accuracy, with the smallest bias in both 234 

evaporation and runoff with respect to observed annual water budget [Mitchell et al., 2004].  235 

Thus, based on extensive evaluation and comparison and despite some of its limitations, Noah 236 

seems the best suited LSM for the hydrological modeling of RG for purposes of this study. This 237 

study also provides an opportunity to test the validity of Noah outside the southern US border, while 238 

still within NLDAS-2 domain, and may thus supplement previous findings. 239 

2.2.2 Land Information System 240 

Noah LSM was run within NASA Goddard Space Flight Center’s (GSFC) Land Information System 241 

(LIS; http://lis.gsfc.nasa.gov/). LIS, designed as a problem solving environment for hydrologic 242 

modeling applications, is an integrated high-performance land surface modeling and data 243 

assimilation framework [Kumar et al., 2006; Peters-Lidard et al., 2007] which evolved from the 244 

Global Land Data Assimilation System  [GLDAS; Rodell et al., 2004] and the North America Land 245 

Data Assimilation System [NLDAS; Mitchell et al., 2004].  246 

2.3 CONTINUOUS WAVELET TRANSFORM 247 

Wavelet transform decomposes a signal in terms of some elementary functions derived from a 248 

“mother wavelet” using a sliding window function whose radius increases in space (i.e., decreasing 249 

in frequency), allowing the low-frequency content of the signal to be resolved [Rivera et al., 2004]. 250 

A number of mother wavelets are commonly used, and can be grouped into continuous and 251 

orthogonal wavelets; each having intrinsic advantages for specific applications. We chose the Morlet 252 

wavelet, which consists of a plane wave modified by a Gaussian envelope, as it is the most widely 253 

used continuous wavelet in geophysical applications. Its complex structure allows the detection of 254 

both time-dependent amplitude and phase for different frequencies in the time series [Lau and 255 

Weng, 1995].  256 
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Kumar and Foufoula-Georgiou [1997] discussed the applications of wavelet to geophysical 257 

processes. Torrence and Compo [1998] reported on the application of wavelet, including a 258 

comparison to the widowed Fourier transform, to climate analysis using ENSO series. Labat et al. 259 

[2001] showed how wavelet can be appropriately employed in rainfall-runoff analysis. 260 

3 STUDY AREA 261 

RG is the fifth longest river in North America. It originates in the snow dominated San Juan range in 262 

the Rocky Mountains in southern Colorado, at an altitude of around 3,700 m amsl, and flows 263 

through arid/semi-arid plains in a south-eastward direction over a distance of approximately 3,100 264 

km before discharging into the Gulf of Mexico. The basin encompasses an area of 557,722 km2 265 

straddling three states in the US and five states in Mexico (Figure 1). The river catchment is narrow, 266 

with its length being considerably longer than its width, and has a dendritic drainage pattern. The 267 

watershed contains a number of endorheic sub-basins, such that only 468,374 km2 (242,994 km2 on 268 

the US side and 225,380 km2 on the Mexican side) actually contribute to flow in the river [Patiño-269 

Gomez, 2005].  270 

Figure 1: The Rio Grande/Río Bravo del Norte basin 271 

Winter precipitation and spring runoff sustain flow in the basin. The flow is impounded in a number 272 

of dams and regulated by major diversions. Elephant Butte Dam in southern New Mexico supports 273 

agricultural production in the region. The release from the dam is apportioned between the US and 274 

Mexico under the 1906 Convention for the Equitable Distribution of Waters of the Rio Grande 275 

[International Boundary & Water Commission, 1906]. From El Paso to Ojinaga/Presidio the river 276 

flows through one of its driest stretches [US Army Corps of Engineers, 2008]. At El Paso (station 45 277 

in Figure 2), for example, the mean annual rainfall is 219 mm, while the yearly pan evaporation is 278 
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around 1,500 mm. At Ojinaga/Presidio, RG is regenerated from flow from the Río Conchos, which 279 

is one of its most important tributaries, originating in the Sierra Madre Occidental in northwestern 280 

Mexico at around 3,500 m amsl. Two international reservoirs, Amistad and Falcon, store and 281 

apportion the water between the US and Mexico. Without any dam or diversion along its course, the 282 

virgin flow of RG is estimated at above 100 m3/s [Revenga et al., 2003]. However, the over 283 

anthropogenization of the basin has constantly impacted flow, such that the actual mean historical 284 

flow is 37 m3/s, but in recent years the flow in the river has reduced considerably, and on several 285 

occasions the river failed to reach the sea.  286 

Land cover in RG is mainly desert shrubland and grassland, covering about 81%, while irrigated 287 

agriculture constitutes only 2.6% of the basin, and urban and industrial area covers 6% of the basin 288 

[Revenga et al., 2003].  289 

Given its size, the varied climatology it is subjected to, and the major dams and diversions 290 

partitioning the system, RG cannot be studied as one watershed, nor can it be divided into sub-291 

basins, as some tributaries, like the Pecos, runs along the main stem, crossing several latitudes, thus 292 

subjected to different climate teleconnection influences. Higher snowfall at the headwaters for 293 

example does not necessarily result in higher flow into the international reservoirs or at the mouth. 294 

Moreover, climate divisions from one US state do not align with that from another state. The basin 295 

is therefore divided into six sub-regions (Figure 2) by considering the latter constraints and other 296 

geomorphological features in the system.  297 
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4 DATA 298 

4.1 PRECIPITATION  299 

4.1.1 United States 300 

The National Climatic Data Center (NCDC) has an extensive archive of publicly available weather 301 

data from NOAA’s Cooperative Observer Program (COOP) stations in the US. The COOP data 302 

contains gaps and only a few stations have continuous records. NCDC also houses the United States 303 

Historical Climatology Network (USHCN) version 2 dataset which is a designated subset of the 304 

COOP network [Karl et al., 1990]. The dataset undergoes extensive quality control including 305 

adjustment for any time-of-observation bias. Only 27 stations out of the 1,221 stations in the 306 

USHCN are serially complete [McRoberts and Nielsen-Gammon, 2011], while missing data  in the 307 

others have been filled using a weighted average of values from highly correlated neighboring 308 

stations. However, the density of the USHCN network is not adequate within RG for purposes of 309 

this study (see Figure 1 of USHCN Version 2 Serial Monthly Dataset, available from 310 

http://www.ncdc.noaa.gov/oa/climate/research/ushcn/ which shows the distribution of both COOP 311 

and HCN sites).  312 

McRoberts and Nielsen-Gammon [2011] proposed the full network estimated precipitation (FNEP, 313 

available from http://atmo.tamu.edu/osc/fnep) which utilizes as many COOP observations from the 314 

network of more than 24,000 stations and an inverse distance weighting scheme, using stations that 315 

have at least 10 years of overlap data and highest correlation, to fill missing data and extend the 316 

record, thus creating a continuous series from 1895 to present. There are a total of 332 FNEP 317 

stations within the US portion of RG, but only those that have a sufficiently long record of 318 

observational data, while ensuring adequate spatial coverage, were chosen, hence taking advantage 319 

of the filled gaps. The time period considered in the analysis is January 1935 to December 2008, 320 
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thus giving 75 years of data. Figure 2 shows the spatial distribution of the 63 stations (4 in Colorado, 321 

40 in New Mexico, and 19 in Texas) selected.  322 

4.1.2 Mexico 323 

Historical monthly precipitation data for the Mexican section of the basin was obtained from the 324 

Servicio Meteorológico Nacional (SMN), Comisión Nacional del Agua (CONAGUA), Mexico. 325 

SMN is the state entity responsible for the observation, recording, interpretation and dissemination 326 

of weather information in Mexico. The most updated observational dataset obtained contained data 327 

up to December 2006 only, and any record beyond that date is not yet publicly available. For the Río 328 

Conchos sub-basin the latest available data is only up to December 2003.  329 

Of all the stations within the Mexican section of the basin, excluding the Río Conchos, 52 are 330 

operational and have records that extend up to 2006. However, most of these stations are very recent 331 

and only a few have records of at least 50 years, but have several years of missing data. A careful 332 

selection of viable stations, while ensuring maximum possible coverage, limited the number of 333 

stations that can be used in the study to only 12. The time period extended from January 1954 to 334 

December 2006. Records show that 9 stations are operational in the Río Conchos, but only 4 had 335 

sufficiently long records, extending from 1964 to 2003, for this study. Data gaps were filled from 336 

neighboring stations that had sufficient amounts of overlapping data with the target stations. Any 337 

data missing from both the target and neighboring stations were filled with the long term monthly 338 

mean. The spatial distribution of the selected stations is shown in Figure 2. 339 

Figure 2: Location of precipitation stations used in this study  340 
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4.2 CLIMATE INDICES 341 

4.2.1 Pacific Decadal Oscillation (PDO) 342 

Monthly PDO indices for the period 1935 to 2008 were obtained from the Joint Institute for the 343 

Study of the Atmosphere and Ocean (JISAO, http://jisao.washington.edu/pdo/PDO.latest). The PDO 344 

index is defined as the leading principal component of the North Pacific, poleward of 20oN, mean 345 

monthly SSTA [Mantua et al., 1997]. The data is not influenced by global warming trends as 346 

monthly mean global average SSTA have been removed. A plot of the monthly indices, with a 347 

centered 13-month moving average to highlight multi-decadal frequency is given in Figure 3. 348 

Positive (negative) values indicate warm (cold) phases of PDO. Between 1935 and 2008, 51% of 349 

warm months and 49% of cold months were recorded.  350 

Independent studies have shown two full PDO cycles in the last century [Mantua and Hare, 2002; 351 

Minobe, 1997], cool regimes that lasted from 1890 to 1924 and from 1947 to 1976, and warm 352 

phases that lasted from 1925 to 1946 and from 1977 to 1998. From 1998, PDO has been in a cold 353 

phase until 2002 and in a warm phase from 2002 to 2007. Occasional shifts, within the 20-30 year 354 

cycle, from cool (warm) to warm (cool) are visible in the record.  355 

4.2.2 Niño 3.4 356 

There are four Niño regions along the equatorial Pacific, chosen in the early 1980’s to describe and 357 

monitor SST. The warming across this region is not uniform and no single region can capture the 358 

whole ENSO phenomenon. Barnston et al. [1997] proposed the Niño 3.4 index as one that has both 359 

maximum correlation with the core ENSO phenomenon and strongest influence on remote 360 

teleconnection events. It is the area-averaged SSTA over the region bounded by 5°N–5°S and 361 

120°W–170°W, straddling the Niño 3 and Niño 4 regions. Monthly data for the Niño 3.4 index was 362 

obtained from the International Research Institute (IRI) on Climate and Society Data Library 363 
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(http://iridl.ldeo.columbia.edu/SOURCES/.Indices/.nino/.EXTENDED/). Figure 3 gives a plot of the 364 

Niño 3.4 index.  365 

4.2.3 Multi-ENSO Index (MEI) 366 

MEI is not based solely on SST but is a multivariate index based on six variables recorded over the 367 

tropical Pacific and published in the Comprehensive Ocean-Atmosphere Data Set (COADS): sea-368 

level pressure, zonal and meridional components of the surface wind, sea surface temperature, 369 

surface air temperature, and total cloudiness fraction of the sky. It is the first unrotated principal 370 

component of all the six observed fields combined [Wolter and Timlin, 1993], and is analyzed 371 

separately for twelve sliding bi-monthly seasons, which removes most intra-seasonal noise. For 372 

correlation studies, it is advised that the MEI values for month ( )1−i  and month ( )i  be treated as for 373 

month ( )i . Monthly data for MEI for 1950 to 2008 was obtained from NOAA’s Earth System 374 

Research Laboratory (http://www.esrl.noaa.gov/psd//people/klaus.wolter/MEI/mei.html). Figure 3 375 

gives a plot of the MEI.  376 

4.2.4 El Niño Modoki (EMI) 377 

EMI is available from the Japan Agency for Marine-Earth Science and Technology 378 

(http://www.jamstec.go.jp/frcgc/research/d1/iod/modoki_home.html.en). It is defined as 379 

 [ ] [ ] [ ]WEC SSTASSTASSTAEMI 5.05.0 −−=  (1) 

where [SSTA] is the area-averaged SST anomaly for the following regions: C (central, 165°E–380 

140°W, 10°S–10°N), E (eastern, 110°W–70°W, 15°S–5°N), and W (western, 125°E–145°E, 10°S–381 

20°N) [Ashok et al., 2007]. The time series for EMI is given in Figure 3. 382 
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Figure 3: Time series of PDO, Niño 3.4, MEI, and EMI indices. The PDO, MEI, and EMI 383 
series are overlain with a running, centered 13-month average to highlight yearly variations. 384 
The normalized monthly Niño 3.4 index series is overlain with a centered 3-month running 385 

mean and ± 0.5°C thresholds (see section 5.3.1).  386 

4.3 FORCING DATA AND PARAMETERS FOR LSM 387 

The North American Land Data Assimilation System – Phase 2 (NLDAS-2) forcing data was used 388 

to run the Noah LSM. NLDAS-2 has a 1/8° latitude/longitude resolution over a domain covering 389 

CONUS, part of Canada and Mexico (125°W–67°W, 25°N–53°N), thus allowing the modeling of 390 

both the US and Mexican portion of RG. It incorporates both measured and modeled data from 391 

multiple sources: gauged precipitation measurements, satellite data, radar precipitation 392 

measurements, and output from numerical prediction models. NLDAS has been run retrospectively 393 

starting in January 1979, and provide hourly measurements in near real-time. The dataset include u 394 

and v wind components at 10 m above the surface, air temperature and specific humidity at 2 m 395 

above the surface, surface pressure, surface downward longwave and shortwave radiation, and total 396 

and convective fraction of precipitation, convective available potential energy, and potential 397 

evaporation.  398 

The precipitation field is from NCEP Climate Prediction Center (CPC) reprocessed daily gauged 399 

analyses that have been subjected to orographic adjustment based on the Parameter-elevation 400 

Regressions on Independent Slopes Model [PRISM; Daly et al., 1994] climatology and interpolated 401 

to the 1/8° NLDAS grid, and temporally disaggregated to hourly timescale using either the NWS 402 

Doppler radar-based (WSR-88D) precipitation, which has a 4 km spatial coverage, or the 8 km 403 

NOAA CPC Morphing Technique (CMORPH) hourly precipitation analyses [Joyce et al., 2004]. 404 

This product uses hourly multiagency gauge data for bias correction and has been mosaicked over 405 

CONUS by NCEP/EMC [Baldwin and Mitchell, 1997]. The radar network is limited at the US 406 

borders with Canada and Mexico, and around 13% of CONUS are not covered. These gaps are first 407 
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filled with nearest neighbor mosaicked data from within a 2° radius, and if the latter is not available, 408 

CMORPH data are used instead. In Mexico, which is outside the radar covering range, CMORPH 409 

data is used. CMORPH is not available before 2002, and CCP hourly data is used and if it is not 410 

available, the North American Regional Reanalysis  [NARR; Mesinger et al., 2006] data is used 411 

instead.  412 

The NLDAS dataset has been extensively compared, tested, and validated for snow cover and snow 413 

water equivalent [Pan et al., 2003; Sheffield et al., 2003], soil moisture [Schaake et al., 2004], and 414 

streamflow and water balance [Lohmann et al., 2004]. It has also been evaluated against the 415 

Atmospheric Measurement Program/cloud and radiation testbed, the Surface Radiation observation 416 

data, and the Oklahoma Mesonet, which is a quality controlled dataset from a dense network of over 417 

100 meteorological stations with meteorological measurements taken every 5 minutes  [Luo et al., 418 

2003; Robock et al., 2003].  419 

Noah also requires a set of parameters defining soil, vegetation, and topography for each grid. We 420 

use Zobler’s assessment of Food and Agriculture Organization (FAO) Soil Units [Zobler, 1986] 421 

which gives sand, silt, and clay fractions. The land cover is from the University of Maryland’s 422 

(UMD) 1 km spatial resolution global land cover product [Hansen et al., 2000]. It contains 14 423 

different classes (11 vegetation types, bare ground, urban/built up area, and water). The model also 424 

requires information on the quarterly and maximum albedo, monthly greenness fraction, and bottom 425 

temperature without elevation corrections. 426 
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5 RESULTS AND DISCUSSION 427 

5.1 HYDROCLIMATOLOGY OF THE BASIN 428 

5.1.1 Spatial Variation 429 

RG trends across different climatic zones – alpine in southern Colorado and northern New Mexico, 430 

desert in southern New Mexico and west Texas, humid continental in east Texas, and humid sub-431 

tropical in south Texas and north-eastern Mexico [Dahm et al., 2005] – making it an interesting 432 

study basin from both a hydrological and ecological perspective. Average annual precipitation varies 433 

from northwest to southeast across the basin, with a minimum of 187 mm at Manassa, in the San 434 

Juan Mountains, and a maximum of 698 mm at Port Isabel at the mouth of the basin. In the Río 435 

Conchos sub-basin, precipitation varies from southwest to northeast with a maximum annual mean 436 

of 781 mm at El Vergel, in the Sierra Madre Occidental, and a minimum of around 290 mm around 437 

the mouth as it discharges into RG. Figure 4 shows the isohyet of the annual mean precipitation and 438 

the coefficient of variation ( )vC  of monthly precipitation across the basin. vC  is a statistical 439 

measure of variability, where a 1<vC  indicates less variation, while a 1>vC  indicates high 440 

variability. 441 

Figure 4: (a) Isohyet of annual mean precipitation and coefficient of variation of monthly 442 
precipitation across the Rio Grande basin, and (b) mean monthly precipitation for each region 443 

The basin exhibits wide disparity in precipitation regime, with vC  ranging between 0.7 and 1.7. The 444 

Upper RG region has low variability. It receives around 20 mm of precipitation every month except 445 

for JAS with August being the wettest month (Figure 4(b)). The middle portion of the basin exhibits 446 

high variability. It has a unimodal precipitation regime, typical of the southwestern US where, for 447 

most of the year the average precipitation is below 20 mm except for May/June to 448 

September/October when the North American monsoon (NAM) brings most of the yearly rainfall. 449 
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Río Conchos follows a similar pattern. NAM is a regional-scale circulation that develops over 450 

southwest North America, bringing substantial rainfall to this otherwise arid region. It is associated 451 

with a subtropical ridge shifting poleward during the summer months over the northwestern 452 

Mexican plateau and southwestern US. As evidenced in the mean monthly precipitation distribution 453 

(Figure 4(b)) of the Río Conchos basin, the Upper-Middle and Middle-Middle RG, NAM starts to 454 

develop in late May to early June in southern Mexico quickly spreading along the western slopes of 455 

the Sierra Madre Occidental and into New Mexico and the western edge of Texas in early July and 456 

into southwestern US in the middle of July and decays in September/October [Adams and Comrie, 457 

1997; Higgins et al., 1997]. The strength and path of the subtropical ridge is influenced by ENSO 458 

conditions. El Niño (La Niña) influences NAM by causing a weaker (stronger) southward 459 

(northward) displaced monsoon ridge [Castro et al., 2001]. The lower part of the basin has a slightly 460 

bimodal precipitation pattern with May and June and September and October as the two wettest 461 

periods. Atlantic hurricanes bring copious amounts of rainfall in a very short period of time, often 462 

resulting in major flooding in this region. A strong relationship between ENSO and the frequency of 463 

Atlantic hurricanes has been noted, with El Niño (La Niña) favoring a decrease (increase) in activity 464 

[Pielke and Landsea, 1999]. 465 

5.1.2 Temporal Variation 466 

Figure 5 shows the time series of the average monthly precipitation from all stations within each 467 

region, smoothed with a centered 13-month moving average window to accentuate yearly variations. 468 

Precipitation from Mexican stations in Lower RG is shown in a separate plot. The top panel of the 469 

figure shows the duration of PDO and ENSO in their respective phases. Yearly standardized 470 

anomaly, which is the anomaly for a particular year divided by the standard deviation of the series, 471 

was calculated for each station. A positive (negative) standardized anomaly indicates higher (lower) 472 

than average precipitation. The patterns give a visual picture of the time, duration, and spatial extent 473 
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of deficits and excesses in yearly precipitation across the basin. The standardized anomaly for the 474 

stations in the US, Mexico, and Río Conchos are shown separately in Figure 6.  475 

Figure 5: Smoothed series of average monthly gauged precipitation (mm/month) for each 476 
region. The broken horizontal line is the long-term average. The scales of the ordinates are 477 

arbitrary to illustrate variability. The top panel shows the phases of PDO and ENSO. 478 

Figure 6: Time series of standardized anomaly for stations in the US, Mexico, and Río 479 
Conchos (Stations are latitudinally arranged with numbers corresponding to Figure 2)  480 

Precipitation across the basin varies both spatially (Figure 4) and temporally. The standardized 481 

anomaly plot shows that precipitation is generally around the long term mean interspersed with 482 

drought spells, and a few extremely wet years, often spreading across the whole watershed. There 483 

have been more periods of rainfall deficits than excesses between 1935 and 2008. The most critical 484 

drought event started in 1951 and lasted up to 1956. In the semi-arid upper half portion of the basin, 485 

the drought started earlier, in 1942, right after an exceptionally wet year (1941). This event, 486 

commonly termed as the drought of the 1950s, affected a large extent of the conterminous US and is 487 

the most severe drought on record for the watershed. It coincides with the cold phases of both ENSO 488 

and PDO. ENSO actually oscillated mostly between La Niña and neutral conditions between May 489 

1942 and February 1957 (Figure 3), the longest period in which the index remained in these phases. 490 

PDO shifted into its cold phase in November 1947 and remained mainly in this phase for up to 491 

February 1957. Another significant period of rainfall deficit started in 1962 and lasted up to 1965. It 492 

is associated with a drought that affected most of the northeast US [Namais, 1966; 1967] and 493 

coincides with cold PDO and mostly neutral ENSO with La Niña conditions between May 1964 and 494 

February 1965. 495 



 

21 
 

The 1976-1988 and 1991-1994 periods were that of normal and above normal precipitation across 496 

the watershed, with a few dry patches. Meteorological conditions prevailing were influenced by 497 

warm PDO (which started in July 1976) reinforcing multi-year El Niños (see Table 1). Year 1989, 498 

however, was a dry year across the whole basin, sandwiched between two wet periods. This lack of 499 

precipitation was influenced by negative ENSO (1988-1989 La Niña) and a weak PDO oscillating 500 

mostly between ±0.5°C. Given that the 1988-1989 La Niña is one of the strongest (see Table 2), and 501 

is not reinforced (dampened) by a negative (positive) PDO, its influence on water availability is 502 

worth investigating further.  503 

The 2002-2004 drought is the second longest and most severe the region has experienced in recent 504 

record. It started earlier in the lower central arid portion and then propagated across the basin. 505 

Interestingly, this event did not coincide with La Niña conditions, but rather with neutral ENSO 506 

shifting into El Niño conditions, while PDO was in its cold phase until mid-2002 and shifted into its 507 

warm phase thereafter. Such dry conditions are not uncommon in the southwest as neutral ENSO 508 

with cold PDO can result in nearly as dry conditions as La Niña with cold PDO [Goodrich, 2004; 509 

Quiring and Goodrich, 2008]. The impact of such combination of the two indices on water 510 

availability will be further examined.  511 

5.2 CLIMATE TELECONNECTION WITH PRECIPITATION 512 

Precipitation is the main determinant of water availability. To assess the relationship and spatial 513 

influence of climate variability on the precipitation in RG, climate indices were correlated with the 514 

average seasonal precipitation for each rainfall station. Kriging plots [Delhomme, 1978] for 515 

correlations with PDO (Figure 7), and ENSO indices (Figure 8) were constructed for winter (DJF), 516 

spring (MAM), summer (JJA), and fall (SON). The Pearson correlation coefficient, xyρ , forms the 517 

basis of the statistical test of independence. The null hypothesis is that the seasonal average 518 
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precipitation is iid normal random variable not dependent on the indices. The magnitude and sign of 519 

the correlation coefficient are thus indicative of the existence, strength, and nature of any association 520 

[Redmond and Koch, 1991]. The correlation significance (p-value) for each station was also 521 

computed and is given (inset maps) along with the kriging plots. The p-value is the probability, if 522 

the test statistics is distributed as assumed in the null hypothesis, of observing a test statistic as 523 

extreme, or more, than the one actually observed, i.e., how unlikely it may be due to chance. The p-524 

values are stratified as follows: less than or equal to 0.01%, 0.1%, 1%, 1–5%, and greater than 5%.  525 

5.2.1 PDO 526 

The PDO series between 1935 and 2008 has almost equal number of cold and warm years, thus 527 

prevents any bias that may result from the dominance of either phase over the other [Kurtzman and 528 

Scanlon, 2007]. The correlation structure is different for each season and varies considerably across 529 

the basin (Figure 7). The highest correlations are in winter and spring. In winter, a statistically 530 

significant positive correlation, ranging between 0.3 and 0.5, is observed in the lower RG region, 531 

especially in Mexico, at the mouth of the basin. This correlation structure shifts diametrically in the 532 

spring, with the northern semi-arid regions exhibiting higher correlation, while those in the lower 533 

half, from the Río Conchos downwards, are statistically insignificant. The stations in the Río 534 

Conchos do not show any statistically significant correlation with PDO, except for one station in 535 

winter, at the mouth of this sub-basin. Summer precipitation, across the whole basin, exhibits no 536 

significant correlation with PDO, while negligible correlation is observed in some sections of the 537 

basin in the fall. Hence it is noted that despite relatively low correlation, PDO does have an 538 

influence on the winter and spring conditions in the southern and northern parts of the basin 539 

respectively. Therefore knowledge of the state of PDO is essential for water resources planning.  540 
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5.2.2 ENSO – Niño 3.4, MEI, and EMI 541 

The seasonal kriging plots for Niño 3.4 is given in Figure 8 and those for MEI and EMI are 542 

available as auxiliary material to this paper. All three indices exhibit the same general seasonal 543 

correlation structure, but overall the correlation of EMI with precipitation is the weakest.  544 

Just like for PDO the correlation structure is different for each season and varies across the basin. A 545 

positive, statistically significant correlation, ranging between 0.3 and 0.7, was observed for winter 546 

and spring across the whole basin, except for the Upper RG region which exhibits a negative 547 

correlation with ENSO. This negative correlation  at the head of basin, in the Rockies, is consistent 548 

with the findings of Smith and O'Brien [2001] and Patten et al. [2003] on snowfall pattern in the 549 

US. In spring the highest correlation region is the Upper-Middle RG. From a water management 550 

perspective this finding is important as higher snowfall at the headwaters, during La Niña 551 

conditions, may offset reduced precipitation in New Mexico. In summer and fall a negative 552 

correlation, even though not statistically significant, is observed, especially in the lower half of the 553 

basin.  554 

The correlation between EMI and precipitation is not statistically representative in the basin and 555 

may therefore not be useful for water management purposes. The correlation structures of Niño 3.4 556 

and MEI are similar; therefore despite MEI’s appeal as a more inclusive ENSO index, we shall 557 

adhere to NOAA’s operational definition of El Niño and La Niña, as discussed in section 5.3.1 558 

below, for the remainder of the paper.  559 

Figure 7: Plots of seasonal correlation coefficients between PDO and precipitation anomaly. 560 
Inset gives the p-values for the regression coefficients.   561 
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Figure 8: Plots of seasonal correlation coefficients between Niño 3.4 and precipitation anomaly 562 
(Similar plots for MEI and EMI are available as auxiliary material). Inset gives the p-values 563 

for the regression coefficients.  564 

5.3 ENSO EVENTS  565 

5.3.1 Definition of El Niño and La Niña  566 

The definition for El Niño has evolved over time; different investigations use different indices and 567 

criteria, thus producing dissimilar lists of events. For long, there was no specific definition for La 568 

Niña despite an ongoing debate in the scientific community; they were defined in the context of the 569 

El Niño phenomenon [O'Brien, 2002]. Trenberth [1997] analyzed El Niño conditions between 1950 570 

and 1997 using both Niño 3 and Niño 3.4 indices, relative to a base period climatology of 1950-571 

1979, and suggested that an ENSO event is deemed to occur when the Niño 3.4 index is above (or 572 

below) ±0.4°C for at least six months. In 2003 the National Oceanic and Atmospheric 573 

Administration (NOAA) issued an official operational definition for El Niño and La Niña. The 574 

definition was endorsed by both Canada and Mexico in 2005 (North American countries reach 575 

consensus on El Niño definition available at http://www.noaanews.noaa.gov/stories2005/s2394.htm) 576 

and has been adopted by the World Meteorological Organization Region IV [Larkin and Harrison, 577 

2005]. Accordingly, an El Niño (La Niña) is defined as:  578 

A phenomenon in the equatorial Pacific Ocean characterized by a positive (negative) sea 579 

surface temperature departure from normal (for the 1971-2000 base period) in the Niño 580 

3.4 region greater than or equal in magnitude to 0.5 degrees C, averaged over three 581 

consecutive months. 582 

Neutral condition is when the index is between ±0.5°C.  Figure 3 shows a plot of the Niño 3.4 index 583 

for 1935 to 2008, overlain with a centered 3-month moving average, which smoothens out variations 584 

in SST not associated with ENSO, and the ±0.5°C thresholds. The base period climatology for the 585 
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IRI dataset is 1951-1980 [Kaplan et al., 1998] and was adjusted to 1971-2000 to satisfy the above 586 

definition. During that period, El Niño occurred 21% of the time and La Niña 27% of the time, i.e. 587 

the Pacific was either active in one of the two conditions or neutral about half the time.  588 

5.3.2 Comparison of ENSO Events (1979 – 2008) 589 

Table 1 gives the start, end, and duration of El Niño and La Niña events occurring since 1979. The 590 

braces indicate coupled events where the average SSTA remained in one phase. NOAA’s definition, 591 

unlike Trenberth’s [1997], does not specify a minimum period over which the average index has to 592 

be above (or below) the threshold to be deemed a significant event, thus smaller periods of one to 593 

three months are also included in the list. We note that between 1979 and 2008, El Niños generally 594 

lasted longer than La Niñas, and there were more months above the +0.5°C threshold, resulting in El 595 

Niños 26.4% of the time, as opposed to 21.1% for La Niñas. A higher frequency of El Niños since 596 

1976 has been associated with decadal changes in the climate in the Pacific Ocean accentuated by 597 

recent climatic changes [Kumar et al., 1994; Trenberth, 1990]. The two often called major El Niños 598 

(1991-1995 and 2002-2005) and major La Niñas (1983-1986 and 1998-2001) occurred between 599 

1979 and 2008.  600 

Table 1: El Niño and La Niña events between 1979-2008 following NOAA’s definition 601 

The onset of ENSO event is not consistent; El Niño events typically begin between May and 602 

September and La Niña events begin between July and October, except for the 1988 event which 603 

started earlier, in May, and the 2005 event evolved later, in December. The time interval between El 604 

Niño events ranged between 15 and 47 months with an average of 33 months when coupled events 605 

are counted as one. In the case of La Niña events, the interval was normally around 26 months, 606 

except when the two major El Niño events occurred, leading to a gap of 75 and 57 months 607 
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respectively. The time interval between phase shifts varies from as short as one month (1997-1998 608 

El Niño to 1998-2001 La Niña) to neutral conditions lingering for up to 23 months (1988-1989 La 609 

Niña to 1991-1995 El Niño).  610 

Not all El Niños (La Niñas) are same; some events last for only a few months while others may 611 

persist for two or more calendar years. Figure 9 compares the recent strongest El Niño and La Niña 612 

events. El Niños (La Niñas) tend to peak (trough) between November and February, except for the 613 

1986-1988 event which peaked earlier in September. The strongest El Niño has a higher Niño 3.4 614 

index value compared to the lowest index value for the strongest La Niña. Two El Niños with 615 

maximum SSTA above +2°C were noted while La Niñas’ maxima were within -1 and -2°C. The 616 

reason for this lies mainly in the depth of the thermocline, which is shallower on the easternmost 617 

part of the Pacific basin, and it is therefore harder for the cold tongue to get colder, thus explaining 618 

why El Niños tend to be stronger than La Niñas [Neelin, 2010]. 619 

All these differences make it difficult to rank El Niños (La Niñas). It is hard to define the criteria to 620 

be used for such ranking; should it be (i) the duration above (or below) the defined threshold, (ii)  621 

the maximum (or minimum) SST recorded, or (iii) the total duration of the event in the phase of 622 

interest [Wolter and Timlin, 1998]? Glantz [1998] argues that a number of socio economic criteria, 623 

such as global spread of impacts, costs of devastation, or even public perception and media 624 

coverage, should also be considered. These criteria, however, are too complex and not totally 625 

objective and will thus not be considered in this study. Table 2 ranks the three strongest ENSO 626 

events, using the Niño 3.4 index, following Wolter and Timlin [1998], and intensity – a new metric 627 

which incorporates both SSTA and duration. ENSO intensity is the sum of monthly indices above 628 

(or below) the ±0.5°C threshold divided by the corresponding number of months. For combined 629 

events, the months where the index is within the neutral range are excluded. 630 
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Figure 9: Comparison of major El Niño and La Niña events between 1979 and 2008 631 
(transparent gray band shows ±0.5°C neutral range) 632 

Table 2: The three strongest ENSO events since 1979 based on different ranking criteria  633 

Duration and Maximum/Minimum SSTA 634 

The ranking reveals some interesting results regarding the individuality of ENSO events. In both El 635 

Niños and La Niñas, the list of the three strongest events using duration above the threshold is very 636 

different from that using the maximum (or minimum), implying that events persisting for long 637 

periods do not necessarily exhibit large deviations from the mean. The 1991-1995 event, for 638 

example, started in January 1990 and persisted until July 1995 [Trenberth and Hoar, 1996], and is 639 

longest El Niño on record, with a combined total of 28 months above the +0.5°C threshold, but does 640 

not show up within the list of events with maximum temperature or intensity. Allan and D'Arrigo 641 

[1999], examining palaeoclimatic records of ENSO infer that such events are not unusual. El Niños 642 

persisting for three years or longer may occur around four to five times per century. On the other 643 

hand, instrumental records analyzed by Trenberth and Hoar [1996] indicate that this event is 644 

unlikely the result of natural decadal-timescale variation but is rather influenced by global warming. 645 

The 1997-1998 El Niño, which developed earlier than the scientific community expected, is also 646 

noteworthy and has been dubbed “the climate event of the century” [Changnon and Bell, 2000]. 647 

Unlike the 1991-1995 event, it lasted only 13 months but was still one of the strongest on record 648 

with a peak SSTA of 2.56°C, closely rivaling the 1982-1983 event [Kiladis and Diaz, 1986]. By 649 

contrast the 1990-1995 event had a peak temperature of only 1.71°C occurring within the first third 650 

of the event. This super El Niño, just like the one in 1982-1983, had a dramatic impact on global 651 

weather variability causing the second worst drought in Australia and devastating floods across the 652 

western United States, with record precipitation in California. Western Pacific Islands, Central 653 
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America and Mexico experienced severe droughts. It ended abruptly in the middle of 1998 when a 654 

mass of cold water under-rode the warm surface waters causing one of the longest and strongest La 655 

Niña ever recorded.  656 

The 1998-2001 La Niña started in June 1998 and lingered till May 2001, with a combined total of 27 657 

months below the -0.5°C threshold. The SSTA reached a minimum of -1.50°C in December 1998 658 

and appeared to decay thereafter but resurged with a lower SSTA of -1.76°C in January 2000. The 659 

1988-1989 La Niña, the second longest since 1979, reached a lower SSTA of -2.03°C in November 660 

1988, and is one of the lowest on record.  661 

When the total duration the index remain in the positive or negative phase is considered, the same El 662 

Niños are ranked, but a slight difference is noted in the order of La Niñas. The 1983-1986 event, 663 

even though has fewer months below the threshold, takes longer to decay, and hence supersedes the 664 

1988-1989 event.  665 

ENSO Intensity 666 

ENSO intensity shuffles the ranking of El Niños based on maximum SSTA recorded. The 1997-667 

1998 event, with an intensity of 1.325, surpasses the 1982-1983 event, even though the latter has the 668 

highest temperature among recent episodes. In the case of La Niña, the list based on intensity agrees 669 

with that based on temperature, but not with the one based on duration. The 2007-2008 La Niña, 670 

being a short event, does not feature in the list based on duration but has the second lowest 671 

temperature and intensity. It is also important to note that La Niñas have much higher intensities 672 

than El Niños as they generally have shorter durations.  673 
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The effect of ENSO on water availability, based on the criteria discussed above, will be examined to 674 

ascertain if SSTA, duration, or intensity have different impacts. Note that in subsequent sections, 675 

ENSO events will be referred to as labeled in the legend of Figure 9. 676 

5.4 RUNOFF AND WATER AVAILABILITY 677 

Noah or LIS does not have a routing scheme; runoff is generated at 1/8° pixel level. Further, since 678 

the basin is divided into sub-regions rather than sub-basins, and because RG has a number of 679 

endorheic sub-basins, area-averaged runoff (AAR) is a better representation of regional water 680 

availability [Shukla and Wood, 2008].  681 
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where r  is the pixel runoff at the temporal scale of interest, a  is the area of the corresponding pixel, 682 

and n  is the number of pixel in the sub-region considered.  683 

Before assessing changes in water availability, we evaluated NLDAS-2 and runoff from Noah LSM 684 

against observations to assess the validity of our approach. 685 

5.4.1 Model Validation 686 

Precipitation 687 

The precipitation field in NLDAS-2 is derived from a number of sources whose coverage near the 688 

US borders and beyond is often limited. The product has been extensively validated over CONUS 689 

but has not received the same treatment beyond the US borders. Given that RG is a transboundary 690 

basin, extending into Mexico, and that the density and length of precipitation record in Mexico is 691 

low, it is important to verify the adequacy of NLDAS-2 over the Mexican portion of the basin. We 692 
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selected three of the six sub-regions within the basin, one in the US and two in Mexico, for 693 

validation. The Upper-Middle RG has a dense rain gauge network, with 31 stations; it is found 694 

almost entirely within the state of New Mexico and therefore benefits from the high quality products 695 

used in generating NLDAS-2. The two regions in Mexico are the Río Conchos and the Lower RG. 696 

Río Conchos, located entirely within Mexico, is an important sub-basin, but has only four viable 697 

stations aligned along the major axis of the catchment. The major portion of Lower RG is located 698 

within Mexico, and has 5 stations along the US border and 11 stations in Mexico. We therefore 699 

compared the NLDAS-2 precipitation field with the observations from the Mexican stations.  700 

The precipitation field in NLDAS does not agree very well with station observations at the hourly 701 

timescale, but as the data is aggregated over longer timescales the correlation increases [Luo et al., 702 

2003]. This is because NLDAS-2 precipitation is generated from multiple sources and averaged over 703 

the domain of interest. We compared precipitation at the monthly scale. Figure 10 shows the scatter 704 

plots of the area-averaged monthly precipitation (similar to AAR) derived from the NLDAS-2 705 

precipitation field ( )M  against average monthly observed precipitation from gauges ( )O  within 706 

each sub-region. The data length differs, as shown by the total number of data points ( )N  in each 707 

plot. The relative bias, root mean square deviation (RMSD), and correlation coefficient ( )ρ   are 708 

given for each region, along with the identity (1:1) line.   709 
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Figure 10: Scatter plot of area-averaged monthly NLDAS-2 precipitation and observed 710 
precipitation for the (a) Upper-Middle RG, (b) Río Conchos, and (c) Lower RG region 711 

(Mexican stations only) 712 

All three regions have very high ρ  values implying that the precipitation field in NLDAS-2, at the 713 

monthly timescale, over the entire RG basin is in good agreement with observations. A small 714 

consistent bias is noted towards observations, similar to the findings reported by Luo et al. [2003]. 715 

The RMSD values for the Río Conchos and Lower RG are greater than that for the Upper-Middle 716 

RG by a factor of three. This can be attributed to the fact that the Upper-Middle RG has a dense 717 

network uniformly spread over the whole region, while in Mexico the density and spread is limited. 718 

Also, most stations in Mexico did not have a continuous series but have been reconstructed from 719 

observations available from adjoining sites.  720 

Runoff 721 

In order to assess the representativeness of the modeled runoff we compared AAR of the Río 722 

Conchos, which is a closed sub-basin, unlike the other sub-regions, to measured values at Ojinaga, 723 

which is located at the confluence of the Río Conchos with RG. Historical mean daily discharge data 724 

for RG at Ojinaga is available from the International Boundary and Water Commission (IBWC) 725 

(http://www.ibwc.state.gov/). This dataset, as can be expected, incorporates land-use-land-cover 726 

changes, the effect of dams, diversions, and other infrastructural changes. A dataset of naturalized 727 

monthly flow, extending up to 2000, for the Río Conchos at Ojinaga is also available [Sandoval-728 

Solis et al., 2010]. The naturalization process utilized streamflow recorded at gaging stations and 729 

adjusted to remove the effect of reservoir storage and evaporation, water supply diversions, and 730 

return flows from surface and groundwater, so that the resulting series is as close to flow unimpaired 731 

by engineering infrastructures. However the influence of land-use-land-cover changes, infiltration, 732 

surface storage-flow, subsurface storage-flow, and evapotranspiration cannot be adequately 733 
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accounted for [Wurbs, 2006]. Noah accounts for evaporation, infiltration, and other hydrological 734 

parameters; but land-use-land-cover was kept constant to minimize extraneous noise that may 735 

interfere with the climate teleconnection signals. Figure 11 (a) gives the plot of AAR, naturalized, 736 

and observed time series of monthly streamflow in the Río Conchos. Prior to any inference, it is 737 

important to point out that none of these three series are accurate representation of flow in the basin; 738 

each have different intrinsic limitations. Figure 11(b) gives a 12-month-sliding-window correlation 739 

plot for the period January 1998 to December 2000, which includes the period for which Noah was 740 

validated by Lohmann et al. [2004], thereby giving a benchmark for comparison. Each value in the 741 

graph is the Pearson correlation coefficient for 12 consecutive months starting from the month at 742 

which it is plotted. This process allows us to compare the consistency in the correlation across 743 

different seasons.  744 

Figure 11: (a) Modeled, naturalized, and measured streamflow in the Río Conchos sub-basin, 745 
(b) sliding-window correlation 746 

It can be noted that Noah faithfully captures the monthly variations in runoff in the basin. 747 

Surprisingly, however, the correlation between AAR and the measured flow is consistently higher 748 

than with naturalized flow. This may be a function of the naturalization procedure, where 749 

evapotranspiration and other hydrologic process cannot be amply determined given their 750 

complexity. Another notable feature of the running correlation is the periodic variation in the 751 

correlation values. The correlation is generally between 0.85 and 0.95 except for certain short 752 

intervals, which may be attributed to reservoir operation and diversions affecting the recorded flow. 753 

Lohmann et al. [2004] reported a correlation of 0.954 for the Nehalem River in Oregon which is a 754 

much smaller watershed (1,727 km2) compared to the Río Conchos (64,000 km2). In the larger snow 755 

dominated Wind River in Wyoming (4,897 km2), a very low correlation of 0.117 was obtained 756 
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which was due to a difference in the timing of snowmelt in Noah. The highest correlation across the 757 

series is generally noted in the fall and winter and this can be explained by multiple factors: the 758 

timing of snowmelt [Pan et al., 2003; Sheffield et al., 2003], the influence of the North American 759 

Monsoon [Hogue et al., 2005], and the influence of engineering infrastructures, such as dams, return 760 

flows, and unmetered diversions for agricultural purposes within the basin. Given that summer and 761 

early fall are the wettest months for the region (Figure 4), streamflow may initially stored in the 762 

reservoirs and any excess thereafter is released once the reservoirs have reached capacity and hence 763 

recorded at the downstream stream gauge as values closest to the natural variations. 764 

5.4.2 Temporal Pattern – Climate Indices, Precipitation, and Water Availability 765 

Continuous wavelet transform allows the study of the temporal structure of precipitation and runoff 766 

across the basin and make inferences on the influence of climate variability patterns. The continuous 767 

wavelet power spectrum of AAR from each section of the basin is given in Figure 12(b) and can be 768 

compared against those of the four climate indices considered in this study (Figure 12(a)). The time 769 

spans for the plots of climate indices are the same as for runoff, i.e., 1979 to 2008. We used the 770 

MATLAB® based software package developed by Grinsted et al. [2004] (available from 771 

http://www.pol.ac.uk/home/research/waveletcoherence/) for generating the wavelet plots. The 772 

statistical significance of the peaks in the wavelet spectrum was tested using Monte Carlo methods 773 

against a lag-1 autoregressive red noise background; peaks with greater than 95% confidence are 774 

designated by thick black contours in the figures. However, regions out of these 95% confidence 775 

level areas should not be construed as the product of noise only. Natural processes are also present 776 

in these regions, albeit having a lower bearing on the power spectrum, and information on the 777 

influence of climate teleconnections can still be garnered from them [Anctil and Coulibaly, 2004]. 778 
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Figure 12: Continuous wavelet power spectrum of (a) climate indices and (b) AAR for each 779 
region. Period is in days. The thick black contours designate the 5% significance level against 780 

red noise and the thin black line demarcate the cone of influence beyond which, shown in a 781 
lighter shade, the image may be distorted since the data is not padded at the edges.  782 

PDO has a cycle of about 20 to 30 years, which is not apparent in this wavelet power spectrum, as it 783 

is limited to 1979 to 2008 only. During this time span, the index was mostly positive until 1995 after 784 

which it oscillated with a period of three and a half years in each phase (Figure 3). This cycle is 785 

visible in the continuous wavelet power spectrum. ENSO has a much shorter wavelength, with a 786 

recurrence pattern of 3 to 6 years and every event normally lasts for around a year. Significant 787 

power in this band is observed throughout the entire record in the wavelet power spectrum of both 788 

Niño 3.4 and MEI, along with weaker significant power in the 1.5 to 2 year band associated with 789 

secondary variations in the indices while in a particular phase. Niño 3.4 and MEI have very similar 790 

power spectrum as they are highly correlated (ρ = 0.92). The plot for EMI is different from the latter 791 

indices as it has a different mode and evolves with a different frequency [Ashok et al., 2007]. 792 

Variations at both ENSO and PDO frequencies are apparent in the wavelet power spectrum of AAR. 793 

Significant powers in the smaller period (higher frequency) band are the result of seasonal 794 

variations. It is worth pointing that the continuous wavelet power spectra of both the averaged 795 

gauged precipitation and the first principal component of gauged precipitation for each sub-region 796 

(not shown here) exhibited variations similar to ENSO and PDO frequencies, further supporting the 797 

correlations established in section 5.2. The fact that the influence of climate variability was more 798 

apparent in precipitation than in streamflow is because runoff is not a first order response of 799 

precipitation but is filtered by the watershed characteristics [Legates et al., 2005]. Looking closer at 800 

each spectrum we note that in the Upper RG region significant power at the 5% significance level is 801 

exhibited within the high frequency band, coincident with the pattern exhibited by the PDO 802 

spectrum but ENSO related patterns were not significant at the 5% level. In the Upper-Middle RG 803 
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region, however, variations at the ENSO frequencies are clearly evident in most part of the spectrum 804 

except for the period 1995 to 2003. In the Middle-Middle RG region, the spectrum exhibited 805 

variations in the ENSO frequencies even though not statistically significant throughout. The 806 

spectrum for the Lower-Middle RG region was devoid of statistically significant powers as can be 807 

expected, because the correlation of ENSO indices with precipitation is consistently lower than in its 808 

two adjoining regions (Figure 8). In the Lower RG region variations at ENSO frequencies is visible 809 

in the second half of the series. It should be noted that this region is close to the Gulf of Mexico and 810 

subjected to oceanic influences and hurricanes whose effects are embedded in the model outputs. In 811 

the Río Conchos, variations at ENSO frequencies are evident in the first half of the series but 812 

completely absent in the second part when the basin was subjected to an exceptional drought.  813 

5.5 EFFECTS OF LARGE-SCALE CLIMATE INDICES ON WATER AVAILABILITY 814 

After having established the spatial correlation of precipitation with large scale climate indices and 815 

investigated the sensitivity of runoff to PDO and ENSO using continuous wavelet transform, we 816 

now discuss the changes in water availability with respect to major El Niño and La Niña events. We 817 

also determine if there is any lag in runoff relative to ENSO. 818 

5.5.1 Lag Correlation 819 

To investigate the lag between individual ENSO events and runoff in RG we considered an 18 820 

months long series encompassing each event. Most events peaked in early winter; therefore the 821 

series considered extended from March before to August after the peak. The 1986-1988 El Niño 822 

peaked earlier in September and thus the range considered was from December before to May after 823 

the peak. Table 3 gives monthly lag correlation coefficients of AAR of the whole RG basin relative 824 

to the Niño 3.4 index. The lag is defined by the month having maximum statistically significant 825 

correlation. A positive lag indicates that the index led runoff. Lags ranging between 0 to 3 months 826 
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were observed for AAR of the whole basin with respect to most El Niños and La Niñas. It is 827 

interesting to note that for some events a negative correlation was observed despite the fact that 828 

there is an overall dominant positive correlation between ENSO and runoff in the basin. 829 

Lag correlation was also computed for each sub-region and the consolidated result of the statistically 830 

significant correlations is shown in Table 4. For the 1998-2000 La Niña, which is bimodal, the lags 831 

shown are with respect to the second dip as it has a lower SSTA. In the Upper RG the lag is 3 to 4 832 

months. In the Middle-Middle RG a consistent lag of 1 to 4 months is observed relative to most El 833 

Niño events and in the Rio Conchos a lag of 0 to 5 months is observed relative to three of the four 834 

La Niñas considered. This result is consistent with the findings of Chen and Kumar [2002] who used 835 

a large-area basin-scale LSM to investigate the relationship among terrestrial hydrologic processes 836 

with ENSO over North America and Kumar and Hoerling [2003] who compared and confirmed the 837 

observed lag in zonal mean tropical thermal anomalies with respect to east Pacific SST using an 838 

atmospheric GCM.  839 

Table 3: Lag correlation of Niño 3.4 index with Noah runoff for the whole of the basin 840 

Table 4: Lag correlation for each section of the basin 841 

5.5.2 Changes in Water Availability 842 

In order to assess the effects of ENSO events on water availability, the seasonal percentage change 843 

with respect to the long term average in AAR, for each sub-region and for the whole basin was 844 

computed (Figure 13). ENSO events typically peak around November and since the lag between 845 

ENSO and runoff was found to be generally between 0 month to a season, water availability in 846 

winter and spring are expected to be most influenced. Note, however, that the 1986-1988 El Niño 847 

and 1998-2000 La Niña do not fit the general trend. The 1986-1988 El Niño lingered for a year 848 
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before reaching its peak temperature and the 1998-2000 La Niña was bi-modal, with two distinct 849 

troughs, over a 27-month period.  850 

The first thing we note is that even though there is a general tendency for an increase (decrease) in 851 

runoff during El Niños (La Niñas), some events actually caused a decrease (increase) in water 852 

availability.  853 

Figure 13: Percentage change in water availability during (a) El Nino and (b) La Niña events 854 

PDO generally enhances ENSO events [Kurtzman and Scanlon, 2007], therefore we also consider 855 

the phases of PDO for corresponding major El Niño and La Niña events in our discussion. Table 5 856 

gives the coincident phases of PDO with respect to the ENSO events considered. We note that some 857 

El Niños (La Niñas) were strengthened by positive (negative) PDO, while others coincided with 858 

weak or transitioning PDO.  859 

Table 5: PDO phase for major ENSO events 860 

El Niño and PDO 861 

The 1986-1988 El Niño, even though was the third strongest event since 1979 (Table 2), brought the 862 

highest percentage increase in runoff for the whole basin (196%), with the upper half of the basin 863 

gaining between 190 to 350% more runoff in winter. The lower half, including Río Conchos 864 

experienced a more modest increase of around 60%. The same pattern, but with lower percentages, 865 

persisted in spring and summer. The event was enhanced by a strong positive PDO – both events 866 

evolved synchronously and peaked in August 1987 (Figure 3).  867 
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The 1991-1993 El Niño coincided with a PDO transitioning into its positive phase. It triggered the 868 

same pattern in runoff but with slightly lower percentages (average of 147% for the whole basin). 869 

The Río Conchos benefitted from the highest increase in runoff in spring during that event, 870 

compared to all other El Niños. This event had the longest duration above the ±0.5°C threshold 871 

among the El Niños considered, but was not within the top three in terms of maximum temperature 872 

recorded. It had three peaks; the two following the first one, however, have lower SSTAs. The 873 

second peak coincided with positive PDO and the third one coincided with a temporary shift in the 874 

phase of PDO to negative. Interestingly, the percentage change in AAR was negative across the 875 

basin during both the second and third peaks.  876 

The 1982-1984, 1997-1999, and 2002-2004 El Niños did not generate higher runoff in the basin, but 877 

rather a decrease in water availability. AAR was lower by 50% over the whole basin and over 90% 878 

in the Río Conchos sub-basin. The 1982-1984 and 1997-1999 events were two of the strongest El 879 

Niños on record, based on ENSO intensity and maximum temperature recorded. They both 880 

coincided with weak PDO; the 1982-1984 event starts when PDO was in its positive phase but 881 

peaked when the latter was almost neutral, oscillating between phases. The 1997-1999 event 882 

coincided with a PDO decaying from its positive to negative phase. 883 

La Niña and PDO 884 

AAR in the basin was normally lower than the long term average during La Niña winters and 885 

springs, except for the 1984-1986 event. The three events (1988-1990, 1998-2000, and 2007-2008) 886 

that caused a decrease in water availability occurred when PDO was either in its negative phase or 887 

transitioning from positive to negative. Given that the 1998-2000 event is the longest La Niña since 888 

1979 (27 months) and is bimodal, with the second dip, occurring in January 2000, having a lower 889 

SSTA and coinciding with negative PDO, we also computed the change in water availability 890 
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following the second dip (not shown in Figure 13). A decrease in AAR was noted across all sub-891 

regions, except for winter in Upper RG (increase of 6%) which exhibits negative correlation with 892 

ENSO. The total decrease in AAR for the whole basin was nearly 60% for year 2000.  893 

The 1984-1986 La Niña coincided with a positive PDO and was the only event that caused an 894 

increase in water availability. An exceptionally large increase is noted in the Río Conchos in both 895 

winter and spring, which translated in an increase for the whole basin. These results are consistent 896 

with the analysis of multiyear droughts in the past three centuries by Cole et al. [2002] who showed 897 

that persistent negative PDO enhances the impact of La Niña related droughts, while oscillating 898 

PDO produced moderate and/or localized droughts, and a positive PDO would suppress drought 899 

despite persistent La Niña conditions.  900 

Based on the above observations, we note that PDO has an important influence on water availability 901 

in the basin. A positive PDO enhances the effect of El Niño and dampens the negative effect of La 902 

Niña. When PDO is in a neutral/transition phase La Niña dominates climatic conditions and reduces 903 

water availability. El Niños lingering for long periods have more influence on water availability than 904 

short duration high intensity events. Finally it is interesting to note that the percentage increase 905 

during El Niños significantly offsets the drought-causing effect of La Niñas. This finding should not 906 

be discounted in long-term water resources planning.  907 

6 CONCLUSIONS 908 

Local meteorological and hydrological variables, and hence water availability, are influenced by 909 

large-scale climate indices. In this study we investigated the influence of ENSO and PDO on the 910 

water availability in RG by first establishing the spatial and temporal variation of the correlation 911 

between climate indices and gauged precipitation across the basin and then determining percentage 912 

changes in water availability as derived from an LSM instead of using streamflow which is 913 
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constantly impacted by activities in the basin masking climate influences.  The following 914 

conclusions are drawn from this study: 915 

1. The correlation between PDO and three ENSO indices, namely Niño 3.4, MEI, and EMI, with 916 

gauged precipitation respectively shows that both ENSO and PDO have a strong influence on 917 

the winter and spring precipitation in the basin. The overall correlation is positive, except for 918 

the Upper RG section which includes the headwaters in the San Juan range in the Rocky 919 

Mountains in southern Colorado. Therefore, higher snowfall during La Niña conditions may 920 

help in maintaining flow in the river and offset precipitation reduction in arid/semi-arid New 921 

Mexico.  922 

2. The correlation between the Niño 3.4 and MEI indices with precipitation are similar since they 923 

are closely related. The temporal structure and influence of EMI is different and is not strongly 924 

correlated with precipitation in the basin.  925 

3. Additional information can be garnered by examining the major El Niño and La Niña events 926 

by classifying them using four criteria (duration above defined threshold, maximum or 927 

minimum SSTA, duration in phase of interest, and intensity). ENSO events are not equivalent, 928 

some events have short duration but high intensity, while others lingers for several years with 929 

lower SSTA.  930 

4. Runoff across the basin was generated using the Noah LSM and AAR was used as a proxy for 931 

water availability. The basin was divided into six sub-regions for analysis purposes. 932 

Continuous wavelet power spectrum shows the extent of influence of ENSO and PDO on 933 

runoff. Variations at both ENSO and PDO frequencies are apparent in the wavelet power 934 

spectrum of AAR for each region.  935 
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5. The influence of individual ENSO events, five El Niños and four La Niñas between 1979 and 936 

2008 and corresponding phases of PDO, on water availability in the basin was investigated. 937 

Lags ranging between 0 to 3 months were observed between runoff and ENSO events. A 938 

general increase (decrease) in runoff during El Niños (La Niñas) was noted but some 939 

individual events actually caused a decrease (increase) in water availability. El Niños lingering 940 

for long periods have more influence on water availability than short duration high intensity 941 

events. The upper-middle section of the basin records a higher increase in winter water 942 

availability during El Niño events (200-300%) while the lower half, including the Río 943 

Conchos, experiences a more modest change.  944 

6. PDO has an important influence on water availability. A positive PDO enhances the effect of 945 

El Niño and dampens the negative effect of La Niña. When it is in its neutral/transition phase 946 

La Niña dominates climatic conditions and reduces water availability.  947 

7. The percentage increase during El Niños significantly offset the decrease registered during La 948 

Niñas. This finding is important for water resources planning.  949 

The study extends the discussion between the influence of large-scale circulation indices and local 950 

meteorological and hydrological conditions by quantifying the seasonal percentage changes in water 951 

availability, which is more tangible information for water planning. Climate change may alter the 952 

frequency and intensity of ENSO events and may cause droughts that are more extreme and/or of 953 

longer duration than on record. The current results, while are not intended for prediction purposes, 954 

may help in the long-term sustainable water planning and management within the basin for both the 955 

United States and Mexico. Finally, the methodology adopted in this paper is not limited to the 956 

watershed scale but can be applied to larger continental scale to assess the need and effectiveness of 957 

interstate water transfers.  958 
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