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Abstract 

Thermal barrier coatings will be more aggressively designed 
to protect gas turbine engine hot-section components in order 
to meet future rotorcraft engine higher fuel efficiency and 
lower emission goals. For thermal barrier coatings designed 
for rotorcraft turbine airfoil applications, further improved 
erosion and impact resistance are crucial for engine 
performance and durability, because the rotorcraft are often 
operated in the most severe sand erosive environments. 
Advanced low thermal conductivity and erosion-resistant 
thermal barrier coatings are being developed, with the current 
emphasis being placed on thermal barrier coating toughness 
improvements using multi-component alloying and processing 
optimization approaches. The performance of the advanced 
thermal barrier coatings has been evaluated in a high 
temperature erosion burner rig and a laser heat-flux rig to 
simulate engine erosion and thermal gradient environments. 
The results have shown that the coating composition and 
architecture optimizations can effectively improve the erosion 
and impact resistance of the coating systems, while 
maintaining low thermal conductivity and cyclic oxidation 
durability. 

Introduction 
Advanced thermal barrier coatings (TBCs) are critical for 

designing next generation rotorcraft turbine engines because 
of their ability to allow increased engine gas temperatures and 
reduced cooling requirements, thus helping to achieve 
improved engine performance and durability (Refs. 1 to 5). It 
has been shown that advanced turbine thermal barrier coatings 
can provide significant benefits in increasing engine efficiency 
(Ref. 5). Advanced hot-section material technology is 
especially critical in improving the turboshaft based rotorcraft 
engine performance, and a more nearly prime-reliant coating 
design approach is necessary to take full advantage of the 
thermal barrier coating technology in future rotorcraft engine 
systems. Turbine blade thermal barrier coatings are especially 
susceptible to engine ingested sand erosion and impact 
damage because of the high velocity flow path nature of the 
blades and complex particulate-coating interactions under high 
heat-flux combustion turbine environments. The NASA 
Rotary Wing Project has been addressing low thermal 
conductivity, high toughness and erosion resistant turbine 

blade thermal barrier coating development based on nano-
tetragonal phase toughening design approaches (Refs. 6 to 8).  

The main objective of this current effort is to evaluate and 
optimize the processing of advanced turbine blade thermal 
barrier coating systems with increased erosion and impact 
resistance for rotorcraft propulsion engines. The high 
temperature erosion performance of the turbine TBC systems 
will be discussed. Thermal conductivity and thermal cyclic 
durability of the coating systems have been evaluated. The 
emphasis is particularly placed on the multi-component 
alloying and processing optimization for the erosion resistance 
and the combined oxidation and erosion effects, helping 
understand the complex erosion mechanisms for developing 
comprehensive turbine blade TBC life prediction models.  

Expertimental Procedures  
Advanced Thermal Barrier Coatings 

Advanced turbine thermal barrier coatings were designed 
using a multi-component defect-clustering approach and 
processed using an Electron Beam–Physical Vapor Deposition 
(EB-PVD) technique (Refs. 1 to 3). Although the high 
temperature multi-component turbine thermal barrier coatings 
have included pseudo-four component ZrO2-Y2O3-Gd2O3-
Yb2O3 (t’ ZrYGdYb) and pseudo-six component ZrO2-Y2O3-
Gd2O3-Yb2O3-TiO2-Ta2O5 (t’ ZrYGdYbTT) systems, the 
present study is primarily focused on the four component 
systems because of the less complex and better controlled EB-
PVD processing parameters. The EB-PVD coatings were 
processed at a vendor, and four processing conditions were 
used in the EB-PVD process by varying electron beam power, 
chamber pressure, and specimen deposition temperature. The 
advanced TBC systems, typically consisting of a 130 to 
200 µm thick ceramic top coat and a 75 to 100 µm thick PtAl 
intermediate bond coat, were electron beam-physical vapor 
deposited (EB-PVD) on to 25.4 mm diameter disks of Rene 
N5 nickel-base superalloy substrates. The EB-PVD coatings 
were all deposited using pre-fabricated evaporation ingots 
made using the designed compositions.  

A Mach 0.3 to 1.0 high velocity burner rig with erosion 
capability was developed for the turbine blade thermal barrier 
coating erosion testing in a laboratory simulated turbine 
engine relevant environments (Ref. 8). Computational Fluid 
Dynamics (CFD) modeling and experimental testing were 
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systematically studied in the high burner velocities ranging 
from Mach 0.3 to 0.9, representative to turbine engine 
conditions. In the present study, Al2O3 particles were used as 
erodent, as similarly reported in previous work by others 
(Refs. 9 and 10). The nominal particle sizes used were ranged 
from 27 to 100 µm. The coating erosion testing was primarily 
conducted at 2000 °F. However, comparisons have been made 
for erosion tests performed at 1800 to 2200 °F. The set of the 
process optimization coatings were also pre-cyclically 
oxidized in a furnace for 128 and 256 hr at 2025 °F in 2 hr hot 
time cycles, and then burner erosion tested at high temperature 
to investigate the pre-exposure cyclic oxidation effect. In all 
cases, the erosion rates were determined by the erodent 
amount required for the coating erosion recession and coating 
breakthrough. A more sophisticated characterization of three-
dimensional erosion surfaces and erosion behavior of thermal 
barrier coating systems under complexity of erosion burner 
conditions will be reported at a later time.  

Thermal conductivity and cyclic durability tests were also 
conducted using the high heat flux laser test rig and cyclic 
furnaces at typical operating relevant temperatures, and 
experiment details will be discussed elsewhere (Ref. 11). The 
advanced t’ coatings were also compared with the baseline 
ZrO2-7wt%Y2O3 (7YSZ) in the performance. 

Experimental Results and Discussion  
Thermal Conductivity  

Figure 1 shows the thermal conductivity of four-component 
ZrO2-Y2O3-Gd2O3-Yb2O3 and six-component low conductivity 
(low k) ZrO2-Y2O3-Gd2O3-Yb2O3-TiO2-Ta2O5 coatings, tested 
at 2400°F (1316°C) using a steady-state laser heat flux rig. 
The four-component turbine coatings have lower thermal 
conductivity than the baseline 7YSZ (a yttria partially 
stabilized zirconia) coating, but higher conductivity than the 
combustor application oriented cubic-phase thermal barrier 
coatings and the currently less developed six-component 
coating systems. The four-component turbine TBCs have been 
developed with toughness enhancements to improve the 
erosion resistance required by the turbine airfoil applications. 
The composition and phase optimization also have ensured the 
basic erosion resistance requirements of the coating systems. 

Figure 2 shows the furnace cyclic life comparisons of the 
four-component and six-component low k coatings. The 
coating cyclic life was optimized for a highly stable tetragonal 
t’ phase among the different coating systems. It can be seen 
that the four-component coatings have an optimum durability 
with lower total Rare Earth (RE) oxide dopant (RE2O3) 
concentrations similar to the baseline 7YSZ, with the cyclic 
life of 300 to 400 hr at 2125 °F (1163 °C), as compared to the 
six-component coating systems having additional Ti and Ta 
additions. The Ti and Ta in the six component systems have 
the advantages of allowing increased rare earth dopants while 
still maintaining t’ phase and lower thermal conductivities. 

However, the lower dopant concentration and less complexity 
of the four-component systems helped the initial EB-PVD 
processing optimizations where the homogenization and 
precise control of the coating compositions are highly critical.  
 

 
Figure 1.—Thermal conductivity of four-component ZrO2-Y2O3-

Gd2O3-Yb2O3 and six-component low conductivity ZrO2-Y2O3-
Gd2O3-Yb2O3-TiO2-Ta2O5 coatings, tested at 2400 °F 
(1316 °C) using a steady-state laser heat flux rig. The four-
component turbine coatings have lower thermal conductivity 
than the baseline 7YSZ coating, but higher conductivity than 
the combustor cubic phase thermal barrier coatings. 

 

 
Figure 2.—Furnace cyclic life comparisons of four-component 

ZrO2-Y2O3-Gd2O3-Yb2O3 and six-component low conductivity 
ZrO2-Y2O3-Gd2O3-Yb2O3-TiO2-Ta2O5 coatings. The cyclic life 
is optimized for a highly stable tetragonal t’ phase for the 
different coating systems. The four-component coatings have 
an optimum life of 300 to 400 hr at 2125 °F (1163 °C), with 
lower total rare earth oxide (RE2O3) dopants as compared to 
the six-component coating systems with Ti and Ta additions.  
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Erosion Resistance 
Figure 3 shows erosion behavior of a ZrO2-2mol%Y2O3-

1.5mol%Gd2O3-1.5mol%Yb2O3 thermal barrier coating at 
high temperature using the EB-PVD process optimization 
experiment. The coatings were tested in the erosion burner rig 
under Mach 0.5 conditions at the specimen temperature of 
2000 °F. The Process 1 was the baseline process condition 
which is the same as the standard process for the 7YSZ 
coating and optimized for the baseline coating. The Process 2 
and 3 resulted in somewhat decreased erosion resistance of the 
coating systems due to the less optimized coating columnar 
architectures and higher porosity levels. The Process 4, 
however, showed quite significant, approximately 30 percent 
erosion resistance improvements as compared to the baseline 
coating.  

The TBC surface morphologies of process optimization 
specimens were examined using a Field Emission Gun-
Scanning Electron Microscope (FEG-SEM), as shown in 
Figure 4. It can be seen that the specimens with the standard 
processing (Process 1) had relatively large and uniform 
columnar grains (~10 to 20 µm in size). However, the TBC 
specimens with best optimized processing (Process 4) had 
finer columnar structures (~ 10 µm in size), and with 
additional much finer smaller columns (2 to 5 µm in size). The 
smaller column sized coatings would expect to offer higher 
strength and significantly improved coating strain tolerance 

for improved erosion/impact resistance based on the previous 
erosion modeling work (Ref. 8), and also potentially providing 
improved furnace cyclic life durability.  
 

 
Figure 3.—High temperature erosion behavior of an 

optimization runs of low conductivity thermal barrier coatings. 
The optimized process 4 of the low conductivity thermal 
barrier coating showed improvements in erosion resistance 
due to better optimized columnar microstructures.  

 

(a)  

(b)  
Figure 4.—The FEG-SEM surface morphologies of turbine EB-PVD thermal barrier coatings under 

different process conditions. (a) Standard Process 1 condition; (b) Optimized Process 2 condition. 
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Cyclic Oxidation Pre-Exposure on Erosion 
Resistance 

Figure 5 shows the pre-cyclic oxidation effect on the 
erosion resistance of the turbine EB-PVD thermal barrier 
coatings. It can be seen that in most cases, the pre-cyclic 
oxidation under the moderate temperature (2025°F) and times 
(below 300 hr) seemed to increase the erosion resistance as 
compared to the as processed conditions. It is speculated that 
the cyclic exposure has moderate sintering effects which may 
strengthen the coating systems. Also the pre-cyclic exposure 
may induce certain degrees of the interface roughening as 
often observed, which can further strengthen the TBC/metal 
bond coat interface and reduce the coating spallation under the 
high velocity erosion/impact testing. More systematic studies 
are underway to further understand the oxidation and erosion 
behavior and to help the development of coating life 
prediction models.  

Figure 6 shows the erosion and oxidation based failure map 
under turbine testing conditions. The effect of temperature on 
the turbine coating erosion and oxidation life is also clearly 
illustrated. It can be seen that in the oxidation-based failure, 
the coating life is exponentially reduced with increasing 
temperature (ln life in hours vs. 1/T), because interface 
damage effects are significantly increased from the accelerated 
oxide scale growth and increased cyclic stress-temperature 
amplitudes during the cycling. In contrast, the erosion-based 
coating failure life is generally increased with temperature 
because the coating toughness and plasticity increase with 
temperature. Therefore, one can expect that in the lower 
temperature regime, when coating erosion is the life limiting 
factor, the coating would generally fail by an erosion 
mechanism given sufficient erodent is present, as is frequently 
the case in rotorcraft operating environments. On the other 
hand, in the higher temperature regime, when coating 
oxidation is the life-limiting factor, the coating would 
predominantly fail by an oxidation mechanism. Under very 
high-temperature combined erosion and oxidation conditions 
(2100 to 2200 °F), significantly reduced coating life was 
observed in the burner erosion rig tests, and has been 
characterized as an oxidation-erosion mechanism as shown in 
Figure 6. In addition to the oxidation erosion interactions, the 
significant softening of the baseline 7YSZ thermal barrier 
coating may also have contributed to the accelerated erosion 
failure. The coating strain-based approaches are also being 
developed for turbine thermal barrier coating life predictions 
and will reported in future publications. 

Concluding Remarks 
Advanced t’ phase rare earth oxide (Gd2O3 and Yb2O3 co-

doped)- and TiO2/Ta2O5-alloyed, ZrO2-based thermal barrier 
coatings were designed and processed. The turbine thermal 
barrier coatings were developed for rotorcraft turbine engine 
applications, aimed at combined low conductivity and high 
 

 
Figure 5.—The pre-cyclic oxidation effect on erosion resistance 

of EB-PVD thermal barrier coatings. The coatings were 
compared with the as processed, 128 hr oxidation, and 
256 hr oxidation and at 2025 °F. The erosion was tested at 
2000 °F. The results showed that the pre-cyclic oxidation 
seemed to increase the coating resistance to erosion. 

 
 

 
Figure 6.—The erosion and oxidation based failure map under 

turbine testing conditions. 
 

 
toughness for improved thermal barrier performance and 
erosion resistance. The coating thermal conductivity, cyclic 
durability, and erosion resistance have been optimized from 
composition, phase, and processing as well as microstructure 
optimizations. Combined erosion and oxidation life prediction 
approaches based on the failure maps were also illustrated. 
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